1
|
He B, Zhu Z, Tian Z, Wang D, Li Y, Luan X, Ma L. Fucoidan improves intestinal peristaltic function in rats with postoperative ileus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03587-6. [PMID: 39508874 DOI: 10.1007/s00210-024-03587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The effect of fucoidan on postoperative ileus (POI) has not been studied. In this study, how fucoidan ameliorates POI in a rat POI model was investigated. The results showed that in the model animals, when the first defecation time was prolonged, the amount of food consumed decreased, the small intestinal propulsion rate dramatically slowed, and the motility index (MI%) of the small intestine decreased. In vitro experiments revealed that the contractile response of small intestinal smooth muscle strips to carbachol (CCh) was reduced. Immunohistochemistry revealed evident macrophage infiltration in the intestinal muscularis. However, after oral pretreatment with fucoidan, the time to first defecation decreased, and food intake, the small intestinal propulsion rate, and MI% of the small intestine increased. Additionally, the contractile response of the intestinal strips to CCh became stronger, and macrophage infiltration decreased. Mechanistically, fucoidan alleviated POI by exerting anti-inflammatory and antioxidant effects as well as likely through the TrkB/ERK1/2/Akt signalling pathways. When POI occurred, the expression levels of inflammatory factors in the intestines significantly increased while the phosphorylation of TrkB, ERK1/2, and Akt significantly decreased; malondialdehyde (MDA) levels in the intestines increased but the levels of superoxide dismutase (SOD) and glutathione (GSH) decreased. In contrast, after pretreatment with fucoidan, the expression levels of inflammatory factors decreased; the phosphorylation levels of TrkB, ERK1/2, and Akt increased; the MDA level decreased; and SOD and GSH levels increased. Thus, fucoidan alleviated POI-induced impairment of rat intestinal motility through anti-inflammatory and antioxidant effects possibly associated with the TrkB/ERK1/2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Baoguo He
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhenming Zhu
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zibin Tian
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dandan Wang
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yijing Li
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiao Luan
- Biomedical Center of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Li Ma
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Ghahtan N, Dehghan N, Ullah M, Khoradmehr A, Habibi H, Nabipour I, Baghban N. From seaweed to healing: the potential of fucoidan in wound therapy. Nat Prod Res 2024:1-14. [PMID: 38804629 DOI: 10.1080/14786419.2024.2358387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This bibliometric review examines the current state of research on fucoidan, a sulphated polysaccharide found in brown seaweed species, and its potential for wound healing. The review included 58 studies that investigated fucoidan's effects on wound healing, revealing that it possesses anti-inflammatory and antioxidant properties that could aid in the healing process. Fucoidan was also found to promote cell proliferation, migration, and angiogenesis, essential for wound healing. However, the optimal dosage, treatment duration, safety, and efficacy of fucoidan in various wound types and patient populations still require further investigation. Additionally, advanced wound dressings like hydrogels have garnered significant attention for their potential in wound healing. While this review indicates promise for fucoidan as a natural wound healing compound, it underscores the need for additional clinical trials to determine its optimal use as a commercial therapeutic agent in wound healing.
Collapse
Affiliation(s)
- Najmeh Ghahtan
- Department of Medicinal Chemistry, Faculty of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Niloofar Dehghan
- Bushehr University of Medical Sciences, Bushehr, Iran
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Department of Cancer Immunology, Genentech Inc, South SanFrancisco, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hassan Habibi
- Department of Animal Sciences, Faculty of Agricultural and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Iraj Nabipour
- Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Bhattacharjee A, Savargaonkar AV, Tahir M, Sionkowska A, Popat KC. Surface modification strategies for improved hemocompatibility of polymeric materials: a comprehensive review. RSC Adv 2024; 14:7440-7458. [PMID: 38433935 PMCID: PMC10906639 DOI: 10.1039/d3ra08738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Polymeric biomaterials are a widely used class of materials due to their versatile properties. However, as with all other types of materials used for biomaterials, polymers also have to interact with blood. When blood comes into contact with any foreign body, it initiates a cascade which leads to platelet activation and blood coagulation. The implant surface also has to encounter a thromboinflammatory response which makes the implant integrity vulnerable, this leads to blood coagulation on the implant and obstructs it from performing its function. Hence, the surface plays a pivotal role in the design and application of biomaterials. In particular, the surface properties of biomaterials are responsible for biocompatibility with biological systems and hemocompatibility. This review provides a report on recent advances in the field of surface modification approaches for improved hemocompatibility. We focus on the surface properties of polysaccharides, proteins, and synthetic polymers. The blood coagulation cascade has been discussed and blood - material surface interactions have also been explained. The interactions of blood proteins and cells with polymeric material surfaces have been discussed. Moreover, the benefits as well as drawbacks of blood coagulation on the implant surface for wound healing purposes have also been studied. Surface modifications implemented by other researchers to enhance as well as prevent blood coagulation have also been analyzed.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
| | | | - Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Ketul C Popat
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
- Department of Mechanical Engineering, Colorado State University Fort Collins CO 80523 USA
- Department of Bioengineering, George Mason University Fairfax VA 22030 USA
| |
Collapse
|
4
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Sun X, Yan C, Fu Y, Ai C, Bi J, Lin W, Song S. Orally administrated fucoidan and its low-molecular-weight derivatives are absorbed differentially to alleviate coagulation and thrombosis. Int J Biol Macromol 2024; 255:128092. [PMID: 37979755 DOI: 10.1016/j.ijbiomac.2023.128092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Thrombosis is a serious threat to human health and life. Fucoidan, a sulfated polysaccharide from brown algae, could prevent coagulation and thrombus after intravenous administration. However, more efforts are still needed to develop its oral agent. In the present study, the absorption and excretion of fucoidan (90.8 kDa) and its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), were determined by HPLC-MS/MS after acid degradation and 1-phenyl-3-methyl-5-pyrazolone derivatization, and their anticoagulation and antithrombotic activities were evaluated in vivo after oral administration. Results showed that the maximum concentrations of fucoidan, Dfuc1 and Dfuc2 in rat plasma all achieved at 2 h after oral administration (150 mg/kg), and they were 41.1 ± 10.6 μg/mL, 45.3 ± 18.5 μg/mL and 59.3 ± 13.7 μg/mL, respectively. In addition, fucoidan, Dfuc1 and Dfuc2 could all prolong the activated partial thromboplastin time in vivo from 23.7 ± 2.7 s (blank control) to 25.1 ± 2.6 s, 27.1 ± 1.7 s and 29.4 ± 3.6 s, respectively. Moreover, fucoidan and its degradation products showed similar antithrombotic effect in carrageenan-induced thrombosis mice, and untargeted metabolomics analysis revealed that they all markedly regulated the carrageenan-induced metabolite disorders, especially the arachidonic acid metabolism. Thus, the degradation products of fucoidan with lower molecular weights are more attractive for the development of oral antithrombotic agents.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yinghuan Fu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jingran Bi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Wei Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, PR China; SKL of Marine Food Processing & Safety Control, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
6
|
Chen Y, Dai X, Chen W, Qiao Y, Bai R, Duan X, Zhang K, Chen X, Li X, Mo S, Cao W, Li X, Liu K, Dong Z, Lu J. Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin. Oncogene 2023:10.1038/s41388-023-02750-2. [PMID: 37349644 DOI: 10.1038/s41388-023-02750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cisplatin (CDDP) is the first-line drug in the clinical treatment of esophageal squamous cell carcinoma (ESCC), which has severe nephrotoxicity. Diosmetin (DIOS) can protect kidney from oxidative damage, however, its function in ESCC is unknown. This study aims to explore the effect and mechanism of DIOS on ESCC and its combined effect with CDDP. Herein, we found that DIOS significantly inhibited the progression of ESCC in vitro and in vivo. Furthermore, the anti-tumor effect of DIOS was not statistically different from that of CDDP. Mechanically, transcriptomics revealed that DIOS inhibited the E2F2/RRM2 signaling pathway. The transcriptional regulation of RRM2 by E2F2 was verified by luciferase assay. Moreover, docking model, CETSA, pull-down assay and CDK2 inhibitor assay confirmed that DIOS directly targeted CDK2, leading to significant suppression of ESCC. Additionally, the patient-derived xenografts (PDX) model showed that the combination of DIOS and CDDP significantly inhibited the growth of ESCC. Importantly, the combined treatment with DIOS and CDDP significantly reduced the mRNA expression levels of kidney injury biomarkers KIM-1 and NGAL in renal tissue, as well as the levels of blood urea nitrogen, serum creatinine and blood uric acid compared to the single treatment with CDDP. In conclusion, DIOS could be an effective drug and a potential chemotherapeutic adjuvant for ESCC treatment. Furthermore, DIOS could reduce the nephrotoxicity of CDDP to some extent.
Collapse
Affiliation(s)
- Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
7
|
Jung JW, Kim YJ, Choi JS, Goto Y, Lee YA. Dopamine and serotonin alterations by Hizikia fusiformis extracts under in vitro cortical primary neuronal cell cultures. Nutr Res Pract 2023; 17:408-420. [PMID: 37266125 PMCID: PMC10232209 DOI: 10.4162/nrp.2023.17.3.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Hizikia fusiformis (HF) is a class of brown seaweeds whose active ingredients exert central nervous system protective effects, such as neuroprotection; however, the underlying mechanisms remain unknown. Given that dopamine (DA) and serotonin (5HT) are two major neurotransmitters involved in various psychiatric disorders and neuronal growth in early neurodevelopmental processes, we investigated whether HF extract could modulate the molecular expression associated with DA and 5HT transmission as well as the structural formation of neurons. MATERIALS/METHODS In vitro cell cultures were prepared from cerebral cortical neurons obtained from CD-1 mice on embryonic day 14. Cultured cells were treated with 0.1, 1.0, or 10.0 μg/mL of HT extract for 24 h, followed by fluorescence immunostaining for DA and 5HT-related receptors and transporters and some neuronal structural formation-associated molecules. RESULTS HF extract dose-dependently upregulated the expression levels of selective DA and 5HT receptors, and downregulated the levels of DA and 5HT transporters. Moreover, HF extract increased the neurofilament light chain expression. CONCLUSION These results suggest that HF may modulate DA and 5HT transmission, thereby affecting neurodevelopment.
Collapse
Affiliation(s)
- Jae-Won Jung
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Ye-Jin Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Jae Sue Choi
- Department of Food and Life Sciences, Pukyoung National University, Busan 48513, Korea
| | - Yukiori Goto
- Department of Artificial Intelligence and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
8
|
Fan ML, Wei K, Wei XM, Zhang JJ, Hou JG, Shen Q, Sun YS, Li XD, Wang Z, Jiao LL, Li W. Platycodin D restores the intestinal mechanicalbarrier by reducing endoplasmic reticulum stress-mediated apoptosis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Zeng J, Luan F, Hu J, Liu Y, Zhang X, Qin T, Zhang X, Liu R, Zeng N. Recent research advances in polysaccharides from Undaria pinnatifida: Isolation, structures, bioactivities, and applications. Int J Biol Macromol 2022; 206:325-354. [PMID: 35240211 DOI: 10.1016/j.ijbiomac.2022.02.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
Undaria pinnatifida, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for edema, phlegm elimination and diuresis, and detumescence for more than 2000 years. Numerous studies have found that polysaccharides of U. pinnatifida play an indispensable role in the nutritional and medicinal value. The water extraction and alcohol precipitation method are the most used method. More than 40 U. pinnatifida polysaccharides (UPPs) were successfully isolated and purified from U. pinnatifida, whereas only few of them were well characterized. Pharmacological studies have shown that UPPs have high-order structural features and multiple biological activities, including anti-tumor, antidiabetic, immunomodulatory, antiviral, anti-inflammatory, antioxidant, anticoagulating, antithrombosis, antihypertension, antibacterial, and renoprotection. In addition, the structural characteristics of UPPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, structure-activity relationships and industrial application of UPPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of UPPs were also outlined. Furthermore, the clinical settings and structure-activity functions of UPPs were highlighted. Some research perspectives and challenges in the study of UPPs were also proposed.
Collapse
Affiliation(s)
- Jiuseng Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Jingwen Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yao Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China
| | - Xiumeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Tiantian Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xia Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, PR China.
| |
Collapse
|
10
|
Preparation of Low-Molecular-Weight Fucoidan with Anticoagulant Activity by Photocatalytic Degradation Method. Foods 2022; 11:foods11060822. [PMID: 35327245 PMCID: PMC8954839 DOI: 10.3390/foods11060822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/04/2023] Open
Abstract
It is a challenge to degrade sulfated polysaccharides without stripping sulfate groups. In the present study, a photocatalytic method was applied to degrade fucoidan, a sulfated polysaccharide from brown algae. The degradation with varying addition amounts of H2O2 and TiO2 were monitored by high performance gel permeation chromatography (HPGPC) and thin layer chromatography (TLC), and fucoidan was efficiently degraded with 5% TiO2 and 0.95% H2O2. A comparison of the chemical compositions of 2 products obtained after 0.5 h and 3 h illumination, DF-0.5 (average Mw 90 kDa) and DF-3 (average Mw 3 kDa), respectively, with those of fucoidan indicates the photocatalytic degradation did not strip the sulfate groups, but reduced the galactose/fucose ratio. Moreover, 12 oligosaccharides in DF-3 were identified by HPLC-ESI-MSn and 10 of them were sulfated. In addition, DF-0.5 showed anticoagulant activity as strong as fucoidan while DF-3 could specifically prolong the activated partial thromboplastin time. All samples exerted inhibition effects on the intrinsic pathway FXII in a dose-dependent manner. Thus, photocatalytic degradation demonstrated the potential to prepare sulfated low-molecular-weight fucoidan with anticoagulant activity.
Collapse
|
11
|
Min D, Kim B, Ko SG, Kim W. Effect and Mechanism of Herbal Medicines on Cisplatin-Induced Anorexia. Pharmaceuticals (Basel) 2022; 15:ph15020208. [PMID: 35215322 PMCID: PMC8877473 DOI: 10.3390/ph15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Cisplatin is a well-known chemotherapeutic agent used to treat various types of cancers; however, it can also induce anorexia, which results in reduced food intake, loss of body weight, and lower quality of life. Although drugs such as megestrol acetate and cyproheptadine are used to decrease this severe feeding disorder, they can also induce side effects, such as diarrhea and somnolence, which limit their widespread use. Various types of herbal medicines have long been used to prevent and treat numerous gastrointestinal tract diseases; however, to date, no study has been conducted to analyze and summarize their effects on cisplatin-induced anorexia. In this paper, we analyze 12 animal studies that used either a single herbal medicine extract or mixtures thereof to decrease cisplatin-induced anorexia. Among the herbal medicines, Ginseng Radix was the most used, as it was included in seven studies, whereas both Glycyrrhizae Radix et Rhizoma and Angelicae Gigantis Radix were used in four studies. As for the mechanisms of action, the roles of serotonin and its receptors, cytokines, white blood cells, ghrelin, and leptin were investigated. Based on these results, we suggest that herbal medicines could be considered a useful treatment method for cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Daeun Min
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
12
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
13
|
Zou YT, Zhou J, Wu CY, Zhang W, Shen H, Xu JD, Zhang YQ, Long F, Li SL. Protective effects of Poria cocos and its components against cisplatin-induced intestinal injury. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113722. [PMID: 33352240 DOI: 10.1016/j.jep.2020.113722] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Poria) is a well-known traditional medicinal fungus. It has been considered to possess spleen-invigorating (Jianpi) effects in traditional Chinese medicine, and is used clinically to treat spleen deficiency (Pixu) with symptoms of intestinal disorders such as diarrhea, indigestion, mucositis and weight loss. THE AIM OF THIS STUDY To investigate the protective effects of Poria and its three component fractions (Water-soluble polysaccharides, WP; alkali-soluble polysaccharides, AP; triterpene acids, TA) on cisplatin-induced intestinal injury and explore the underlying mechanisms. MATERIALS AND METHODS C57BL/6 mice were treated with Poria powder (PP), WP, AP and TA by oral gavage respectively for 13 days, and intraperitoneally injected with 10 mg/kg of cisplatin on day 10 to conduct a cisplatin-induced intestinal injury model. Pathological changes of ileum and colon were examined using H&E staining. The composition of gut microbiota and the alteration of host metabolites were characterized by 16S rDNA amplicon sequencing and UPLC-QTOF-MS/MS based untargeted metabolomics analysis. RESULTS PP and WP attenuated the cisplatin-induced ileum and colon injury, and WP alleviated the weight loss and reversed the elevation of IL-2, IL-6 in serum. Both PP and WP could mitigate cisplatin-induced dysbiosis of gut microbiota, in particular PP and WP decreased the abundance of pathogenic bacteria including Proteobacteria, Cyanobacteria, Ruminococcaceae and Helicobacteraceae, while WP promoted the abundance of probiotics, such as Erysipelotrichaceae and Prevotellaceae. Moreover, WP attenuated the cisplatin-induced alteration of metabolic profiles. The levels of potential biomarkers, including xanthine, L-tyrosine, uridine, hypoxanthine, butyrylcarnitine, lysoPC (18:0), linoleic acid, (R)-3-hydroxybutyric acid, D-ribose, thiamine monophosphate, indolelactic acid and plamitic acid, showed significant correlations with intestinal flora. CONCLUSIONS PP and WP possess protective effects against cisplatin-induced intestinal injury via potentially regulating the gut microbiota and metabolic profiles.
Collapse
Affiliation(s)
- Ye-Ting Zou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ye-Qing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
14
|
Silva MS, de Andrade Gomes Y, de Sousa Cavalcante ML, Telles PVN, da Silva ACA, Severo JS, de Oliveira Santos R, Dos Santos BLB, Cavalcante GL, Rocha CHL, Palheta-Junior RC, de Cássia Meneses Oliveira R, Dos Santos RF, Sabino JPJ, Dos Santos AA, Tolentino Bento da Silva M. Exercise and pyridostigmine prevents gastric emptying delay and increase blood pressure and cisplatin-induced baroreflex sensitivity in rats. Life Sci 2021; 267:118972. [PMID: 33383052 DOI: 10.1016/j.lfs.2020.118972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin treatment induces an autonomic dysfunction and gastrointestinal and cardiovascular disorders. Physical exercise as well as pyridostigmine treatment induces improves in the autonomic nervous system. In the current study, we investigated the effect of physical exercise and pyridostigmine treatment on gastrointestinal and cardiovascular changes in cisplatin-treated rats. Rats were divided into groups: Saline (S), Cisplatin (Cis), Exercise (Ex), Cisplatin+Exercise (Cis+Ex), Pyridostigmine (Pyr), and Cisplatin+Pyridostigmine (Cis+Pyr). We induced gastrointestinal dysmotility by administering 3 mg kg-1 of cisplatin once week for 5 weeks. The Ex was swimming (1 h per day/5 days per week for 5 weeks with 5% b.w.). GE was evaluated through the colorimetric method of fractional red phenol recovery 10 min after feeding. Pyr groups received 1.5 mg kg-1, p.o. or concomitant Cis treatment. Moreover, gastric contraction in vitro and hemodynamic parameters such as MAP, HR, and evoked baroreflex sensitivity were assessed, as well as sympathetic and parasympathetic tone and intrinsic heart rate (IHR). Cis decrease GE vs. saline (p<0.05). Cis+Ex or Cis+Pyr prevented (p<0.05) decrease in GE vs. Cis rats. Cis decreased (p<0.05) gastric responsiveness in vitro vs. saline. Cis+Ex or Cis+Pyr prevented this phenomenon. Cis treatment increase MAP and decrease in HR (p<0.05) vs saline. Cis+Ex or Cis+Pyr attenuated (p<0.05) both alterations. Cis increased sympathetic tone and decreased vagal tone and IHR (p<0.05) vs. the saline. Cis+Ex or Cis+Pyr prevented those effects vs. the Cis group. In conclusion, physical exercise and pyridostigmine treatment improves autonomic dysfunction and prevented GE delay and changes in hemodynamic parameters, baroreflex sensitivity, and cardiac autonomic control in cisplatin-treated rats.
Collapse
Affiliation(s)
- Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | | | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Brenda Lois Barros Dos Santos
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Gisele Lopes Cavalcante
- Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil
| | - Cláudio Henrique Lima Rocha
- Oncoclinics and Oncology Sector at the University Hospital, Federal University of Piaui, Teresina, PI, Brazil
| | | | | | | | - João Paulo Jacob Sabino
- Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil
| | - Armenio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino Bento da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
15
|
Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer. Cancers (Basel) 2020; 12:cancers12123776. [PMID: 33333858 PMCID: PMC7765304 DOI: 10.3390/cancers12123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a common urological cancer, with poor prognosis for advanced/metastatic stages. Various intensive treatments, including radical cystectomy, chemotherapy, immune therapy, and radiotherapy are commonly used for these patients. However, these treatments often cause complications and adverse events. Therefore, researchers are exploring the efficacy of natural product-based treatment strategies in BC patients. Fucoidan, derived from marine brown algae, is recognized as a multi-functional and safe substrate, and has been reported to have anti-cancer effects in various types of malignancies. Additionally, in vivo and in vitro studies have reported the protective effects of fucoidan against cancer-related cachexia and chemotherapeutic agent-induced adverse events. In this review, we have introduced the anti-cancer effects of fucoidan extracts in BC and highlighted its molecular mechanisms. We have also shown the anti-cancer effects of fucoidan therapy with conventional chemotherapeutic agents and new treatment strategies using fucoidan-based nanoparticles in various malignancies. Moreover, apart from the improvement of anti-cancer effects by fucoidan, its protective effects against cancer-related disorders and cisplatin-induced toxicities have been introduced. However, the available information is insufficient to conclude the clinical usefulness of fucoidan-based treatments in BC patients. Therefore, we have indicated the aspects that need to be considered regarding fucoidan-based treatments and future directions for the treatment of BC.
Collapse
|
16
|
Vuillemin M, Silchenko AS, Cao HTT, Kokoulin MS, Trang VTD, Holck J, Ermakova SP, Meyer AS, Mikkelsen MD. Functional Characterization of a New GH107 Endo-α-(1,4)-Fucoidanase from the Marine Bacterium Formosa haliotis. Mar Drugs 2020; 18:E562. [PMID: 33213084 PMCID: PMC7698502 DOI: 10.3390/md18110562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37-40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.
Collapse
Affiliation(s)
- Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Artem S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Maxim S. Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam;
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia; (A.S.S.); (M.S.K); (S.P.E.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark; (M.V.); (V.T.D.T.); (J.H.); (A.S.M.)
| |
Collapse
|
17
|
Wong YS, Lin MY, Liu PF, Ko JL, Huang GT, Tu DG, Ou CC. D-methionine improves cisplatin-induced anorexia and dyspepsia syndrome by attenuating intestinal tryptophan hydroxylase 1 activity and increasing plasma leptin concentration. Neurogastroenterol Motil 2020; 32:e13803. [PMID: 31989744 DOI: 10.1111/nmo.13803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cisplatin is a widely used antineoplastic drug. However, cisplatin-induced dyspepsia syndromes, including delayed gastric emptying, gastric distension, early satiety, nausea, and vomiting, often force patients to take doses lower than those prescribed or even refuse treatment. D-methionine has an appetite-enhancing effect and alleviates weight loss during cisplatin treatment. METHODS This work established a model of anorexia and dyspepsia symptoms with intraperitoneal injection of cisplatin (5 mg/kg) once a week for three cycles. Presupplementation with or without D-methionine (300 mg/kg) was performed. Orexigenic and anorexigenic hormones (ghrelin, leptin, and glucagon-like peptide-1), tryptophan hydroxylase 1 (TPH1), 5-hydroxytryptamine receptors (5-HT2C and 5-HT3 ), and hypothalamic feeding-related peptides were measured by immunohistochemistry staining, enzyme-linked immunosorbent assay, and real-time PCR assay. KEY RESULTS Cisplatin administration caused marked decrease in appetite and body weight, promoted adipose and fat tissue atrophy, and delayed gastric emptying and gastric distension, and D-methionine preadministration prior to cisplatin administration significantly ameliorated these side effects. Besides, cisplatin induced an evident increase in serum ghrelin level, TPH1 activity, and 5-HT3 receptor expression in the intestine and decreased plasma leptin levels and gastric ghrelin mRNA gene expression levels. D-methionine supplementation recovered these changes. The expression of orexigenic neuropeptide Y/agouti-related peptide and anorexigenic cocaine- and amphetamine-regulated transcript proopiomelanocortin neurons were altered by D-methionine supplementation in cisplatin-induced anorexia rats. CONCLUSIONS AND INFERENCES D-methionine supplementation prevents cisplatin-induced anorexia and dyspepsia syndrome possibly by attenuating intestinal tryptophan hydroxylase 1 activity and increasing plasma leptin concentration. Therefore, D-methionine can be used as an adjuvant therapy for treating cisplatin-induced adverse effects.
Collapse
Affiliation(s)
- Yi-Sin Wong
- Department of Family Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ROC
| | - Guan-Ting Huang
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Minhsiung Chiayi, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Wu CT, Liao JM, Ko JL, Lee YL, Chang HY, Wu CH, Ou CC. D-Methionine Ameliorates Cisplatin-Induced Muscle Atrophy via Inhibition of Muscle Degradation Pathway. Integr Cancer Ther 2019; 18:1534735419828832. [PMID: 30789014 PMCID: PMC6416772 DOI: 10.1177/1534735419828832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cisplatin induces anorexia, weight loss, loss of adipose tissue, skeletal muscle atrophy, and serious adverse effects that can cause premature termination of chemotherapy. The aim of this study was to use an animal model to assess cisplatin therapy (3 cycles) with and without d-methionine to investigate its protective effects on cisplatin-induced anorexia and skeletal muscle wasting. Wistar rats were divided into 3 groups and treated as follows: saline as control (group 1), intraperitoneal cisplatin once a week for 3 weeks (group 2), and intraperitoneal cisplatin once a week for 3 weeks plus oral administration of d-methionine (group 3). Tissue somatic index (TSI), gastric emptying index (GEI), and feeding efficiency were measured. Both hepatic lipid metabolism and muscle atrophy-related gene expressions and C2C12 myotubes were determined by polymerase chain reaction. Micro-computed tomography (micro-CT) was used to conduct assessment of bone microarchitecture indices. Pathological changes of the gastric mucosa were assessed by hematoxylin and eosin staining after euthanizing the animals. d-Methionine increased food intake, weight gain, gastric emptying, and feeding efficiency, as well as decrease stomach contents, after cisplatin injections. Cisplatin caused shortening of myofibers. Cisplatin-induced muscle mass wasting was mediated by the elevation of mRNA expressions of MAFbx and MuRF-1 in ubiquitin ligases in muscle tissue homogenate. The mRNA expressions of MyoD and myogenin, markers of muscle differentiation, declined following cisplatin administration. The administration of d-methionine not only led to significant improvements in myofiber diameter and cross-sectional fiber areas but also reversed muscle atrophy-related gene expression. However, there were no significant changes in stomach histology or microarchitecture of trabecular bone among the study groups. The results indicate that d-methionine has an appetite-enhancing effect and ameliorates cisplatin-induced adipose and muscle tissue loss during cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ching-Te Wu
- 1 Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | - Yao-Ling Lee
- 2 Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Chang
- 2 Chung Shan Medical University, Taichung, Taiwan
| | | | - Chu-Chyn Ou
- 2 Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Sakai C, Abe S, Kouzuki M, Shimohiro H, Ota Y, Sakinada H, Takeuchi T, Okura T, Kasagi T, Hanaki K. A Randomized Placebo-controlled Trial of an Oral Preparation of High Molecular Weight Fucoidan in Patients with Type 2 Diabetes with Evaluation of Taste Sensitivity. Yonago Acta Med 2019. [DOI: 10.33160/yam.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chieko Sakai
- *Department of Adult and Elderly Nursing, School of Health Sciences, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Sunao Abe
- †Marine Products Kimuraya Co., Ltd., Sakaiminato 684-0072, Japan
| | - Minoru Kouzuki
- ‡Department of Biological Regulation, School of Health Sciences, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Hisashi Shimohiro
- §Department of Pathobiological Science and Technology, School of Health Sciences, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshie Ota
- Clinical Laboratory Department, Hakuai Hospital, Yonago 683-0853, Japan
| | - Hironori Sakinada
- Clinical Laboratory Department, Hakuai Hospital, Yonago 683-0853, Japan
| | - Tatsuo Takeuchi
- ¶Department of Endocrinology and Metabolism, Hakuai Hospital, Yonago 683-0853, Japan
| | - Tsuyoshi Okura
- **Division of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Takeshi Kasagi
- †Marine Products Kimuraya Co., Ltd., Sakaiminato 684-0072, Japan
| | - Keiichi Hanaki
- ††Department of Women’s and Children’s Family Nursing, School of Health Sciences, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
20
|
Shahid F, Farooqui Z, Khan F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 2018. [PMID: 29530589 DOI: 10.1016/j.ejphar.2018.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum [II], CP) is most widely prescribed in chemotherapy and efficaciously treats diverse human cancers, with remission rates > 90% in testicular cancers. However, clinical use of CP is associated with numerous untoward side effects, in particular, at the gastrointestinal level that reduces the therapeutic efficacy of CP and often results in withdrawal of its clinical usage in long term cancer chemotherapy. Substantial strides have been made to identify effective protective strategies against CP-induced nephrotoxicity, hepatotoxicity and ototoxicity. Unfortunately, very limited studies have focused on CP-induced gastrointestinal toxicity and advances in developing potent gastroprotective strategies/agents are still lacking. The current article reviews the metabolism and pharmacokinetics of CP, mechanisms underlying CP-induced gastrointestinal toxicity and lastly displays the potential approaches including plant-derived agents (phytochemicals) utilized to counteract CP-induced gastrointestinal dysfunction. Furthermore, the gastroprotective agents described in the experimental literature have shown partial protection against CP-induced intestinal damage. This stresses the need to ascertain new information on the underlying mechanism and to discover novel combinatorial strategies for the abrogation of CP-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
21
|
|
22
|
Chye FY, Ooi PW, Ng SY, Sulaiman MR. Fermentation-Derived Bioactive Components from Seaweeds: Functional Properties and Potential Applications. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1412375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Pei Wan Ooi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Seah Young Ng
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Rosni Sulaiman
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
23
|
Kim IH, Kwon MJ, Jung JH, Nam TJ. Protein extracted from Porphyra yezoensis prevents cisplatin-induced nephrotoxicity by downregulating the MAPK and NF-κB pathways. Int J Mol Med 2017; 41:511-520. [PMID: 29115386 DOI: 10.3892/ijmm.2017.3214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/20/2017] [Indexed: 11/05/2022] Open
Abstract
Acute renal failure is a serious complication of treatment with the anticancer drug cisplatin. Cisplatin exerts a cytotoxic effect on renal cells by inducing apoptosis through activating the tumor suppressor p53, nuclear factor‑κB (NF‑κB) and mitogen‑activated protein kinase (MAPK)/p38 pathways. Effects of protein extracts of the brown seaweed Porphyra yezoensis (P. yezoensis) on cytotoxicity, inflammation and cell proliferation have been reported; however, the effects of P. yezoensis protein (PYP) extract on cisplatin‑induced renal injury have remained elusive. The present study investigated the effects of PYP on cisplatin‑induced nephrotoxicity in the HK2 human proximal tubular epithelial cell line. PYP treatment reduced cisplatin‑induced apoptosis and death of HK2 cells by restoring the B‑cell lymphoma‑2 (Bcl‑2)‑associated X protein (Bax)/Bcl‑2 imbalance, cytochrome c release and caspase‑3 activation. In addition, PYP activated the redox‑sensitive transcription factor NF‑κB via stimulating the nuclear translocation of p65 in HK2 cells. PYP also restored renal antioxidant levels and increased the total and nuclear accumulation of NF erythroid 2‑related factor 2 in HK2 cells. PYP markedly attenuated cisplatin‑induced p38, MAPK and c‑Jun N‑terminal kinase phosphorylation. Furthermore, treatment with PYP ameliorated cisplatin‑induced renal cell damage by upregulating antioxidant defense mechanisms and downregulating the MAPK and NF‑κB signaling pathways. In addition, mice were divided into three treatment groups (control, cisplatin and PYP + cisplatin) and the effects of PYP were evaluated in a mouse model of cisplatin‑induced acute kidney injury. The concentrations of blood urea nitrogen and serum creatinine in the PYP + cisplatin group were lower than those in the cisplatin group. The mRNA expression levels of inflammatory factors interleukin‑6 (IL‑6), IL‑1β, tumor necrosis factor‑α and monocyte chemoattractant protein‑1 in the kidney tissues of the PYP + cisplatin group were also lower than those in the cisplatin group. These results suggest that PYP treatment had a preventive effect on nephrotoxicity, specifically by downregulating the MAPK and NF‑κB signaling pathways and the mRNA levels of inflammatory genes.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Mi-Jin Kwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Hun Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
24
|
Shahid F, Farooqui Z, Abidi S, Parwez I, Khan F. Oral administration of thymoquinone mitigates the effect of cisplatin on brush border membrane enzymes, energy metabolism and antioxidant system in rat intestine. Biomed Pharmacother 2017; 94:1111-1120. [PMID: 28821162 DOI: 10.1016/j.biopha.2017.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/26/2022] Open
Abstract
Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
25
|
Park JH, Choi SH, Park SJ, Lee YJ, Park JH, Song PH, Cho CM, Ku SK, Song CH. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar Drugs 2017; 15:E112. [PMID: 28387729 PMCID: PMC5408258 DOI: 10.3390/md15040112] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight fucoidan (LMF) has been reported to possess anti-inflammatory and antioxidant activities. Thus, we examined the effects of LMF extracted from Undaria pinnatifida on dermal wounds. Five round dermal wounds were created on the dorsal back of rats, and they were then treated topically with distilled water (DW), Madecasol Care™ (MC) or LMF at 200, 100 and 50 mg/mL, twice a day for a week. There were dose-dependent increases in wound contraction in the groups receiving LMF but not in the MC group, compared with the DW. Histopathological examination revealed that LMF treatment accelerated wound healing, which was supported by increases in granular tissue formation on day four post-treatment but a decrease on day seven, accompanied by an evident reduction in inflammatory cells. In the LMF-treated wounds, collagen distribution and angiogenesis were increased in the granular tissue on days four and seven post-treatment. Immunoreactive cells for transforming growth factor-β1, vascular endothelial growth factor receptor-2 or matrix metalloproteinases 9 were also increased, probably due to tissue remodeling. Furthermore, LMF treatment reduced lipid peroxidation and increased antioxidant activities. These suggested that LMF promotes dermal wound healing via complex and coordinated antioxidant, anti-inflammatory and growth factor-dependent activities.
Collapse
Affiliation(s)
- Jun-Hyeong Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Young Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Jong Hyun Park
- Department of Pathology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| | - Chang-Mo Cho
- Faculty of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea.
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| |
Collapse
|
26
|
Hwang PA, Lin XZ, Kuo KL, Hsu FY. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. MATERIALS 2017; 10:ma10030291. [PMID: 28772650 PMCID: PMC5503377 DOI: 10.3390/ma10030291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Xiao-Zhen Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Ko-Liang Kuo
- Seafood Technology Division, Council of Agriculture Fisheries Research Institute, No. 199 Hou-Ih Road, Keelung City 202, Taiwan.
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| |
Collapse
|
27
|
Shahid F, Farooqui Z, Rizwan S, Abidi S, Parwez I, Khan F. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on brush border membrane enzymes, carbohydrate metabolism and antioxidant system in rat intestine. ACTA ACUST UNITED AC 2017; 69:299-306. [PMID: 28215571 DOI: 10.1016/j.etp.2017.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/25/2022]
Abstract
Cisplatin (CP) is an effective chemotherapeutic agent that induces gastrointestinal toxicity. Nigella sativa oil (NSO) has been shown to be beneficial in a wide range of gastrointestinal disorders. The present study investigates the possible protective effect of NSO on CP-induced gastrointestinal toxicity. NSO administration (2ml/kg bwt, orally), prior to and following, a single dose CP treatment (6mg/kg bwt. ip), significantly attenuated the CP-induced decrease in brush border membrane (BBM) enzyme activities in intestinal homogenates and BBM vesicles (BBMV). NSO administration also mitigated CP induced alterations in the activities of carbohydrate metabolism enzymes and in the enzymatic and non-enzymatic antioxidant parameters in the intestine. The results suggest that NSO by empowering the endogenous antioxidant system improves intestinal redox and metabolic status and restores BBM integrity in CP treated rats. Histopathological studies supported the biochemical findings. Thus, NSO may help prevent the accompanying gastrointestinal dysfunction in CP chemotherapy.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Sana Rizwan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
28
|
Nam Y, Lee JM, Wang Y, Ha HS, Sohn UD. The effect of Flos Lonicerae Japonicae extract on gastro-intestinal motility function. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:280-290. [PMID: 26743226 DOI: 10.1016/j.jep.2015.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Lonicerae Japonicae is a well-known herb of traditional Chinese medicine that has been used for heat-clearing, detoxification, anti-inflammation, throat pain and gastro-intestinal (GI) disorder. In order to verify the effect of Flos Lonicerae Japonicae on GI disorder, we investigated the prokinetic effect of GC-7101 on GI motility function. MATERIALS AND METHODS GC-7101 is the standardized extract of Flos Lonicerae Japonicae. The contractile action of GC-7101 on feline esophageal smooth muscle cell (ESMC) was evaluated by measuring dispersed cell length. The isometric tension study was performed to investigate the effect of GC-7101 on feline lower esophageal sphincther (LES). The prokinetic effect of GC-7101 was investigated by gastric emptying (GE) and gastro-intestinal transit (GIT) in rats. RESULTS GC-7101 produced concentration-dependent contractions in ESMCs. Pretreatment with 5-HT3 and 5-HT4 receptor blocker (ondansetron and GR113808) inhibited the contractile responses of the GC-7101-induced ESMCs. In isometric tension study, GC-7101 recovered the HCl-induced decreased tone of LES muscle strips. The treatment of GC-7101 enhanced the carbachol-induced contractile responses and the electric field stimulation (EFS)-induced on-contraction. The oral administration of GC-7101 not only significantly accelerated GE and GIT in normal rats but also recovered the delayed GE and GIT, and its effect was more potent than that of conventional prokinetics (e.g., domperidone, a dopamine-receptor antagonist, and mosapride, a 5-HT4-receptor agonist). CONCLUSION GC-7101 revealed a prokinetic effect through enhancing the contractile responses of ESMCs, tone increases, enhancing the carbarchol- or EFS-induced contractile responses of LES muscle strips, and the acceleration of GE and GIT. We have identified the significant potential of GC-7101 for the development of new prokinetic drugs through this study.
Collapse
Affiliation(s)
- Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-784, Republic of Korea.
| | - Jong Mi Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-784, Republic of Korea.
| | - Yiyi Wang
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-784, Republic of Korea.
| | - Hyun Su Ha
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-784, Republic of Korea.
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-784, Republic of Korea.
| |
Collapse
|
29
|
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13:5920-46. [PMID: 26389927 PMCID: PMC4584361 DOI: 10.3390/md13095920] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Fucoidans are a class of sulfated fucose-rich polysaccharides found in brown marine algae and echinoderms. Fucoidans have an attractive array of bioactivities and potential applications including immune modulation, cancer inhibition, and pathogen inhibition. Research into fucoidan has continued to gain pace over the last few years and point towards potential therapeutic or adjunct roles. The source, extraction, characterization and detection of fucoidan is discussed.
Collapse
Affiliation(s)
- Janet Helen Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien N Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Samuel S Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| |
Collapse
|
30
|
Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:872428. [PMID: 26064425 PMCID: PMC4443785 DOI: 10.1155/2015/872428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.
Collapse
|
31
|
Kim JW, Ku SK, Han MH, Kim KY, Kim SG, Kim GY, Hwang HJ, Kim BW, Kim CM, Choi YH. The administration of Fructus Schisandrae attenuates dexamethasone-induced muscle atrophy in mice. Int J Mol Med 2015; 36:29-42. [PMID: 25955031 PMCID: PMC4494578 DOI: 10.3892/ijmm.2015.2200] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
In the present study, we aimed to determine whether ethanol extracts of Fructus Schisandrae (FS), the dried fruit of Schizandra chinensis Baillon, mitigates the development of dexamethasone-induced muscle atrophy. Adult SPF/VAT outbred CrljOri:CD1 (ICR) mice were either treated with dexamethasone to induce muscle atrophy. Some mice were treated with various concentrations of FS or oxymetholone, a 17α-alkylated anabolic-androgenic steroid. Muscle thickness and weight, calf muscle strength, and serum creatine and creatine kinase (CK) levels were then measured. The administration of FS attenuated the decrease in calf thickness, gastrocnemius muscle thickness, muscle strength and weight, fiber diameter and serum lactate dehydrogenase levels in the gastrocnemius muscle bundles which was induced by dexamethasone in a dose-dependent manner. Treatment with FS also prevented the dexamethasone-induced increase in serum creatine and creatine kinase levels, histopathological muscle fiber microvacuolation and fibrosis, and the immunoreactivity of muscle fibers for nitrotyrosine, 4-hydroxynonenal, inducible nitric oxide synthase and myostatin. In addition, the destruction of the gastrocnemius antioxidant defense system was also inhibited by the administration of FS in a dose-dependent manner. FS downregulated the mRNA expression of atrogin-1 and muscle RING-finger protein-1 (involved in muscle protein degradation), myostatin (a potent negative regulator of muscle growth) and sirtuin 1 (a representative inhibitor of muscle regeneration), but upregulated the mRNA expression of phosphatidylinositol 3-kinase, Akt1, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4, involved in muscle growth and the activation of protein synthesis. The overall effects of treatment with 500 mg/kg FS were comparable to those observed following treatment with 50 mg/kg oxymetholone. The results from the present study support the hypothesis that FS has a favorable ameliorating effect on muscle atrophy induced by dexamethasone, by exerting anti-inflammatory and antioxidant effects on muscle fibers, which may be due to an increase in protein synthesis and a decrease in protein degradation.
Collapse
Affiliation(s)
- Joo Wan Kim
- Research Institute, Bio-Port Korea INC, Marine Bio-industry Development Center, Busan 619-912, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712‑715, Republic of Korea
| | - Min Ho Han
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Ki Young Kim
- Research Institute, Bio-Port Korea INC, Marine Bio-industry Development Center, Busan 619-912, Republic of Korea
| | - Sung Goo Kim
- Research Institute, Bio-Port Korea INC, Marine Bio-industry Development Center, Busan 619-912, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hye Jin Hwang
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| | - Byung Woo Kim
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| | - Cheol Min Kim
- Department of Biochemistry, Busan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
32
|
Venkatesan J, Lowe B, Anil S, Manivasagan P, Kheraif AAA, Kang K, Kim S. Seaweed polysaccharides and their potential biomedical applications. STARCH-STARKE 2015; 67:381-390. [DOI: 10.1002/star.201400127] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2024]
Abstract
Over the past two decades numerous studies have been reported on seaweeds‐derived polysaccharides for biomedical and biological applications (tissue engineering, drug delivery, wound healing, and biosensor). Alginate, carrageenan, fucoidan, and ulvan are widely used marine derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. The gel forming property of alginate has increased its applications in tissue engineering and drug delivery as an extracellular matrix and delivery vehicle, respectively. Other sulfated polysaccharides such as carrageenan and fucoidan show promising application in tissue engineering due to their capacity of inducing important osteogenic, adipogenic, and chondrogenic differentiation in stem cells. In this review, we explained the extraction/isolation methods and applications of these seaweed derived polysaccharides as well as their roles in therapeutics, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Baboucarr Lowe
- Department of Marine Bio Convergence Science Pukyong National University Busan South Korea
| | - Sukumaran Anil
- Dental Biomaterials Research, Department of Periodontics and Community Dentistry College of Dentistry King Saud University Riyadh Saudi Arabia
| | | | - Abdulaziz A Al Kheraif
- Dental Biomaterials Research, Dental Health Department College of Applied Medical Sciences King Saud University Riyadh Saudi Arabia
| | - Kyong‐Hwa Kang
- Marine Bioprocess Research Center Pukyong National University Busan South Korea
| | - Se‐Kwon Kim
- Marine Bioprocess Research Center Pukyong National University Busan South Korea
- Department of Marine Bio Convergence Science Pukyong National University Busan South Korea
| |
Collapse
|
33
|
Kim KH, Park SJ, Lee YJ, Lee JE, Song CH, Choi SH, Ku SK, Kang SJ. Inhibition of UVB-induced skin damage by exopolymers from Aureobasidium pullulans SM-2001 in hairless mice. Basic Clin Pharmacol Toxicol 2014; 116:73-86. [PMID: 24964914 DOI: 10.1111/bcpt.12288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
Because antioxidants from natural sources may be an effective approach to the treatment and prevention of UV radiation-induced skin damage, the effects of purified exopolymers from Aureobasidium pullulans SM-2001 ('E-AP-SM2001') were evaluated in UVB-induced hairless mice. E-AP-SM2001 consists of 1.7% β-1,3/1,6-glucan, fibrous polysaccharides and other organic materials, such as amino acids, and mono- and di-unsaturated fatty acids (linoleic and linolenic acids) and shows anti-osteoporotic and immunomodulatory effects, through antioxidant and anti-inflammatory mechanisms. Hairless mice were treated topically with vehicle, E-AP-SM2001 stock and two and four times diluted solutions once per day for 15 weeks against UVB irradiation (three times per week at 0.18 J/cm(2) ). The following parameters were evaluated in skin samples: myeloperoxidase (MPO) activity, cytokine levels [interleukin (IL)-1β and IL-10], endogenous antioxidant content (glutathione, GSH), malondialdehyde (MDA) levels, superoxide anion production; matrix metalloproteases (MMP-1, -9 and -13), GSH reductase and Nox2 (gp91phox) mRNA levels, and immunoreactivity for nitrotyrosine (NT), 4-hydroxynonenal (HNE), caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP). Photoageing was induced by UVB irradiation through ROS-mediated inflammation, which was related to the depletion of endogenous antioxidants, activation of MMPs and keratinocyte apoptosis. Topical treatment with all three doses of E-AP-SM2001 and 5 nm myricetin attenuated the UV-induced depletion of GSH, activation of MMPs, production of IL-1β, the decrease in IL-10 and keratinocyte apoptosis. In this study, E-AP-SM2001 showed potent inhibitory effects against UVB-induced skin photoageing. Thus, E-AP-SM2001 may be useful as a functional ingredient in cosmetics, especially as a protective agent against UVB-induced skin photoageing.
Collapse
Affiliation(s)
- Kyung Hu Kim
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin. Exp Brain Res 2014; 232:2601-12. [DOI: 10.1007/s00221-014-3954-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
35
|
Regmi SC, Park SY, Ku SK, Kim JA. Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species. Free Radic Biol Med 2014; 69:377-89. [PMID: 24524998 DOI: 10.1016/j.freeradbiomed.2014.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/15/2014] [Accepted: 02/02/2014] [Indexed: 12/22/2022]
Abstract
Changes in serotonin (5-hydroxytryptamine, 5-HT) content in the gut of patients with inflammatory bowel disease (IBD) and animal models of colitis suggest an important role of 5-HT in the pathogenesis of IBD. In this study, we examined the role and mechanism of action of 5-HT in the inflammatory response of colon epithelial cells in vitro and in vivo. In colon epithelial cells (CCD 841, HT-29, Caco-2), direct application of 5-HT induced production of reactive oxygen species (ROS) and monocyte-epithelial adhesion, an initial event of inflammation, which were blocked not only by 5-HT receptor antagonists (tropisetron, RS39604, and SB269970), antioxidants (ascorbic acid, apocynin), and various inhibitors of NADPH oxidase (DPI), CREB (KG-501), and NF-κB (PDTC), but also by transfection with Nox2 siRNA. Nox2-derived production of ROS corresponded with the rapid and brief activation of Rac. In addition, 5-HT induced Nox2, p67(phox), and Duox2 without altering the level of Nox1 or Duox1 in colon epithelial cells, and silencing of Nox2 suppressed 5-HT-induced Duox2 increase. 5-HT also induced an increase in the expression of MCP-1, IL-8, and ICAM-1 and a decrease in E-cadherin expression. Exogenous application of 5-HT to rat colon through the rectum caused a minimal level of inflammation, which was demonstrated by histological examination, MPO activity, and inflammatory cytokine induction. However, 5-HT combined with a low dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS), the level of which caused a minimal level of colitis, exaggerated colon inflammation accompanied by much more enhanced induction of inflammatory cytokines, IL-6, IL-8, and MCP-1, indicating that colon epithelial cells directly exposed to 5-HT are primed toward inflammation. In the colon at the lesion site, treatment with 5-HT resulted in an increase in the level of epithelial Nox2 but not of constitutively expressed Nox1, which is the opposite result of TNBS treatment. Furthermore, 5-HT treatment of Nox2-knockout mice did not induce colon inflammation, in contrast to 5-HT-treated wild-type mice. The results demonstrate that colon epithelial cells directly exposed to 5-HT are primed for inflammatory reactions, which is an important innate immune response, and the underlying mechanism for the priming is associated with Nox2-activated signaling pathways, including ERK/p38 MAPK, NF-κB, and CREB.
Collapse
Affiliation(s)
| | - Su-Young Park
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, Daegu Hany University, Gyeongsan 712-715, South Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|