1
|
Krikunova PV, Tolordava ER, Arkharova NA, Karimov DN, Bukreeva TV, Shirinian VZ, Khaydukov EV, Pallaeva TN. Riboflavin Crystals with Extremely High Water Solubility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5504-5512. [PMID: 38278768 DOI: 10.1021/acsami.3c15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
New insights into the unique biochemical properties of riboflavin (Rf), also known as vitamin B2, are leading to the development of its use not only as a vitamin supplement but also as a potential anti-inflammatory, immunomodulatory, antioxidant, anticancer, and antiviral agent, where it may play a role as an inhibitor of viral proteinases. At the same time, the comparison of the pharmacoactivity of Rf with its known metabolites, namely, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is very complicated due to its poor water solubility: 0.1-0.3 g/L versus 67 g/L for FMN and 50 g/L for FAD, which is the limiting factor for its administration in clinical practice. In this study, we report the recrystallization procedure of the type A Rf crystals into the slightly hydrophobic type B/C and a new hydrophilic crystal form that has been termed the P type. Our method of Rf crystal modification based on recrystallization from dilute alkaline solution provides an unprecedented extremely high water solubility of Rf, reaching 23.5 g/L. A comprehensive study of the physicochemical properties of type P riboflavin showed increased photodynamic therapeutic activity compared to the known types A and B/C against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. Importantly, our work not only demonstrates a simple and inexpensive method for the synthesis of riboflavin with high solubility, which should lead to increased bioactivity, but also opens up opportunities for improving both known and new therapeutic applications of vitamin B2.
Collapse
Affiliation(s)
| | - Eteri R Tolordava
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow 123098, Russia
| | | | - Denis N Karimov
- FSRC "Crystallography and Photonics" RAS, Moscow 119333, Russia
| | | | - Valerii Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | |
Collapse
|
2
|
Işık S, Çiçek S. Impacts of high-dose riboflavin on cytotoxicity, antioxidant, growth, reproductive gene expressions, and genotoxicity in the rainbow trout gonadal cells. Toxicol In Vitro 2024; 94:105730. [PMID: 37944868 DOI: 10.1016/j.tiv.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Riboflavin (vitamin B2 found in food) is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which study as coenzymes for a variety of cellular processes including biosynthesis, homocysteine metabolism, detoxification, and various oxidation and reduction reactions. Although studies on the symptoms resulting from riboflavin deficiency are intense, studies on the effects of high doses of riboflavin are almost absent. This report aimed to examine the actions of riboflavin on cell viability, the transcriptional expressions of antioxidant enzyme (gsr and gpx1a), growth (gh1, igf1, and igf2), the reproductive (bol) genes and DNA damage in the rainbow trout gonad cells (RTG-2) for 48 h. All concentrations of riboflavin (3.125, 6.25, 12.5, 25, 50, and 100 μM) significantly reduced the RTG-2 cell viability. Riboflavin (LD50: 12.5 μM) significantly downregulated the transcriptional expressions of gpx1a, igf1, and bol genes, while it non-significantly upregulated or downregulated the transcriptional expression of gsr, igf2, and gh1 genes in the RTG-2 cells in comparison to the control group for 48 h. The comet assay demonstrated that riboflavin significantly raised tail DNA% >10% DMSO (positive control). Based on the outcomes, high doses of riboflavin exhibit the potential to have a role in cellular mechanisms, including especially reproduction, DNA damage, and cell death.
Collapse
Affiliation(s)
- Sevda Işık
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey
| | - Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
3
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Wu X, Guo LZ, Liu YH, Liu YC, Yang PL, Leung YS, Tai HC, Wang TD, Lin JCW, Lai CL, Chuang YH, Lin CH, Chou PT, Lai IR, Liu TM. Plasma riboflavin fluorescence as a diagnostic marker of mesenteric ischemia-reperfusion injury in rats. Thromb Res 2023; 223:146-154. [PMID: 36753876 DOI: 10.1016/j.thromres.2023.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Due to the delayed and vague symptoms, it is difficult to early diagnose mesenteric ischemia injuries in the dynamics of acute illness, leading to a 60-80 % mortality rate. Here, we found plasma fluorescence spectra can rapidly assess the severity of mesenteric ischemia injury in animal models. Ischemia-reperfusion damage of the intestine leads to multiple times increase in NADH, flavins, and porphyrin auto-fluorescence of blood. The fluorescence intensity ratio between blue-fluorophores and flavins can reflect the occurrence of shock. Using liquid chromatography and mass spectroscopy, we confirm that riboflavin is primarily responsible for the increased flavin fluorescence. Since humans absorb riboflavin from the intestine, its increase in plasma may indicate intestinal mucosa injury. Our work suggests a self-calibrated and reagent-free approach to identifying the emergence of fatal mesenteric ischemia in emergency departments or intensive care units.
Collapse
Affiliation(s)
- Xueqin Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Lun-Zhang Guo
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Po-Lun Yang
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Shiuan Leung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China.
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - Jesse Chih-Wei Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chao-Lun Lai
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Hsun Chuang
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hsueh Lin
- Department of Nutrition, College of Medical and Health Care, Hungkuang University, Taichung City 433304, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan.
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
5
|
Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J, Rady AM. Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepatocellular Carcinoma to 5-FU via Redox Management. Pharmaceuticals (Basel) 2023; 16:169. [PMID: 37259318 PMCID: PMC9967644 DOI: 10.3390/ph16020169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 11/20/2023] Open
Abstract
The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.
Collapse
Affiliation(s)
| | | | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
6
|
George BP, Abrahamse H. Light-Activated Phytochemicals in Photodynamic Therapy for Cancer: A Mini Review. Photobiomodul Photomed Laser Surg 2022; 40:734-741. [PMID: 36395087 DOI: 10.1089/photob.2022.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Cancer is a serious life-threatening disease often thought of as a deadly and painful disease with no permanent cure. With the advancement of medical science, there have been several clinically approved treatment options developed over the past decade. Photodynamic therapy (PDT) is one such approved minimally invasive light-based therapeutic option for many cancers. Selection of a suitable photosensitizer (PS) is an important step in PDT for improved therapeutic outcomes. Efforts to discover more efficient PSs continue for optimal PDT. Objective: This review discusses the available natural PS of plant origin, the role of phytochemicals in the application of PDT of cancer, specific localization of PS in various cell organelles, and photochemical reactions. Materials and methods: Owing to the substantial side effects, many biomedical research fields are currently focusing on natural compounds with chemotherapeutic potential with environmentally sustainable green approaches. Medicinal plant extracts have been used since ancient times for the treatment of various ailments. Plants are a natural source of many bioactive compounds with pharmaceutical potential and there have been some efforts made to discover potential new compounds from plants with photosensitizing properties for effective PDT outcomes. Results and conclusions: The PDT application in the current scenario raises some questions, such as most effective PS, its administration, the time of irradiation, light source, sensitivity of cells toward PS, and so forth. PDT effects can be direct or indirect. Owing to the direct effect of the PDT, most of the tumoral mass is destroyed. In the cancer cells that were not directly affected, secondary effects such as vascular effects, apoptosis induction, inflammation, and generation of an immune response may occur; however, the complex nature of PDT tissue response is not fully established.
Collapse
Affiliation(s)
- Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
7
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
8
|
Wang Y, Hu J, Li Y, Liu Z. Rare earth ion Nd3+ promotes production of cellulose ethanol by Clostridium thermocellum ATCC 27405. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zou YT, Zhou J, Wu CY, Zhang W, Shen H, Xu JD, Zhang YQ, Long F, Li SL. Protective effects of Poria cocos and its components against cisplatin-induced intestinal injury. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113722. [PMID: 33352240 DOI: 10.1016/j.jep.2020.113722] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Poria) is a well-known traditional medicinal fungus. It has been considered to possess spleen-invigorating (Jianpi) effects in traditional Chinese medicine, and is used clinically to treat spleen deficiency (Pixu) with symptoms of intestinal disorders such as diarrhea, indigestion, mucositis and weight loss. THE AIM OF THIS STUDY To investigate the protective effects of Poria and its three component fractions (Water-soluble polysaccharides, WP; alkali-soluble polysaccharides, AP; triterpene acids, TA) on cisplatin-induced intestinal injury and explore the underlying mechanisms. MATERIALS AND METHODS C57BL/6 mice were treated with Poria powder (PP), WP, AP and TA by oral gavage respectively for 13 days, and intraperitoneally injected with 10 mg/kg of cisplatin on day 10 to conduct a cisplatin-induced intestinal injury model. Pathological changes of ileum and colon were examined using H&E staining. The composition of gut microbiota and the alteration of host metabolites were characterized by 16S rDNA amplicon sequencing and UPLC-QTOF-MS/MS based untargeted metabolomics analysis. RESULTS PP and WP attenuated the cisplatin-induced ileum and colon injury, and WP alleviated the weight loss and reversed the elevation of IL-2, IL-6 in serum. Both PP and WP could mitigate cisplatin-induced dysbiosis of gut microbiota, in particular PP and WP decreased the abundance of pathogenic bacteria including Proteobacteria, Cyanobacteria, Ruminococcaceae and Helicobacteraceae, while WP promoted the abundance of probiotics, such as Erysipelotrichaceae and Prevotellaceae. Moreover, WP attenuated the cisplatin-induced alteration of metabolic profiles. The levels of potential biomarkers, including xanthine, L-tyrosine, uridine, hypoxanthine, butyrylcarnitine, lysoPC (18:0), linoleic acid, (R)-3-hydroxybutyric acid, D-ribose, thiamine monophosphate, indolelactic acid and plamitic acid, showed significant correlations with intestinal flora. CONCLUSIONS PP and WP possess protective effects against cisplatin-induced intestinal injury via potentially regulating the gut microbiota and metabolic profiles.
Collapse
Affiliation(s)
- Ye-Ting Zou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ye-Qing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Zhang Y, Chen J, Che Z, Shu C, Chen D, Ding K, Li A, Zhou J. JP3 enhances the toxicity of cisplatin on drug-resistant gastric cancer cells while reducing the damage to normal cells. J Cancer 2021; 12:1894-1906. [PMID: 33753987 PMCID: PMC7974513 DOI: 10.7150/jca.50306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/03/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Cisplatin (DDP) is a highly effective chemotherapeutic agent to most solid tumors including gastric cancer (GC), however, its clinical value is limited due to severe toxic side effects and secondary drug resistance. JP3, a JWA protein based MMP2-targeted polypeptide, known to inhibit the growth of GC in vivo. However, the bidirectional effects of JP3 in DDP-resistant GC and normal cells have not been demonstrated. The present study aims to investigate the actions of JP3 on protecting normal cells from the toxicity of DDP while enhancing its anti-tumor effects on GC cells. Methods: Routine laboratory experimental methods including CCK-8 assay, Western blotting, Hoechst staining, immunofluorescence (IF) and qRT-PCR were used in mechanism investigation; protein docking analysis and coimmunoprecipitation (Co-IP) were used for prediction and confirmation of interactions between JP3 and CK2. Mouse xenograft model was used for screening the treatment of JP3 plus DDP on GC growth. Results: DDP showed similar toxicities to normal cells and DDP-resistant GC cells; JP3 competitively inhibited the binding of XRCC1 to CK2, reduced the DNA repair and anti-apoptosis capacity of DDP-resistant GC cells in combination with DDP treatment; meanwhile, JP3 protected normal cells from DDP-induced oxidative stress and DNA damage through ERK/Nrf2 signaling. JP3 combined with DDP showed similar bidirectional effects in vivo. Conclusions: JP3 enhanced the inhibitory effects of DDP on tumor growth while reduced toxic side effects of DDP on normal cells. The results of this study provide a new insight for the treatment of drug-resistant GC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Junjie Chen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhen Che
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
11
|
Alhazza IM, Hassan I, Ebaid H, Al-Tamimi J, Alwasel SH. Chemopreventive effect of riboflavin on the potassium bromate-induced renal toxicity in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2355-2364. [PMID: 32666286 DOI: 10.1007/s00210-020-01938-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Potassium bromate (PB) is a general food additive, flavor enhancer, a by-product of water disinfection, and a class 2 carcinogen. It exerts various toxic effects in a dose- and time-dependent manner in vivo. This study is to explore the chemopreventive efficacy of vitamin B2 (riboflavin, RF) in PB-administered Swiss albino rats. The rats were distributed into five groups: control (group 1), PB alone (group 2, 150 mg/kg), RF alone (group 3, 2 mg/kg), PB + RF1 (group 4, 150 and 2 mg/kg), and PB + RF2 (group 5, 150 and 4 mg/kg). All the rodents were sacrificed after the completion of the treatment cycle. Then, blood and kidney samples were subjected to biochemical analysis. Group 2 demonstrated vivid signs of renal toxicities evidenced by altered renal function markers (urea, creatinine, albumin, glutathione-S-transferase) and redox status parameters (superoxide dismutase, catalase, glutathione reductase, reduced glutathione, lipid, and protein oxidation products). However, group 3 exhibited a slight alteration in many of the parameters while groups 4 and 5 demonstrated dose-dependent chemopreventive efficiency of RF against PB-induced alterations. Besides, RF seemed to facilitate apoptosis as well as inhibition of the necrosis in the PB-pre-challenged groups, as demonstrated by the cleaved PARP and lactate dehydrogenase activity. Also, the histopathological analysis and comet assay validate the biochemical results of the treatment groups significantly. All these results plead that RF has a significant chemopreventive property against PB-induced toxicity in vivo. Therefore, RF is a suitable agent in preventing the PB-induced toxicities at the clinical and industrial levels.
Collapse
Affiliation(s)
- Ibrahim M Alhazza
- Department of Zoology, College of Science, Building 05, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, Building 05, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Hossam Ebaid
- Department of Zoology, College of Science, Building 05, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, Building 05, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Saleh H Alwasel
- Department of Zoology, College of Science, Building 05, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
The Alleviative Effect of Vitamin B 2 on Potassium Bromate-Induced Hepatotoxicity in Male Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8274261. [PMID: 32802879 PMCID: PMC7415125 DOI: 10.1155/2020/8274261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022]
Abstract
Potassium bromate (PB) is a food enhancer, water disinfection by-product, and a proven carcinogen. It elicits toxicities in the living organism due to exposure and in a dose-dependent manner. The present study discourses the ameliorative efficacy of riboflavin (RF) in PB-administered rodents. The animals were distributed into five treatment groups: control (group I), PB alone (group II, 150 mg/kg), RF alone (group III, 2 mg/kg), PB+RF1 (group IV, 150 mg/kg + 2 mg/kg), and PB+RF2 (group V, 150 mg/kg + 4 mg/kg). After the round of the treatment, the animals were sacrificed to collect their blood and liver samples for the detailed analysis. Group II depicted perturbed liver functions evidenced by altered serum and toxicity markers along with the disturbed redox balance. Also, these biochemical results were found harmonious with histopathological analysis and comet assay. However, group III showed no noticeable alteration in the same parameters, whereas the combination groups (IV and V) exhibited dose-dependent amelioration in the PB-induced toxicities. Interestingly, RF favored apoptosis concomitant with suppressing the necrosis in the PB-challenged groups, as shown by the activity of caspase-3 and lactate dehydrogenase. Histopathological analysis and comet assay further consolidate these results. Hence, RF has significant alleviative property against PB-induced hepatotoxicity in vivo that can be used in the consumer items containing the toxicant.
Collapse
|
13
|
Cao Y, Chen P, Cai M, Shi Q, Xu P, Wang L, He Y, Wang H, Zhao W. Prognostic impact of B-vitamins involved in one-carbon metabolism in patients with diffuse large B-cell lymphoma. Hematol Oncol 2020; 38:456-466. [PMID: 32469419 DOI: 10.1002/hon.2752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
One-carbon metabolism (OCM) plays a pivotal role in both the stability and integrity of DNA and is mainly regulated by B-vitamins. This study aims to investigate the clinical relevance of B-vitamins and single nucleotide polymorphisms (SNPs) on OCM-related genes in diffuse large B-cell lymphoma (DLBCL). A total of 322 newly diagnosed DLBCL patients who received rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone-based immunochemotherapy were recruited into this study. The serum levels of B-vitamins (folate, vitamin B2 [riboflavin], vitamin B6 [pyridoxal 5'-phosphate], and vitamin B12 [cobalamin]), as well as SNPs on methylenetetrahydrofolate reductase, methionine synthase (MTR), MTR reductase (MTRR) and cystathionine gamma-lyase (CTH) genes, were assessed at diagnosis. The prognostic values were estimated using the Kaplan-Meier method and Cox proportional hazards regression methods. Overall, the low serum concentration of folate and vitamin B2, as well as the presence of CTH1364 TT genotype, were significantly associated with poor treatment response in DLBCL. Multivariate analysis indicated that compared with patients in the medium and high serum folate tertiles, low serum folate tertile patients had both significantly inferior progression-free survival (P = .033, Tertile 2 vs Tertile 1, and P = .031, Tertile 3 vs Tertile 1) and overall survival time (P < .001, Tertile 2 vs Tertile 1, and P = .001, Tertile 3 vs Tertile 1). Compared with patients in the medium and high serum vitamin B2 tertiles, low serum vitamin B2 tertile patients had both significantly inferior progression-free survival (P = .006, Tertile 2 vs Tertile 1, and P = .001, Tertile 3 vs Tertile 1) and overall survival time (P = .030, Tertile 2 vs Tertile 1, and P = .255, Tertile 3 vs Tertile 1). In conclusion, alterations in B-vitamin metabolism significantly affected disease progression and had a prognostic impact on DLBCL.
Collapse
Affiliation(s)
- Yiwen Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minci Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Li Y, Meng F, Chen Z, Han F, He D, Hao Y, Gao A, Jiang J, Wang Z, Liu W, Liu Q. Pharmacokinetics and tissue distribution in rats of a novel anticancer platinum compound LLC-1903. Xenobiotica 2020; 50:980-987. [PMID: 32072840 DOI: 10.1080/00498254.2020.1728421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LLC-1903, a novel anticancer compound, was synthesized by optimizing the structure, which was derived from altering the leaving group of lobaplatin. It has an excellent in vitro anti-cancer activity, high water solubility, high stability in solution and low in vivo toxicity according to our former study.The plasma pharmacokinetics (PK) and tissue distribution of LLC-1903 and lobaplatin in rats were determined after intravenous administration of a single dose (0.06 mmol/kg body weight). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of platinum (Pt) in plasma and tissue samples.Most PK parameters of the Pt in LLC-1903 showed a significant difference from those of lobaplatin. The plasma level of LLC-1903 is only half of that of lobaplatin (p < 0.01) which could be the direct result of faster drug clearance. The tissue distribution showed that both LLC-1903 and lobaplatin were mainly found in the liver and kidney, and less in other organs. At four time points (0.083, 0.5, 1 and 4 h) after administration, the tissue concentrations of LLC-1903 were almost always significantly higher than those of lobaplatin (p < 0.05 or p < 0.01).
Collapse
Affiliation(s)
- Yingxue Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fanzhuo Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhijian Chen
- Department of Oncology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Donglin He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yanli Hao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Anli Gao
- Kunming Institute of Precious Metals, Kunming, China
| | - Jing Jiang
- Kunming Institute of Precious Metals, Kunming, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Weiping Liu
- Kunming Institute of Precious Metals, Kunming, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci 2020; 21:ijms21030950. [PMID: 32023913 PMCID: PMC7037471 DOI: 10.3390/ijms21030950] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Riboflavin (RF) is a water-soluble member of the B-vitamin family. Sufficient dietary and supplemental RF intake appears to have a protective effect on various medical conditions such as sepsis, ischemia etc., while it also contributes to the reduction in the risk of some forms of cancer in humans. These biological effects of RF have been widely studied for their anti-oxidant, anti-aging, anti-inflammatory, anti-nociceptive and anti-cancer properties. Moreover, the combination of RF and other compounds or drugs can have a wide variety of effects and protective properties, and diminish the toxic effect of drugs in several treatments. Research has been done in order to review the latest findings about the link between RF and different clinical aberrations. Since further studies have been published in this field, it is appropriate to consider a re-evaluation of the importance of RF in terms of its beneficial properties.
Collapse
|
16
|
Alhazza IM, Ebaid H, Abdel-Salam B, Al-Tamimi JH, Hassan I, Rady AM, Mashaly AMA. Thymoquinone ameliorates Pachycondyla sennaarensis venom-induced acute toxic shock in male rats. BMC Pharmacol Toxicol 2019; 20:84. [PMID: 31847893 PMCID: PMC6918657 DOI: 10.1186/s40360-019-0375-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND For many decades, the sting of Samsun ant (Pachycondyla sennaarensis) has been a serious clinical challenge for the people living in some of the major Middle East and Asian countries. In the present study, the therapeutic potential of Nigella sativa derived plant extract component, thymoquinone (TQ) has been tested against the Samsun ant venom (SAV) at the toxic dose in the rats. METHODS The adult male rats were divided into four groups (n = 10): control, SAV treated, SAV + TQ treated and TQ alone treated. It was found that the sub-lethal dose of SAV alters not only many of the kidney and liver function markers but also induces oxidative stress in the animals. Moreover, the SAV also disturbs various immunological parameters including expression of PMNs, CD-80, CD-86, interleukins and other cytokines compromising the affected organism towards mild to severe allergic reactions including life-risking anaphylaxis. RESULTS The plant extract, TQ, effectively restores many of the biochemical and oxidative stress parameters comparable to the normal concomitant with improving the immunological aspects that might attributive in relieving from SAV-induced toxicity and allergic reactions in the affected organism to a greater extent. CONCLUSION Hence, TQ has an excellent antidote property against SAV-induced toxicities in vivo. Although the study is a vivid indication of the potential therapeutic potential of TQ against the SAV induced in vivo toxicity, yet the actual mechanism of interaction translating the toxicity amelioration warrants further investigations.
Collapse
Affiliation(s)
- Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bahaa Abdel-Salam
- Department of Biology, College of Science and Humanities in El-Quwiaya, 11961, Shaqra University, Shaqra, Saudi Arabia
| | - Jameel H Al-Tamimi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ahmed M Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf M A Mashaly
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Interaction of aminophylline with photoilluminated riboflavin leads to ROS mediated macromolecular damage and cell death in benzopyrene induced mice lung carcinoma. Chem Biol Interact 2019; 302:135-142. [DOI: 10.1016/j.cbi.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
|
18
|
Copper Mediates Anti-Inflammatory and Antifibrotic Activity of Gleevec in Hepatocellular Carcinoma-Induced Male Rats. Can J Gastroenterol Hepatol 2019; 2019:9897315. [PMID: 30941331 PMCID: PMC6421053 DOI: 10.1155/2019/9897315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/31/2022] Open
Abstract
The elevated level of copper is one of the hallmark features of cancer cells in most of the types of cancer. In the present study, this feature has been targeted to investigate if coadministration of exogenous copper (Cu+) and its chelating agent like disulfiram (DSF+) influence the antineoplastic activity of the anticancer drug, Gleevec (GLV+), in hepatocellular carcinoma (HCC)-induced rats via immunomodulation. After the treatment, the level of proinflammatory interleukins (IL-1, 2, 6, and 7), anti-inflammatory interleukin (IL-10) concomitant with transcription factors (NF-kB and TNF-a), and the apoptotic marker (cleaved PARP) was estimated. The cancer-induced group without treatment (CN+) demonstrated abnormally elevated level of all proinflammatory cytokines and transcription factors concomitant with a compromised level of cleaved PARP as compared to the control normal (CN-). The detailed histological analysis also supported the results exhibiting extensive inflammation and tissue fibrosis confirming the second stage of HCC. Cu+, DSF+, and GLV+ displayed mild improvement in most of the parameters, but the combination group GLV + Cu+ demonstrated remarkable recovery in histology and most of the parameters tended towards the CN- followed by GLV + DSF+. Therefore, the management of copper level is critical in realizing the antineoplastic activity of GLV up to its full potential in cancer treatment. These findings will help in improving chemoimmunotherapy and personalized cancer treatment.
Collapse
|
19
|
Khan S, P MR, Rizvi A, Alam MM, Rizvi M, Naseem I. ROS mediated antibacterial activity of photoilluminated riboflavin: A photodynamic mechanism against nosocomial infections. Toxicol Rep 2019; 6:136-142. [PMID: 30671349 PMCID: PMC6330557 DOI: 10.1016/j.toxrep.2019.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
Riboflavin undergoes intersystem conversion under photoillumination. Interacts with molecular oxygen and generates ROS. Generated ROS disrupts E. coli cell membranes. Ultimately killing E. coli. Mechanism can be used to kill E. coli on hospital ware causing nosocomial infections.
Nosocomial infections are a major threat to modern therapeutics. The major causative agent of these infections is multidrug-resistant gram-negative bacteria, which impart high morbidity and mortality rate. This has led to an urge for the development of new antibiotics. Antimicrobial photodynamic therapy is a promising strategy to which till date no resistant strain has been reported. Since the efficacy of photodynamic therapy largely depends on the selection and administration of an appropriate photosensitizer, therefore, the realization of clinically active photosensitizers is an immediate need. Here, by using E. coli as a study model we have demonstrated the antimicrobial photodynamic potential of riboflavin. Intracellular ROS formation by DCFH-DA assay, lipid peroxidation, protein carbonylation, LDH activity was measured in treated bacterial samples. Enzymatic (SOD, CAT, GSH) antioxidants and non-enzymatic (GSH) was further evaluated. Bacterial death was confirmed by colony forming assay, optical microscopy and scanning electron microscopy. The treated bacterial cells exhibited abundant ROS generation and marked increment in the level of oxidative stress markers as well as significant reduction in LDH activity. Marked reduction in colony forming units was also observed. Optical microscopic and SEM images further confirmed the bacterial death. Thus, we can say that photoilluminated riboflavin renders the redox status of bacterial cells into a compromised state leading to significant membrane damage ultimately causing bacterial death. This study aims to add one more therapeutic dimension to photoilluminated riboflavin as it can be effectively employed in targeting bacterial biofilms occurring on hospital wares causing several serious medical conditions.
Collapse
Affiliation(s)
- Saniyya Khan
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammed Rayis P
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Maroof Alam
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Meher Rizvi
- Department of Microbiology, Jawaharlal Nehru Medical College, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, The Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
20
|
Al-Tamimi J, Semlali A, Hassan I, Ebaid H, Alhazza IM, Mehdi SH, Al-Khalifa M, Alanazi MS. Samsum Ant Venom Exerts Anticancer Activity Through Immunomodulation In Vitro and In Vivo. Cancer Biother Radiopharm 2018; 33:65-73. [PMID: 29634416 DOI: 10.1089/cbr.2017.2400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Samsum ant venom (SAV) is a rich repertoire of natural compounds with tremendous pharmacological properties. The present work explores its antineoplastic activity in different cell lines followed by its confirmation in vivo. The cell lines, HepG2, MCF-7, and LoVo showed the differential dose-dependent antineoplastic effect with an increased level of significant cytokines, including Interleukin (IL)-1β, IL-6, and IL-8 and transcription factor, Nuclear factor-kappa B (NF-κB). However, the venom was more effective on HepG2 and MCF-7 cells than LoVo cells. Furthermore, the extract was administered to four groups (n = 8) of rats. Group I was taken as a control without any treatment, whereas group II received CCl4 (1 mL/kg) for induction of mild hepatoma. Group III was given 100 μg/kg of SAV twice a week for 1 month. Group IV was pretreated with the CCl4 (like group II) followed by dosing with SAV (100 μg/kg) for 2 months as per the authors' prestandardized dosing schedule. Intriguingly, the rats of group IV demonstrated significant decrease in key cytokines, IL-1β and IL-6, as well as the transcription factors, including Tumor Necrosis Factor-alpha (TNF-α), NF-κB, and Inhibitor-kappa B (I-κB) as compared with group II. Furthermore, increase in IL-10 and First apoptosis signal (FAS) in the same group confirmed that SAV induces apoptosis at the given dose through immunomodulation leading to enhanced tumor killing in vivo. Hence, SAV has an excellent antineoplastic activity that can be directly used to treat certain types of cancer. Moreover, study of its ingredients can pave ways to design novel anticancer drugs. However, further in-depth investigation is required before its clinical trials.
Collapse
Affiliation(s)
- Jameel Al-Tamimi
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Hossam Ebaid
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Ibrahim M Alhazza
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Syed H Mehdi
- 3 Department of Geriatrics, Donald W Reynolds Institute of Aging , UAMS Little Rock, Little Rock, Arkansas
| | - Mohammed Al-Khalifa
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohammad S Alanazi
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Shahid F, Farooqui Z, Khan F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 2018. [PMID: 29530589 DOI: 10.1016/j.ejphar.2018.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum [II], CP) is most widely prescribed in chemotherapy and efficaciously treats diverse human cancers, with remission rates > 90% in testicular cancers. However, clinical use of CP is associated with numerous untoward side effects, in particular, at the gastrointestinal level that reduces the therapeutic efficacy of CP and often results in withdrawal of its clinical usage in long term cancer chemotherapy. Substantial strides have been made to identify effective protective strategies against CP-induced nephrotoxicity, hepatotoxicity and ototoxicity. Unfortunately, very limited studies have focused on CP-induced gastrointestinal toxicity and advances in developing potent gastroprotective strategies/agents are still lacking. The current article reviews the metabolism and pharmacokinetics of CP, mechanisms underlying CP-induced gastrointestinal toxicity and lastly displays the potential approaches including plant-derived agents (phytochemicals) utilized to counteract CP-induced gastrointestinal dysfunction. Furthermore, the gastroprotective agents described in the experimental literature have shown partial protection against CP-induced intestinal damage. This stresses the need to ascertain new information on the underlying mechanism and to discover novel combinatorial strategies for the abrogation of CP-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
22
|
Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza IM, Hassan I, Alaamer A, Al Tamimi J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis 2018; 17:29. [PMID: 29444683 PMCID: PMC5813429 DOI: 10.1186/s12944-018-0674-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
Background The liver disease is one of the most important traditional public health problems in Egypt. Oxidative stress is attributed to such pathological condition that further contributes to the initiation and progression of liver injury. In the present study, we have investigated if the strong antioxidant power of Nicotinamide (NA), Vitamin B2 (VB2), and Vitamin C (VC) can ameliorate TAA-induced oxidative stress-mediated liver injury in the rats. Methods Thirty-six albino rats were divided into six groups: Control group; TAA group (IP injection with TAA at a dosage of 200 mg/Kg three times a week for two months); TAA + NA group (rats administered with NA at a dosage of 200 mg/kg daily besides TAA as in the control); TAA + VB2 group (rats administered with vitamin B2 at a dosage of 30 mg/kg daily besides injection with TAA); TAA + VC group (rats administered with vitamin C at a dosage of 200 mg/kg daily along with injection of TAA). TAA + NA + VB + VC group (rats administered the with the three vitamins daily in TAA pre-injected at the respective doses described above). Results Treatment of rats with TAA led to a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total bilirubin, cholesterol, triglycerides, low-density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-α) in the serum samples. Moreover, malondialdehyde (MDA), hydroxyproline and nitic oxide (NO) were also significantly increased in the TAA-treated rats, while reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were significantly compromised in the hepatic samples. Rats administered with NA, VB2, and VC as individually or in combination ameliorated the deleterious effects of TAA that was confirmed by histopathology. However, the combination of the three vitamins was found more effective as compared to each of the vitamins. Conclusion Our work demonstrates that NA, VB2, and VC cross-talk with each other that act as a more potent biochemical chain of antioxidant defense against TAA-induced toxicities in vivo.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia. .,Department of Zoology, Faculty of Science, Minia University, Minia, Egypt.
| | - Sherif A Abdelmottaleb Moussa
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Biophysics Group, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ibrahim M Alhazza
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Alaamer
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Jameel Al Tamimi
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| |
Collapse
|
23
|
Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: A review of recent human research. Crit Rev Food Sci Nutr 2018; 57:3650-3660. [PMID: 27029320 DOI: 10.1080/10408398.2016.1145104] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has lately been a renewed interest in Riboflavin owing to insight into its recognition as an essential component of cellular biochemistry. The knowledge of the mechanisms and regulation of intestinal absorption of riboflavin and its health implications has significantly been expanded in recent years. The purpose of this review is to provide an overview of the importance of riboflavin, its absorption and metabolism in health and diseased conditions, its deficiency and its association with various health diseases, and metabolic disorders. Efforts have been made to review the available information in literature on the relationship between riboflavin and various clinical abnormalities. The role of riboflavin has also been dealt in the prevention of a wide array of health diseases like migraine, anemia, cancer, hyperglycemia, hypertension, diabetes mellitus, and oxidative stress directly or indirectly. The riboflavin deficiency has profound effect on iron absorption, metabolism of tryptophan, mitochondrial dysfunction, gastrointestinal tract, brain dysfunction, and metabolism of other vitamins as well as is associated with skin disorders. Toxicological and photosensitizing properties of riboflavin make it suitable for biological use, such as virus inactivation, excellent photosensitizer, and promising adjuvant in chemo radiotherapy in cancer treatment. A number of recent studies have indicated and highlighted the cellular processes and biological effects associated with riboflavin supplementation in metabolic diseases. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies for future.
Collapse
Affiliation(s)
- Kiran Thakur
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Sudhir Kumar Tomar
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Ashish Kumar Singh
- b Dairy Technology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Surajit Mandal
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Sumit Arora
- c Dairy Chemistry Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
24
|
Hassan I, Naseem I, Aman S, Alhazza IM. Age Affects the Mitigating Efficacy of Riboflavin Against Cisplatin-Induced Toxicity In Vivo. Nutr Cancer 2016; 68:1381-1393. [PMID: 27673721 DOI: 10.1080/01635581.2016.1225106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cis-diamminedichloroplatinum (CP), a prominent anticancer drug, exerts toxic insults that are functional to various factors that compromise its antineoplastic activity. Riboflavin (RF) is an essential vitamin and photosensitizer that ameliorates CP-induced toxic insults in vivo in a dose-dependent manner. The aim of the present study is to investigate how age can influence the ameliorative effect of RF against CP-induced toxicity. Ninety male mice were divided into three age groups: young, adult, and old for the present investigation under an established treatment strategy with CP, RF, and their combinations under photoillumination for 1 mo. Their kidneys and serum samples were assessed for redox status [superoxide dismutase, catalase, reduced glutathione, malondialdehyde (MDA), carbonyl contents, and glutathione-S-transferase], biochemical analysis (renal function markers-nitric oxide), comet assay, and histopathology. The adult group showed not only the strongest resistance against the CP-induced toxicity but also the better ameliorative effect of RF followed by the young and old groups, respectively, with well-maintained redox status concomitant with the level of renal function markers, MDA, and carbonyl contents near the control values. Furthermore, comet assay and histopathological evaluation confirmed the results in a dose-dependent manner. Hence, age is an important patient-related factor that can influence the final clinical outcome under personalized chemoradiotherapy.
Collapse
Affiliation(s)
- Iftekhar Hassan
- a Department of Zoology , College of Sciences, King Saud University , Riyadh , Saudi Arabia
| | - Imrana Naseem
- b Department of Biochemistry, Faculty of Life Sciences , Aligarh Muslim University , Aligarh , India
| | - Shazia Aman
- c Department of Biochemistry , J N Medical College and Hospital, Aligarh Muslim University , Aligarh , India
| | - Ibrahim M Alhazza
- a Department of Zoology , College of Sciences, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
25
|
Fouda MM, Abdel-Mohsen A, Ebaid H, Hassan I, Al-Tamimi J, Abdel-Rahman RM, Metwalli A, Alhazza I, Rady A, El-Faham A, Jancar J. Wound healing of different molecular weight of hyaluronan; in-vivo study. Int J Biol Macromol 2016; 89:582-91. [DOI: 10.1016/j.ijbiomac.2016.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/16/2023]
|
26
|
Thakur K, Tomar SK, Brahma B, De S. Screening of Riboflavin-Producing Lactobacilli by a Polymerase-Chain-Reaction-Based Approach and Microbiological Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1950-1956. [PMID: 26902872 DOI: 10.1021/acs.jafc.5b06165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Riboflavin has an important role in various cellular metabolic activities through its participation in oxidation-reduction reactions. In this study, as many as 60 lactobacilli were screened for the presence or absence of riboflavin biosynthesis genes and riboflavin production. Of these, only 14 strains were able to grow in a commercial riboflavin-free medium. We observed that the presence of riboflavin biosynthesis genes is strain-specific across different species of lactobacilli. The microbiological assay was found to be appreciably reproducible, sensitive, rapid, and inexpensive and, hence, can be employed for screening the riboflavin-producing strains. The study thus represents a convenient and efficient method for selection of novel riboflavin producers. These riboflavin(+) strains thus identified and characterized could be explored as potent candidates for the development of a wide range of dairy- and cereal-based foods for the delivery of in situ riboflavin to consumers.
Collapse
Affiliation(s)
- Kiran Thakur
- Dairy Microbiology Division, and ‡Animal Biotechnology Centre, National Dairy Research Institute , Karnal, Haryana 132001, India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, and ‡Animal Biotechnology Centre, National Dairy Research Institute , Karnal, Haryana 132001, India
| | - Biswajit Brahma
- Dairy Microbiology Division, and ‡Animal Biotechnology Centre, National Dairy Research Institute , Karnal, Haryana 132001, India
| | - Sachinandan De
- Dairy Microbiology Division, and ‡Animal Biotechnology Centre, National Dairy Research Institute , Karnal, Haryana 132001, India
| |
Collapse
|
27
|
Beztsinna N, Solé M, Taib N, Bestel I. Bioengineered riboflavin in nanotechnology. Biomaterials 2016; 80:121-133. [DOI: 10.1016/j.biomaterials.2015.11.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
28
|
Thakur K, Tomar SK, De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 2015; 9:441-51. [PMID: 26686515 PMCID: PMC4919986 DOI: 10.1111/1751-7915.12335] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022] Open
Abstract
Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production.
Collapse
Affiliation(s)
- Kiran Thakur
- Division of Dairy Microbiology, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir Kumar Tomar
- Division of Dairy Microbiology, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
29
|
Riboflavin Arrests Cisplatin-Induced Neurotoxicity by Ameliorating Cellular Damage in Dorsal Root Ganglion Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:603543. [PMID: 26759811 PMCID: PMC4681007 DOI: 10.1155/2015/603543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022]
Abstract
Cis-Diamminedichloroplatinum II- (CP-) induced neurotoxicity is one of the least explored aspects of this drug. Dorsal root ganglia (DRG) cells are considered as the primary target, and their damage plays a vital role in pathogenesis and etiology of CP-induced neurotoxicity. The present study is aimed at confirming if riboflavin (RF) has any protective role in shielding the DRG from CP-induced toxicity. After conducting the established treatment strategy on mice under photoillumination, it was observed that, despite the fact that RF alone is partially toxic, its combination with CP significantly ameliorated the drug-induced damage in DRG cells as evidenced by histological analysis. In addition, it was interesting to observe that the combination group (RF + CP) was able to induce apoptosis in the target cells up to a significant extent which is considered as the most preferred way of countering cancer cells. Therefore, RF can act as an effective adjuvant compound in CP-based chemoradiotherapy to improve clinical outcomes in the contemporary anticancer treatment regimes.
Collapse
|
30
|
Juarez AV, Sosa LDV, De Paul AL, Costa AP, Farina M, Leal RB, Torres AI, Pons P. Riboflavin acetate induces apoptosis in squamous carcinoma cells after photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:445-54. [DOI: 10.1016/j.jphotobiol.2015.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/26/2015] [Accepted: 10/31/2015] [Indexed: 12/24/2022]
|
31
|
Naseem I, Hassan I, Alhazza IM, Chibber S. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study. J Trace Elem Med Biol 2015; 29:303-14. [PMID: 25242266 DOI: 10.1016/j.jtemb.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/06/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022]
Abstract
The toxicity exerted by the anticancer drug, cisplatin in vivo is functional to many factors such as dose, duration, gender and age etc. The present study is aimed to investigate if ameliorative potential of riboflavin on cisplatin induced toxicity is gender dependent. Eighty four adult mice from male and female sex were divided into seven groups (n=6) for both sexes. They were treated with riboflavin (2mg/kg), cisplatin (2mg/kg) and their two different combinations (cisplatin at 2mg/kg with 1mg/kg and 2mg/kg of riboflavin) under photoillumination with their respective controls for the combination groups without photoillumination. After treatment, all groups were sacrificed and their kidney, liver and serum were collected for biochemical estimations, comet assay and histopathology. In the present investigation, it was evident from antioxidant and detoxification studies (SOD, CAT, GSH, GST, MDA and carbonyl level) that the female mice exhibited better tolerance towards cisplatin inducted toxicity and the ameliorative effect of riboflavin against cisplatin toxicity was found stronger in their combination groups as compared to the male groups as the activity of all antioxidant enzymes were found better concomitant with lower level of MDA and carbonyl contents in the female combination groups than their male counterparts. Furthermore, single cell gel electrophoresis and histopathological examination confirmed that restoration of normal nuclear and cellular integrity was more prominent in female with respect to the males after treatment in the combination groups in a dose-dependent manner. Hence, this study reveals that cisplatin is more toxic in male mice and the ameliorative effect of riboflavin against cisplatin toxicity is stronger in female mice.
Collapse
Affiliation(s)
- Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Iftekhar Hassan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; Department of Zoology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sandesh Chibber
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|