1
|
Sadighara P, Mahdavi V, Tahmasebi R, Saatloo NV. Cell proliferation assay for determination of estrogenic components in food: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:621-627. [PMID: 35934880 DOI: 10.1515/reveh-2022-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Due to the widespread use and environmental pollution of estrogenic chemicals, the need for screening tests to detect these compounds is felt more than ever. These compounds lead to cell proliferation. Therefore, studies used cell proliferation to evaluate estrogenic compounds was studied in this systematic review. This systematic review was performed with the keywords; DNA proliferation, cell proliferation, estrogenic component, estrogen, food, bioassay, screening, and detection. After initial screening and full text quality assessment, 16 manuscripts were selected and data were extracted. Four cell lines, MCF-7, MDA-MB-231, Ishikawa, and T47D cells were used in the studies. MCF-7 was more sensitive to estrogenic compounds than other lines. Most of the samples studied were plant compounds and mycotoxins and substances that migrate from packaging to food. This screening test is valid and has similar results as others.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rahele Tahmasebi
- Research and Department of Chromatography, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Jabłońska-Trypuć A, Wydro U, Wołejko E, Makuła M, Krętowski R, Naumowicz M, Sokołowska G, Serra-Majem L, Cechowska-Pasko M, Łozowicka B, Kaczyński P, Wiater J. Selected Fungicides as Potential EDC Estrogenic Micropollutants in the Environment. Molecules 2023; 28:7437. [PMID: 37959855 PMCID: PMC10648374 DOI: 10.3390/molecules28217437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
An increasing level of pesticide exposition is being observed as a result of the consumption of large amounts of fruits, vegetables and grain products, which are key components of the vegetarian diet. Fungicides have been classified as endocrine-disrupting compounds, but their mechanisms of action have not yet been clarified. The effect of boscalid (B), cyprodinil (C) and iprodione (I) combined with Tamoxifen (T) and 17β-estradiol (E2) on cell viability, cell proliferation, reporter gene expression, ROS content, the cell membrane's function, cell morphology and antioxidant enzymes gene expression in MCF-7 and T47D-KBluc cell lines were investigated. The cell lines were chosen due to their response to 17β -estradiol. The selected fungicides are commonly used in Poland to protect crops against fungi. Our results revealed that the studied fungicides caused significant increases in cell viability and proliferation, and estrogenic activity was present in all studied compounds depending on their concentrations. Oxidative stress activated uncontrolled cancer cell proliferation by inducing ROS production and by inhibiting antioxidant defense. Our findings verify that the studied fungicides could possibly exhibit endocrine-disrupting properties and exposure should be avoided.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Marcin Makuła
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Traugutta sq.2, 41-800 Zabrze, Poland;
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A Street, 15-222 Bialystok, Poland; (R.K.); (M.C.-P.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245 Bialystok, Poland;
| | - Gabriela Sokołowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A Street, 15-222 Bialystok, Poland; (R.K.); (M.C.-P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland; (B.Ł.); (P.K.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland; (B.Ł.); (P.K.)
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| |
Collapse
|
3
|
Li X, Gao X, Li A, Xu S, Zhou Q, Zhang L, Pan Y, Shi W, Song M, Shi P. Comparative cytotoxicity, endocrine-disrupting effects, oxidative stress of halophenolic disinfection byproducts and the underlying molecular mechanisms revealed by transcriptome analysis. WATER RESEARCH 2023; 229:119458. [PMID: 36516492 DOI: 10.1016/j.watres.2022.119458] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Halophenolic disinfection byproducts (DBPs) are a class of emerging pollutants whose adverse effects on human cells and the underlying molecular mechanisms still need further exploration. In this study, we found that when halophenolic DBPs were substituted with the same halogen, the more substitution sites, the more cytotoxic, while when they were substituted at the same sites, the most toxic chemical was iodophenols, followed by bromophenols and chlorophenols. In addition, several of them exerted significant endocrine-disrupting effects at sublethal concentrations. 2,4,6-triiodophenol (TIP) and 2,4-dichlorophenol (2,4-DCP) showed the highest estradiol equivalent factor (EEF) of 4.41 × 10-8 and flutamide equivalent factor (FEF) of 0.4, respectively. Furthermore, all of the halophenolic DBPs except for 2-chlorophenol (2-CP) and 2-bromophenol (2-BP) significantly increased the levels of reactive oxygen species (ROS) or 8-hydroxydeoxyguanosine (8-OHdG) in HepG2 cells. The lowest cytotoxicity and unchanged ROS and 8-OHdG levels after 2-CP exposure may result from the activation of the transporters of the adenosine triphosphate (ATP) binding cassette in cells. Transcriptome analysis revealed distinct grouping patterns of 2-CP, 2,6-dibromophenol (2,6-DBP), and TIP at the concentrations of EC20, and the top differentially expressed genes (DEGs) were involved in the antioxidant-, immune-, and endocrine-associated systems. The weighted gene correlation network analysis well connected the phenotypes (EC50, EEF, FEF, ROS, 8-OHdG, and ABC transporters) with the DEGs and revealed that the MAPK signaling pathway played a vital role in regulating the biological response after exposure to halophenolic DBPs. This study provides deep insights into the underlying mechanisms of the toxic effects induced by halophenolic DBPs.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| | - Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
4
|
Lee A, Bensaada S, Lamothe V, Lacoste M, Bennetau-Pelissero C. Endocrine disruptors on and in fruits and vegetables: Estimation of the potential exposure of the French population. Food Chem 2022; 373:131513. [PMID: 34776310 DOI: 10.1016/j.foodchem.2021.131513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Fruits and vegetables are considered to be healthy compared to fats, carbohydrates, and meats. However, their production involves plant protection products (PPPs) or they can contain phytoestrogens which may exhibit endocrine effects. Thus, the exposure to the main PPPs and to phytoestrogens known as endocrine disruptors (EDs) is estimated. PPPs include fungicides, growth substances, herbicides, and insecticides authorised in France. ED-PPPs exposure is estimated from the maximum residue limits (MRLs) of 70 potential ED-PPPs used in France on 64 fruits and vegetables. The estimated exposure to potential ED-PPPs is 509 µg/d and involves agonist and antagonist substances in complex mixtures. Anti-androgens are preeminent, at 353 µg/d. Exposure to genistein and daidzein is calculated from 140 measurements in 9 categories of food-items containing soy. The global exposure to isoflavones in France is evaluated at 6700 µg/d. Phytoestrogen exposure is much higher than that of ED-PPPs. Their endocrine effects should be considered.
Collapse
Affiliation(s)
- Alexandre Lee
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Souad Bensaada
- University of Bordeaux, 33070 Bordeaux France; U1212 Inserm, UMR Inserm U1212, CNRS 5320, University of Bordeaux, 33070 Bordeaux France
| | - Valérie Lamothe
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Melissa Lacoste
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Catherine Bennetau-Pelissero
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France; U1212 Inserm, UMR Inserm U1212, CNRS 5320, University of Bordeaux, 33070 Bordeaux France.
| |
Collapse
|
5
|
da Silva Costa R, Sainara Maia Fernandes T, de Sousa Almeida E, Tomé Oliveira J, Carvalho Guedes JA, Julião Zocolo G, Wagner de Sousa F, do Nascimento RF. Potential risk of BPA and phthalates in commercial water bottles: a minireview. JOURNAL OF WATER AND HEALTH 2021; 19:411-435. [PMID: 34152295 DOI: 10.2166/wh.2021.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.
Collapse
Affiliation(s)
- Rouse da Silva Costa
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Tatiana Sainara Maia Fernandes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Edmilson de Sousa Almeida
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Juliene Tomé Oliveira
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail: ; Embrapa Tropical Agroindustry, R. Dra Sara Mesquita 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Francisco Wagner de Sousa
- Department of Education - Chemistry Licenciate, Federal Institute of Education, Science and Technology, R. Francisco da Rocha Martins S/N, 61609-090 Caucaia, CE, Brazil
| | - Ronaldo Ferreira do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| |
Collapse
|
6
|
Sakaki JR, Melough MM, Yang CZ, Provatas AA, Perkins C, Chun OK. Estrogenic activity of capsule coffee using the VM7Luc4E2 assay. Curr Res Toxicol 2021; 2:210-216. [PMID: 34345863 PMCID: PMC8320625 DOI: 10.1016/j.crtox.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
Coffee brewed from capsule machines may contain estrogenic chemicals migrated from plastic, but the estrogenic activity of capsule coffee has not been evaluated. This study evaluated the estrogenic activity of capsule coffee using the VM7Luc4E2 estrogen receptor transcriptional activation assay. Estrogenic potentials of six capsule coffee samples were calculated using relative maximum amplitude response of E2 (>15%RME2 indicative of estrogenic activity) and estradiol equivalent factor (EEF). Estrogenic chemical content was determined using ultra-performance liquid chromatography with tandem mass spectrometry. All capsule coffee samples possessed estrogenic activity (48-56%RME2). EEFs were 6-7 orders of magnitude lower than that of E2, (1.2 × 10-7-1.7 × 10-6), indicating substantially weaker estrogenic potencies. Bisphenol A, bisphenol F, benzophenone, 4-nonylphenol, dibutyl phthalate, and dimethyl terephthalate were detected in capsule coffee. Capsule coffee exhibited estrogenic activity in vitro, and its estrogenic chemical content is likely driving its estrogenicity, warranting further investigations to fully understand the degree to which they are related and to predict the estrogenic potential based on the concentration of estrogenic chemicals.
Collapse
Key Words
- 4-NP, 4-nonylphenol
- BP, benzophenone
- BPA, bisphenol A
- BPF, bisphenol F
- BPS, bisphenol S
- Capsule
- Coffee
- DBP, dibutyl phthalate
- E2, 17β-estradiol
- EEF, estradiol equivalent factor
- EEQ, estradiol equivalent concentration
- Estrogen
- Estrogenic activity
- HPLC, high-performance liquid chromatography
- Plastic
- RLU, relative luminescence units
- RME2, relative maximum amplitude response of E2
- UPLC-MS/MS, ultra-performance liquid chromatography with tandem mass spectrometry
- bisphenol A
Collapse
Affiliation(s)
- Junichi R. Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Melissa M. Melough
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Anthony A. Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Christopher Perkins
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165664. [PMID: 32764486 PMCID: PMC7459580 DOI: 10.3390/ijerph17165664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022]
Abstract
The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the three pesticides to induce an estrogenic activity was tested in MELN cells. When compared to 17β-estradiol, thiacloprid and imidacloprid induced an estrogenic activity at the highest concentrations tested with a relative potency of 5.4 × 10−10 and 3.7 × 10−9, respectively. Molecular dynamics and docking simulations predicted the potential binding sites and the binding mode of the three pesticides on the structure of the two key targets, providing a rational for their mechanism as EDCs. The results demonstrate that the three pesticides are potential EDCs as glyphosate acts as an aromatase inhibitor, whereas imidacloprid and thiacloprid can interfere with estrogen induced signaling.
Collapse
|
8
|
Baderna D, Caloni F, Benfenati E. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. ENVIRONMENT INTERNATIONAL 2019; 122:21-30. [PMID: 30448364 DOI: 10.1016/j.envint.2018.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 05/15/2023]
Abstract
Landfill leachate is a complex mixture characterized by high toxicity and able to contaminate soils and waters surrounding the dumpsite, especially in developing countries where engineered landfills are still rare. Leachate pollution can severely damage natural ecosystems and harm human health. Traditionally, the hazard assessment of leachate is based on physicochemical characterization but the toxicity is not considered. In the last few decades, different bioassays have been used to assess the toxicity of this complex matrix, including human-related in vitro models. This article reviews the cell bioassays successfully used for the risk assessment of leachate and to evaluate the efficiency of toxicity removal of several processes for detoxification of this wastewater. Articles from 2003 to 2018 are covered, focusing mainly on studies that used human cell lines, highlighting the usefulness and adequacy of in vitro models for assessing the hazard involved with exposure to leachate, particularly as an integrative supporting tool for chemical-based risk assessment. Leachate is generally toxic, mutagenic, genotoxic and estrogenic in vitro, and these effects can be measured in the cells exposed to already low concentrations, confirming the serious hazard of this wastewater for human health.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
9
|
Stypuła-Trębas S, Minta M, Radko L, Żmudzki J. Application of the yeast-based reporter gene bioassay for the assessment of estrogenic activity in cow's milk from Poland. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:876-885. [PMID: 26492450 DOI: 10.1016/j.etap.2015.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Milk contain compounds acting through the estrogen receptor signaling. The still open question whether such estrogens pose a risk for human health, encouraged us to measure the overall estrogenic activity of cow's milk in the in vitro yeast reporter bioassay. First, we assessed the ability of the bioassay to detect estrogens frequently detected in milk. The relative potencies of 16 compounds descended in the order: 17β-estradiol (17β-E2), 17α-ethinylestradiol, diethylstilbestrol, dienestrol, 17α-E2, estrone, zearalenone, estriol, equol, genistein, 17β-E2 glucuronide, bisphenol A, apigenin, daidzein. Flavone, 4-n-nonylphenol and 4-t-octylphenol shown no activity in the bioassay.The estrogenic activities of milk samples without hydrolysis were below the detection limit, whereas in 50% of the deconjugated samples they varied between 0.29 and 0.49 ng EEQ mL(-1). We also compared the estrogenic activity in raw cow's milk collected from rural and industrial locations in Poland. In our pilot study we did not observe statistically significant difference in estrogenic activities in milk collected from the two locations. We found that the daily intake of estrogens with milk may be higher than estrogen levels in human serum. Further studies are warranted to evaluate the significance of milk and dairy as a source of estrogens for humans.
Collapse
Affiliation(s)
- Sylwia Stypuła-Trębas
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - Maria Minta
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Jan Żmudzki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
10
|
Kudłak B, Szczepańska N, Owczarek K, Mazerska Z, Namieśnik J. Revision of Biological Methods for Determination of EDC Presence and Their Endocrine Potential. Crit Rev Anal Chem 2014; 45:191-200. [DOI: 10.1080/10408347.2014.904731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Zhu J, Liu S, Liu Z, Li Y, Tian J, Hu X. A highly sensitive and selective assay of doxycycline by dualwavelength overlapping resonance Rayleigh scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:237-242. [PMID: 24486868 DOI: 10.1016/j.saa.2013.12.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed and validated for highly sensitive and selective assay of doxycycline residues in several meat samples. The response signals were dependent on the specific multi-site coordination between lanthanum(III) and doxycycline (DOTC). And La(III)-DOTC complex would further aggregate to form [La(III)-DOTC]n nanoparticles, resulting in the occurrence of two new scattering peaks. Notably, with the addition of DOTC, the increments of both of these two wavelengths were proportional to the concentration of DOTC over the ranges of 3.9-4.0×10(3) nmol L(-1) (1.7-1.8×10(3) μg/kg). The detection limit of DWO-RRS was 1.1 nmol L(-1) (0.5 μg/kg), which was lower than or comparable to most of the published methods. Additionally, the generating mechanisms of multi-response RRS signals were discussed and a semi-empirical principle was established for better design of multi-response RRS probes.
Collapse
Affiliation(s)
- Jinghui Zhu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhongfang Liu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuanfang Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jing Tian
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|