1
|
Gao M, Shen H, Li Q, Gu X, Jia T, Wang Y. Perfluorooctane sulfonate (PFOS) induces apoptosis and autophagy by inhibition of PI3K/AKT/mTOR pathway in human granulosa cell line KGN. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123333. [PMID: 38211877 DOI: 10.1016/j.envpol.2024.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is recognized as an environmental endocrine disruptor with widespread use in industrial manufacturing and daily life, contributing to various public health concerns. However, the precise impacts of PFOS on the ovary and its regulatory mechanisms remain unclear. This study aims to delineate the ovarian toxicity of PFOS and scrutinize its effects on apoptosis and autophagy through modulation of the PI3K/AKT/mTOR pathway in the human granulosa cell line (KGN). Cell viability, assessed via the Cell Counting Kit-8 (CCK8), revealed a dose-dependent reduction in cell viability upon PFOS exposure. Flow cytometry analysis demonstrated an elevated proportion of apoptotic cells following PFOS treatment. Western blot analyses unveiled increased expression of Bax, Cyt c, cleaved caspase-9, and LC3-II/I, coupled with decreased expression of Bcl-2 and p62. Transmission electron microscopy (TEM) observations illustrated a heightened number of autophagosomes induced by PFOS. Molecular docking investigations, in conjunction with Western blot experiments, substantiated PFOS's significant inhibition of the PI3K/AKT/mTOR signaling pathway. These findings collectively underscore that PFOS induces apoptosis and autophagy in KGN cells through modulation of the PI3K/AKT/mTOR pathway, providing experimental evidence for PFOS-induced ovarian toxicity and elucidating the underlying regulatory mechanisms in KGN cells.
Collapse
Affiliation(s)
- Min Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haofei Shen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiuyuan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuzhao Gu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianyu Jia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First School of Clinical Medicine & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Key Laboratory for Reproductive Medicine and Embryo of Gansu Province & Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, China.
| |
Collapse
|
2
|
Shi B, Zhang Z, Xing J, Liu Q, Cai J, Zhang Z. Perfluorooctane sulfonate causes pyroptosis and lipid metabolism disorders through ROS-mediated NLRP3 inflammasome activation in grass carp hepatocyte. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106839. [PMID: 38228041 DOI: 10.1016/j.aquatox.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
The surfactant perfluorooctane sulfonate (PFOS) is widely produced worldwide. It is a persistent organic pollutant in the aquatic environment and poses a serious threat to aquatic organisms, as PFOS exposure can cause liver injury in a wide range of organisms. However, it is unclear whether PFOS exposure-induced hepatocellular injury in fish is associated with ROS-mediated activation of NLRP3 inflammasome. In this study, various PFOS concentrations were applied to L8824 cells, a cell line of grass carp hepatocytes. The detrimental impacts of PFOS on oxidative stress, pyroptosis, lipid metabolism, and the discharge of inflammatory factors were examined. MCC950 and N-acetylcysteine were employed to hinder the PFOS-stimulated activation of the NLRP3 inflammasome and the excessive generation of reactive oxygen species in L8824 cells, respectively. This study demonstrated that treatment with PFOS resulted in oxidative stress and activation of NLRP3 inflammasome in L8824 cells. This led to increased expression levels of indicators related to pyroptosis, accompanied by the upregulation of pro-inflammatory cytokine expression as well as downregulation of anti-inflammatory factors. In addition, following PFOS exposure, the expression levels of genes related to lipid synthesis were upregulated and lipid catabolism-related genes were downregulated. Surprisingly, both N-acetylcysteine and MCC950 interventions significantly reduced PFOS-induced L8824 cell pyroptosis and lipid metabolism disorders. In conclusion, this research demonstrated that PFOS drives NLRP3 inflammasome activation through oxidative stress induced by reactive oxygen species overload. This in turn leads to pyroptosis and lipid metabolism disorders.
Collapse
Affiliation(s)
- Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhuoqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiao Xing
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Deng X, Liu B, Jiang Q, Li G, Li J, Xu K. CREBH promotes autophagy to ameliorate NASH by regulating Coro1a. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166914. [PMID: 37837948 DOI: 10.1016/j.bbadis.2023.166914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Dysfunctional autophagy aggravates oxidative stress and inflammation in hepatocytes and accelerates the progression of nonalcoholic steatohepatitis (NASH). Here, we demonstrated that cAMP-responsive element-binding protein H (CREBH) is a transcriptional regulator of hepatic autophagy in response to diet-induced NASH. The results showed that the upregulation of CREBH in lipid-overloaded hepatocytes improves cell damage, dysfunction of autophagic flux and associated abnormal accumulation of the autophagosome marker LC3-II and autophagic substrate p62. CREBH deficiency aggravated the dysfunctional autophagy and liver injury and even caused NASH-associated liver fibrosis. In addition, the changing trend of autolysosomes and lysosome membrane-associated protein (LAMP1) was consistent with the expression level of CREBH. This result indicated that CREBH might promote autophagic degradation by restoring the formation of autolysosomes, thereby improving the blocked autophagic flux. Moreover, we observed that CREBH inhibited the expression of Coronin 1a (Coro1a), an autophagosome-lysosome fusion-related gene, through transcriptional regulation. The overexpression of Coro1a in LO2 liver cells inhibited autophagic flux and elevated inflammatory cytokine levels upon palmitic acid (PA) stimulation. Overall, our findings provide new insights into the regulatory role of CREBH in the progression of NASH and reveal that Coro1a is a novel target gene of CREBH based on the autophagy pathway.
Collapse
Affiliation(s)
- Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Beibei Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guixin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Luo D, Zhang J, Yin H, Li S, Xu S, Li S. Cannabidiol alleviates perfluorooctane sulfonate-induced macrophage extracellular trap mediate inflammation and fibrosis in mice liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115374. [PMID: 37591127 DOI: 10.1016/j.ecoenv.2023.115374] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
As a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 μM) and/or PFOS (200 μM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker gene expression. In summary, we found that PFOS-induced MET can promote inflammation and fibrosis through the CCDC25-ILK-NF-κB signaling axis, while the treatment of CBD showed a protective effect, and it is proved by Macromolecular docking that this protective effect is achieved by combining CBD with peptidylarginine deiminase 4 (PAD4) to alleviate the release of MET. Therefore, regulating the formation of MET and the CCDC25-ILK-NF-κB signaling axis is an innovative treatment option that can effectively reduce hepatotoxicity. Our study reveals the mechanism of PFOS-induced hepatotoxicity and provides promising insights into the protective role of CBD in this process.
Collapse
Affiliation(s)
- Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Zhou Z, Guo R, Chen B, Wang L, Cao H, Wei C, Hu M, Zhan Y, Li S, Wang Y, Liang Y. Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden. Chem Res Chin Univ 2023; 39:408-414. [PMID: 37303471 PMCID: PMC10115474 DOI: 10.1007/s40242-023-3030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023]
Abstract
Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.
Collapse
Affiliation(s)
- Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Yuhang Zhan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Shutao Li
- Hubei Hengxin Chemical Co., Ltd., Yingcheng, 432400 P. R. China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 P. R. China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| |
Collapse
|
6
|
Zhou A, Wang L, Pi X, Fan C, Chen W, Wang Z, Rong S, Wang T. Effects of perfluorooctane sulfonate (PFOS) on cognitive behavior and autophagy of male mice. J Toxicol Sci 2023; 48:513-526. [PMID: 37661368 DOI: 10.2131/jts.48.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging environmental pollutant, is reported to cause neurotoxicity in animals and humans, but its underlying mechanisms are still unclear. We used in vivo models to investigate the effects of PFOS on cognition-related behaviors and related mechanisms. After 45 days of intragastric administration of PFOS (2 mg/kg or 8 mg/kg) in 7-week-old C57BL/6 mice, muscle strength, cognitive function and anxiety-like behavior were evaluated by a series of behavioral tests. The underling mechanisms of PFOS on impaired behaviors were evaluated by HE/Nissl staining, electron microscopy observation and western blot analysis. The results indicated that PFOS-exposed mice exhibited significant cognitive impairment, anxiety, neuronal degeneration and the abnormities of synaptic ultrastructure in the cortex and hippocampus. Western blot analysis indicated that PFOS exposure increased microtubule-associated protein light chain 3 (LC3) and decreased p62 protein levels, which may be associated with activation of autophagy leading to neuron damage. In summary, our results suggest that chronic exposure to PFOS adversely affects cognitive-related behavior in mice. These findings provide new mechanistic insights into PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Aojia Zhou
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Li Wang
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Xuejiao Pi
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Cheng Fan
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Wenwen Chen
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Wang
- Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| |
Collapse
|
7
|
Zhao X, Shi X, Yao Y, Li X, Xu S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022; 48:946-958. [PMID: 35286732 DOI: 10.1002/biof.1834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd), a common toxic heavy metal, is believed as a risk factor for the induction and progression of cardiovascular disease. Autophagy is a highly ordered intracellular lysosomal-mediated degradation pathway that is crucial for protein and organelle quality control. Autophagy dysfunction could develop exacerbated cardiac dysfunction. However, the role of autophagy in Cd exposure-induced cardiotoxicity remains largely unknown. In this study, the Cd-induced swine cardiotoxicity model was established by feeding with a CdCl2 suppled diet (20 mg Cd/kg diet). The results showed that Cd exposure increased the expression of endoplasmic reticulum stress-related genes (GRP78, GRP94, IRE1, XBP1, PERK, ATF4, and ATF6), increased the expression of Ca2+ release channels IP3R and RYR1 and decreased the expression of Ca2+ uptake pump SERCA1. Cd exposure upregulated the expression of autophagy-related genes (CAMKKII, AMPK, ATG5, ATG7, ATG12, Beclin1, LC3-II, and P62) and downregulated mTOR expression. Cd exposure inhibited the expression of V-ATPase and cathepsins (CTSB and CTSD), and increased the expression of cathepsins in cytoplasm. Cd exposure decreased the colocalization of autophagosome and lysosome. This study revealed that autophagy flux inhibition caused by lysosomal dysfunction participates in the cardiotoxicity induced by Cd exposure in swine.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Wang P, Liu D, Yan S, Cui J, Liang Y, Ren S. Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms. TOXICS 2022; 10:toxics10050265. [PMID: 35622678 PMCID: PMC9144769 DOI: 10.3390/toxics10050265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows that the liver is the major target of PFOS, and that PFOS can damage liver tissue and disrupt its function; however, the exact mechanisms remain unclear. In this study, we reviewed the adverse effects of PFOS on liver tissue and cells, as well as on liver function, to provide a reference for subsequent studies related to the toxicity of PFOS and liver injury caused by PFOS.
Collapse
|
9
|
Liu Y, Xiang H, Xiong W, Ouyang J, Liu H, Zhao S, Xiao J, Li J, Shu Z, Wang X, Liu H, Zhang J, Fan J, Li Y, Chen S, Lu H. Glucolipotoxicity induces endothelial cell dysfunction by activating autophagy and inhibiting autophagic flow. Diab Vasc Dis Res 2022; 19:14791641221102513. [PMID: 35549572 PMCID: PMC9125420 DOI: 10.1177/14791641221102513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aims to determine the role and mechanism of autophagy in endothelial cell dysfunction by glucolipotoxicity. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with high glucose and high palmitic acid. The number of autophagosomes was evaluated by monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM). The expression of autophagy-related proteins (LC3 and P62) was assessed by Western blotting. Capillary tube-like formation was evaluated on Matrigel. Reactive oxygen species (ROS) production was detected by DCFH-DA. Cell apoptosis was measured by Hoechst 33258 staining and flow cytometry. Phosphorylation of AMPK, mTOR, and ULK1 was also analyzed by Western blotting. RESULTS We found that glucolipotoxicity induced autophagy initiation and hindered autophagosomes degradation. Moreover, glucolipotoxicity increased the production of intracellular ROS, decreased the ability of tubular formation, and increased cell apoptosis. However, endothelial cell dysfunction was alleviated by 3-methyladenine, an early-stage autophagy inhibitor. Additionally, glucolipotoxicity promoted the phosphorylation of AMPK and ULK1 and inhibited the phosphorylation of mTOR. CONCLUSIONS Glucolipotoxicity initiates autophagy through the AMPK/mTOR/ULK1 signaling pathway and inhibits autophagic flow, leading to the accumulation of autophagosomes, thereby inducing apoptosis and impairing endothelial cell function.
Collapse
Affiliation(s)
- Yulan Liu
- Health Management Center, Third Xiangya Hospital of Central
South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Wenfang Xiong
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of
Zhengzhou University, Zhenzhou, China
| | - Shaoli Zhao
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jie Xiao
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jialing Li
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Xuewen Wang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Huiqin Liu
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jing Zhang
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Jianing Fan
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Ying Li
- Department of Cardiology, Third Xiangya Hospital of Central
South University, Changsha, China
| | - Shuhua Chen
- Departments of Biochemistry, School
of Life Sciences, Central South
University, Changsha, China
- Shuhua Chen, Department of Biochemistry,
School of Life Sciences, Central South University, 172 Tongzipo Road, Changsha
410013, China.
| | - Hongwei Lu
- Health Management Center, Third Xiangya Hospital of Central
South University, Changsha, China
- Center for Experimental Medicine, Third Xiangya Hospital of Central
South University, Changsha, China
- Hongwei Lu, Center for Experimental
Medicine, Third Xiangya Hospital of Central South University, 138 Tongzipo Road,
Changsha 410013, China.
| |
Collapse
|
10
|
L-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci Rep 2022; 12:4673. [PMID: 35304586 PMCID: PMC8933466 DOI: 10.1038/s41598-022-08771-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
We previously reported that perfluorooctanesulfonate (PFOS) causes autophagy-induced apoptosis in renal tubular cells (RTCs) through a mechanism dependent on reactive oxygen species (ROS)/extracellular signal-regulated kinase. This study extended our findings and determined the therapeutic potency of l-Carnitine in PFOS-treated RTCs. l-Carnitine (10 mM) reversed the effects of PFOS (100 µM) on autophagy induction and impaired autophagy flux. Furthermore, it downregulated the protein level of p47Phox, which is partly related to PFOS-induced increased cytosolic ROS in RTCs. Moreover, l-Carnitine reduced ROS production in mitochondria and restored PFOS-impeded mitochondrial function, leading to sustained normal adenosine triphosphate synthesis and oxygen consumption and reduced proton leakage in a Seahorse XF stress test. The increased inositol-requiring enzyme 1α expression by PFOS, which indicated endoplasmic reticulum (ER) stress activation, was associated with PFOS-mediated autophagy activation that could be attenuated through 4-phenylbutyrate (5 mM, an ER stress inhibitor) and l-Carnitine pretreatment. Therefore, by reducing the level of IRE1α, l-Carnitine reduced the levels of Beclin and LC3BII, consequently reducing the level of apoptotic biomarkers including Bax and cleaving PARP and caspase 3. Collectively, these results indicate that through the elimination of oxidative stress, extracellular signal–regulated kinase activation, and ER stress, l-Carnitine reduced cell autophagy/apoptosis and concomitantly increased cell viability in RTCs. This study clarified the potential mechanism of PFOS-mediated RTC apoptosis and provided a new strategy for using l-Carnitine to prevent and treat PFOS-induced RTC apoptosis.
Collapse
|
11
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure‐Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
12
|
Dong Z, Qiu T, Zhang J, Sha S, Han X, Kang J, Shi X, Sun X, Jiang L, Yang G, Yao X, Ma Y. Perfluorooctane sulfonate induces autophagy-dependent lysosomal membrane permeabilization by weakened interaction between tyrosinated alpha-tubulin and spinster 1. Food Chem Toxicol 2021; 157:112540. [PMID: 34500008 DOI: 10.1016/j.fct.2021.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaoxia Shi
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| |
Collapse
|
13
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure-Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021; 60:21807-21816. [PMID: 34189812 DOI: 10.1002/anie.202103507] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Here we report on the design, synthesis, and assembly of an enzymatic programmable peptide system inspired by endocytic processes to induce molecular assemblies formation spatiotemporally in living cancer cells, resulting in glioblastoma cell death mainly in necroptosis. Our results indicate the stability and glycosylation of molecules play an essential role in determining the final bioactivity. Detailed mechanistic studies by CLSM, Flow cytometry, western blot, and Bio-EM suggest the site-specific formation of assemblies, which could induce the LMP and activate the downstream cell death pathway. Moreover, we also demonstrate that our strategy can boost the activity of commercial chemotherapy drug by escaping lysosome sequestration. We expected this work would be expanded towards artificial intelligent biomaterials for cancer therapy and imaging precisely.
Collapse
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Li C, Zou C, Yan H, Li Z, Li Y, Pan P, Ma F, Yu Y, Wang Y, Wen Z, Ge RS. Perfluorotridecanoic acid inhibits fetal Leydig cell differentiation after in utero exposure in rats via increasing oxidative stress and autophagy. ENVIRONMENTAL TOXICOLOGY 2021; 36:1206-1216. [PMID: 33683001 DOI: 10.1002/tox.23119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 05/23/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain perfluoroalkyl substance, and its effect on the differentiation of fetal Leydig cells remains unclear. The objective of this study is to explore the effect of in utero PFTrDA exposure on the differentiation of fetal Leydig cells and investigate its underlying mechanisms. Pregnant Sprague-Dawley female rats were daily administered by gavage of PFTrDA at doses of 0, 1, 5, and 10 mg/kg from gestational day 14 to 21. PFTrDA had no effect on the body weight of dams, but significantly reduced the body weight and anogenital distance of male pups at birth at a dose of 10 mg/kg. PFTrDA significantly decreased serum testosterone levels as low as 1 mg/kg. PFTrDA did not affect fetal Leydig cell number, but promoted abnormal aggregation of fetal Leydig cells at doses of 5 and 10 mg/kg. PFTrDA down-regulated the expression of Insl3, Lhcgr, Scarb1, Star, Hsd3b1, Cyp17a1, Nr5a1, and Dhh as well as their proteins. PFTrDA lowered the levels of antioxidants (SOD1, CAT, and GPX1), induced autophagy as shown by increased levels of LC3II and beclin1, and reduced the phosphorylation of mTOR. In conclusion, PFTrDA inhibits the differentiation of fetal Leydig cells in male pups after in utero exposure mainly through increasing oxidative stress and inducing autophagy.
Collapse
Affiliation(s)
- Changchang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
ROS-Triggered Autophagy Is Involved in PFOS-Induced Apoptosis of Human Embryo Liver L-02 Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6625952. [PMID: 33880372 PMCID: PMC8046535 DOI: 10.1155/2021/6625952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
The liver is the primary target organ for perfluorooctane sulphonate (PFOS), a recently discovered persistent organic pollutant. However, the mechanisms mediating hepatotoxicity remain unclear. Herein, we explored the relationship between reactive oxygen species (ROS) and autophagy and apoptosis induced by PFOS in L-02 cells, which are incubated with different concentrations of PFOS (0, 50, 100, 150, 200, or 250 μmol/L) for 24 or 48 hrs at 37°C. The results indicated that PFOS exposure decreased cell activities, enhanced ROS levels in a concentration-dependent manner, decreased mitochondrial membrane potential (MMP), and induced autophagy and apoptosis. Compared with the control, 200 μmol/L PFOS increased ROS levels; enhanced the expression of Bax, cleaved-caspase-3, and LC3-II; induced autophagy; decreased MMP; and lowered Bcl-2, p62, and Bcl-2/Bax ratio. The antioxidant N-acetyl cysteine (NAC) protected MMP against PFOS-induced changes and diminished apoptosis and autophagy. Compared with 200 μmol/L PFOS treatment, NAC pretreatment reversed the increase in ROS, Bax, and cleaved-caspase-3 protein caused by PFOS, lowered the apoptosis rate increased by PFOS, and increased the levels of MMP and Bcl-2/Bax ratio decreased by PFOS. The autophagy inhibitor 3-methyladenine and chloroquine decreased apoptosis and cleaved-caspase-3 protein level and increased the Bcl-2/Bax ratio. In summary, our results suggest that ROS-triggered autophagy is involved in PFOS-induced apoptosis in L-02 cells.
Collapse
|
16
|
Hou X, Han L, An B, Cai J. Autophagy induced by Vip3Aa has a pro-survival role in Spodoptera frugiperda Sf9 cells. Virulence 2021; 12:509-519. [PMID: 33509041 PMCID: PMC7849784 DOI: 10.1080/21505594.2021.1878747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vip3Aa is an insecticidal protein that can effectively control certain lepidopteran pests and has been used widely in biological control. However, the mechanism of action of Vip3Aa is unclear. In the present study, we showed that Vip3Aa could cause autophagy in Sf9 cells, which was confirmed by the increased numbers of GFP-Atg8 puncta, the appearance of autophagic vacuoles, and an elevated Atg8-II protein level. Moreover, we found that the AMPK-mTOR-ULK1 pathway is involved in Vip3Aa-induced autophagy, which might be associated with the destruction of ATP homeostasis in Vip3Aa-treated cells. Both the elevated p62 level and the increased numbers of GFP-RFP-Atg8 yellow fluorescent spots demonstrated that autophagy in Sf9 cells was inhibited at 24 h after Vip3Aa treatment. With the prolongation of Vip3Aa treatment time, this inhibition became more serious and led to autophagosome accumulation. Genetic knockdown of ATG5 or the use of the autophagy inhibitor 3-MA further increased the sensitivity of Sf9 cells to Vip3Aa. Overexpression of ATG5 reduced the cell mortality of Vip3Aa-treated cells. In summary, the results revealed that autophagy induced by Vip3Aa has a pro-survival role, which might be related to the development of insect resistance.
Collapse
Affiliation(s)
- Xiaoyue Hou
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University , Lianyungang, China.,College of Food Science and Engineering, Jiangsu Ocean University , Lianyungang, China
| | - Lu Han
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China
| | - Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics , Tianjin, China
| |
Collapse
|
17
|
Perfluorooctane sulfonate induces autophagy-associated apoptosis through oxidative stress and the activation of extracellular signal-regulated kinases in renal tubular cells. PLoS One 2021; 16:e0245442. [PMID: 33471797 PMCID: PMC7817024 DOI: 10.1371/journal.pone.0245442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is among the most abundant organic pollutants and is widely distributed in the environment, wildlife, and humans. Its toxic effects and biological hazards are associated with its long elimination half-life in humans. However, how it affects renal tubular cells (RTCs) remains unclear. In this study, PFOS was observed to mediate the increase in reactive oxygen species (ROS) generation, followed by the activation of the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway, which induced autophagy in RTCs. Although PFOS treatment induced autophagy after 6 h, prolonged treatment (24 h) reduced the autophagic flux by increasing lysosomal membrane permeability (LMP), leading to increased p62 protein accumulation and subsequent apoptosis. The increase in LMP was visualized through increased green fluorescence with acridine orange staining, and this was attenuated by 3-methyladenine, an autophagy inhibitor. N-acetyl cysteine and an inhibitor of the mitogen-activated protein kinase kinases (U0126) attenuated autophagy and apoptosis. Taken together, these results indicate that ROS activation and ROS-mediated phosphorylated ERK1/2 activation are essential to activate autophagy, resulting in the apoptosis of PFOS-treated RTCs. Our findings provide insight into the mechanism of PFOS-mediated renal toxicity.
Collapse
|
18
|
Lin T, Zhang Y, Ding X, Huang T, Zhang W, Zou W, Kuang H, Yang B, Wu L, Zhang D. Perfluorooctanoic acid induces cytotoxicity in spermatogonial GC-1 cells. CHEMOSPHERE 2020; 260:127545. [PMID: 32653749 DOI: 10.1016/j.chemosphere.2020.127545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane acid (PFOA), a typical perfluorinated chemical, has been suggested to interfere with male reproductive function. In this study, mouse spermatogonial GC-1 cells were in vitro treated with PFOA (250, 500 or 750 μM) for 24 h to investigate the cytotoxicity of PFOA and its underlying mechanisms. Our results indicated that exposure to intermediate and high doses of PFOA suppressed the viability of GC-1 cells in a concentration-dependent manner. Furthermore, PFOA treatment markedly enhanced the generation of reactive oxygen species and malondialdehyde, with diminished activity of superoxide dismutase. Particularly, PFOA exposure evoked a decline in mitochondrial membrane potential and ATP production. Furthermore, the apoptotic index and caspase-3 activity were significantly elevated after treatment with PFOA. In addition, PFOA incubation caused an increase in LC3B-II/LC3B-I ratio. Meanwhile, PFOA resulted in an excessive accumulation of autophagosomes in the cytoplasm. Taken together, exposure to PFOA can elicit cytotoxicity to spermatogonial GC-1 cells in vitro, which may be link to the mitochondrial oxidative damage and induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Yurong Zhang
- Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Xinbao Ding
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Huang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Wenjuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Weiying Zou
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Lei Wu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
19
|
Design, synthesis and antitumour evaluation of novel anthraquinone derivatives. Bioorg Chem 2020; 107:104395. [PMID: 33384144 DOI: 10.1016/j.bioorg.2020.104395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 11/23/2022]
Abstract
We report the design, synthesis, and biological evaluation of 13 new and 1 known anthraquinone derivatives which exerted cytotoxicity against PC3, A549 and NTUB1 cell lines. The results indicate that, among these 14, compounds-1 and 14 showed the highest growth inhibitory effect on NTUB1 and PC3 cells, respectively. Compound-1 at lower doses targets DNA, induces DNA damage and subsequently triggers G2/M arrest and apoptotic cell death at 24 h. Previously we reported that 14 induced PC3 cell autophagy and in treated PC3 cells, cleaved caspase-3 and cleaved PARP, and survivin did not increase and increase, respectively. The autophagic and necrotic cell deaths mediated by 14-triggered ROS generation. Our study is the first to investigate the biological mechanism of 14 action in detail. We find that when 14 was co-administrated with Bafilomycin A1 (BAF) in PC3 cells, rapid necrotic cell death occurred with no cleaved caspase-3 and cleaved PARP activation and increasing the expression of survivin. We further show that necrotic signaling in these cells coincided with production of reactive oxygen species. In the present study, we developed methods to synthesize five new 14 analogues for studing the structure-activity relationships. This study could provide valuable sight to find new antitumor agents for cancer therapy.
Collapse
|
20
|
Liu D, Liu NY, Chen LT, Shao Y, Shi XM, Zhu DY. Perfluorooctane sulfonate induced toxicity in embryonic stem cell-derived cardiomyocytes via inhibiting autophagy-lysosome pathway. Toxicol In Vitro 2020; 69:104988. [PMID: 32861759 DOI: 10.1016/j.tiv.2020.104988] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 μM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Shao
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Meng Shi
- Undergraduate Students in Research Training Project at Zhejiang University, Hangzhou 310058, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
21
|
Zhuang J, Nie G, Yang F, Cao H, Xing C, Dai X, Hu G, Zhang C. Molybdenum and Cadmium co-induced the levels of autophagy-related genes via adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney. Poult Sci 2020; 98:6533-6541. [PMID: 31424537 PMCID: PMC8913950 DOI: 10.3382/ps/pez477] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate Molybdenum (Mo) and Cadmium (Cd) co-induced the levels of autophagy-related genes via AMPK/mTOR signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney, 60 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses on the basal diet for 120 d. Kidney samples were collected on day 120 to determine the mRNA expression levels of adenosine 5′-monophosphate (AMP)-activated protein kinase α1 (AMPKα1), mammalian target of rapamycin (mTOR), Beclin-1, autophagy-related gene-5 (Atg5), microtubule-associated protein light chain A (LC3A), microtubule-associated protein light chain B (LC3B), sequestosome-1, and Dynein by real-time quantitative polymerase chain reaction. Meanwhile, ultrastructural changes of the kidney were observed. The results indicated that the mTOR and P62 mRNA expression levels were significantly downregulated, but the Atg5 and Beclin-1 mRNA levels were remarkably upregulated in all treated groups compared to control group, and their changes were greater in joint groups. Additionally, compared to control group, the Dynein mRNA expression level was apparently downregulated in co-treated groups, the LC3B, LC3A, and AMPKα1 expression levels were dramatically upregulated in single treated groups and they were not obviously different in co-treated groups. Ultrastructural changes showed that Mo and Cd could markedly increase the number of autophagosomes. Taken together, it suggested that dietary Mo and Cd might induce autophagy via AMPK/mTOR signaling pathway in duck kidney, and it showed a possible synergistic relationship between the 2 elements.
Collapse
Affiliation(s)
- Jionghan Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, Economic and Technological Development District, Nanchang 330032, Jiangxi, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| |
Collapse
|
22
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
23
|
Tang J, Lu X, Chen F, Ye X, Zhou D, Yuan J, He J, Chen B, Shan X, Jiang J, Liu W, Zhang H. Effects of Perfluorooctanoic Acid on the Associated Genes Expression of Autophagy Signaling Pathway of Carassius auratus Lymphocytes in vitro. Front Physiol 2018; 9:1748. [PMID: 30568600 PMCID: PMC6290059 DOI: 10.3389/fphys.2018.01748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) has been detected in various water bodies and caused harm to aquatic organisms. The aim of this study was to investigate the cytotoxicity and mechanism associated with autophagy and oxidative stress after exposure to PFOA (0, 1, 10, 100 μg/L) for 12 h on lymphocytes, which was isolated from the head kidney of Carassius auratus (C. auratus). Both of autophagy formation, cell activity, and intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels were measured. The relative expression of partial autophagy-related genes autophagy related 5 (Atg 5), autophagy related 7 (Atg 7), and Beclin 1 were also cloned and detected. Homologous relationships analysis showed high identities of genes in C. auratus and other fish by blast. C. auratus lymphocytes growth inhibition rates was increased induced by PFOA. Compared with the control group, the ROS generation and the MDA content were significantly increased in all of the PFOA-treated group. Besides, decreased SOD activity and decrease of GSH activity induced by PFOA further confirmed the occurrence of oxidative stress. The number of autophagosome formations was increased in a dose-dependent manner. Compared with the control group, Atg 7 and Beclin 1 mRNA expression was elevated significantly after PFOA exposed, showing a time-dependent manner, while mRNA expression of Atg 5 was increased remarkably in 100 μg/L PFOA-treated group. Our results indicated that PFOA caused oxidative damage to lymphocytes in C. auratus and caused various autophagy signaling pathway-associated genes imbalances in the lymphocytes. Autophagy signaling pathway-associated genes imbalance could weaken antioxidant capacity and involve in the mechanism of C. auratus lymphocytes oxidative injury caused by PFOA.
Collapse
Affiliation(s)
- Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiangjun Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jinxiao Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Xin Y, Wan B, Yang Y, Cui XJ, Xie YC, Guo LH. Perfluoroalkyl acid exposure induces protective mitochondrial and endoplasmic reticulum autophagy in lung cells. Arch Toxicol 2018; 92:3131-3147. [PMID: 30022264 DOI: 10.1007/s00204-018-2266-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/07/2023]
Abstract
Wide application of perfluoroalkyl acids (PFAAs) has raised great concerns on their side-effects on human health. PFAAs have been shown to accumulate mainly in the liver and cause hepatotoxicity. However, PFAAs can also deposit in lung tissues through air-borne particles and cause serious pulmonary toxicity. But the underlying mechanisms are still largely unknown. Autophagy is a type of programmed cell death parallel to necrosis and apoptosis, and may be involved in the lung toxicity of PFAAs. In this study, lung cancer cells, A549, were employed as the model to investigate the effects of three PFAAs with different carbon chain lengths on cell autophagy. Through Western blot analysis on LC3-I/II ratio of cells exposed to non-cytotoxic concentration (200 µM) and cytotoxic concentration (350 µM), we found concentration-dependent increase of autophagosomes in cells, which was further confirmed by TEM examination on ultra-thin section of cells and fluorescence imaging on autophagosomes in live cells. The abundance of p62 increased with the PFAAs concentration indicating the blockage of autophagy flux. Furthermore, we identified the mitochondrial autophagy (mitophagy) and endoplasmic reticulum autophagy (ER-phagy) morphologically as the major types of autophagy, suggesting the disruption on mitochondria and ERs. These organelle damages were confirmed by the overgeneration of ROS, hyperpolarization of mitochondrial membrane potential, as well as the up-regulation of ER-stress-related proteins, ATF4 and p-IRE1. Further analysis on the signaling pathways showed that PFAAs activated the MAPK pathways and inhibited the PI3K/Akt pathway, with potencies following the order of PFDA > PFNA > PFOA. Anti-oxidant (NAC) treatment did not rescue cells from death, indicating that oxidative stress is not the reason of cytotoxicity. Inhibition of autophagy by Atg5 siRNA and chloroquine even increased the toxicity of PFAAs, suggesting that PFAAs-autophagy was induced as the secondary effects of organelle damages and played a protective role during cell death.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China
| | - Xue-Jing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi-Chun Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, People's Republic of China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Institute of Environment and Health, Jianghan University, Wuhan, 430056, Hubei, People's Republic of China.
| |
Collapse
|
25
|
Huang AM, Lin KW, Lin WH, Wu LH, Chang HC, Ni C, Wang DL, Hsu HY, Su CL, Shih C. 1-Hydroxy-3-[( E )-4-(piperazine-diium)but-2-enyloxy]-9,10-anthraquinone ditrifluoroactate induced autophagic cell death in human PC3 cells. Chem Biol Interact 2018; 281:60-68. [DOI: 10.1016/j.cbi.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023]
|
26
|
Khansari MR, Yousefsani BS, Kobarfard F, Faizi M, Pourahmad J. In vitro toxicity of perfluorooctane sulfonate on rat liver hepatocytes: probability of distructive binding to CYP 2E1 and involvement of cellular proteolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23382-23388. [PMID: 28842823 DOI: 10.1007/s11356-017-9908-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/03/2017] [Indexed: 04/15/2023]
Abstract
Perfluorooctanesulfonate (PFOS), an anthropogenic fluorosurfactant, is one of the most common global pollutants. PFOS is used in various consumer products to provide soil, oil, and water resistance to materials used in clothing, upholstery, and food packaging. PFOS is persistent, bioaccumulative, and toxic to mammalian species. In this study, the cellular mechanisms involved in PFOS hepatotoxicity were evaluated. For this purpose, we determined oxidative stress markers including cell lysis, ROS generation, lipid peroxidation, glutathione depletion, mitochondrial membrane potential decrease, lysosomal membrane leakiness, and cellular proteolysis. Our results demonstrated that PFOS liver cytotoxicity was associated with reactive oxygen species (ROS) formation and lipid peroxidation in isolated rat hepatocytes. Incubation of hepatocytes with PFOS caused rapid depletion of hepatocyte glutathione (GSH), an important marker of cellular oxidative stress. Most of the PFOS-induced GSH depletion could be attributed to the expulsion of glutathione disulfide (GSSG). PFOS hepatotoxicity was inhibited by antioxidants and ROS scavengers, mitochondrial permeability transition (MPT) pore sealing agents, and endocytosis inhibitors. Our results suggest that PFOS hepatotoxicity might be the result of oxidative stress-induced lysosomal membrane leakiness and cellular proteolysis in rat hepatocytes.
Collapse
Affiliation(s)
- Mehdi Rajabnia Khansari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box, Tehran, 14155-6153, Iran
| | - Bahareh Sadat Yousefsani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box, Tehran, 14155-6153, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Farzad Kobarfard
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box, Tehran, 14155-6153, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box, Tehran, 14155-6153, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box, Tehran, 14155-6153, Iran.
| |
Collapse
|
27
|
Dornhof R, Maschowski C, Osipova A, Gieré R, Seidl M, Merfort I, Humar M. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS One 2017; 12:e0180291. [PMID: 28671960 PMCID: PMC5495337 DOI: 10.1371/journal.pone.0180291] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Fine particulate matter (PM2.5) can adversely affect human health. Emissions from residential energy sources have the largest impact on premature mortality globally, but their pathological and molecular implications on cellular physiology are still elusive. In the present study potential molecular consequences were investigated during long-term exposure of human bronchial epithelial BEAS-2B cells to PM2.5, collected from a biomass power plant. Initially, we observed that PM2.5 did not affect cellular survival or proliferation. However, it triggered an activation of the stress response p38 MAPK which, along with RhoA GTPase and HSP27, mediated morphological changes in BEAS-2B cells, including actin cytoskeletal rearrangements and paracellular gap formation. The p38 inhibitor SB203580 prevented phosphorylation of HSP27 and ameliorated morphological changes. During an intermediate phase of long-term exposure, PM2.5 triggered proliferative regression and activation of an adaptive stress response necessary to maintain energy homeostasis, including AMPK, repression of translational elongation, and autophagy. Finally, accumulation of intracellular PM2.5 promoted lysosomal destabilization and cell death, which was dependent on lysosomal hydrolases and p38 MAPK, but not on the inflammasome and pyroptosis. TEM images revealed formation of protrusions and cellular internalization of PM2.5, induction of autophagosomes, amphisomes, autophagosome-lysosomal fusion, multiple compartmental fusion, lysosomal burst, swollen mitochondria and finally necrosis. In consequence, persistent exposure to PM2.5 may impair epithelial barriers and reduce regenerative capacity. Hence, our results contribute to a better understanding of PM-associated lung and systemic diseases on the basis of molecular events.
Collapse
Affiliation(s)
- Regina Dornhof
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Christoph Maschowski
- Institute of Earth and Environmental Sciences, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Anastasiya Osipova
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Reto Gieré
- Department of Earth and Environmental Science and Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maximilian Seidl
- Institute for Surgical Pathology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Irmgard Merfort
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail: (IM); (MH)
| | - Matjaz Humar
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail: (IM); (MH)
| |
Collapse
|
28
|
Toxic effects of perfluorinated compounds at human cellular level and on a model vertebrate. Food Chem Toxicol 2017; 104:14-25. [DOI: 10.1016/j.fct.2017.02.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022]
|
29
|
Jiang Q, Li X, Cheng S, Gu Y, Chen G, Shen Y, Xie Y, Cao Y. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:103-109. [PMID: 27770658 DOI: 10.1016/j.etap.2016.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
We have recently proposed that the interaction between food components and nanoparticles (NPs) should be considered when evaluating the toxicity of NPs. In the present study, we used THP-1 differentiated macrophages as a model for immune cells and investigated the combined toxicity of low levels of palmitate (PA; 10 or 50μM) and ZnO NPs. The results showed that PA especially at 50μM changed the size, Zeta potential and UV-vis spectra of ZnO NPs, indicating a possible coating effect. Up to 32μg/mL ZnO NPs did not significantly affect mitochondrial activity, intracellular reactive oxygen species (ROS) or release of interleukin 6 (IL-6), but significantly impaired lysosomal function as assessed by neutral red uptake assay and acridine orange staining. The presence of 50μM PA, but not 10μM PA, further promoted the toxic effects of ZnO NPs to lysosomes but did not significantly affect other endpoints. In addition, ZnO NPs dose-dependently increased intracellular Zn ions in THP-1 macrophages, which was not significantly affected by PA. Taken together, the results of the present study showed a combined toxicity of low levels of PA and ZnO NPs especially to lysosomes in THP-1 macrophages.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiyue Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Shanshan Cheng
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yuxiu Gu
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Gui Chen
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yuexin Shen
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
30
|
Li Z, Liu Q, Liu C, Li C, Li Y, Li S, Liu X, Shao J. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture. Toxicol In Vitro 2016; 38:77-90. [PMID: 27825932 DOI: 10.1016/j.tiv.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a potential neurotoxicant reported by epidemiological investigations and experimental studies, while the underlying mechanisms are still unclear. Astrocytes not only support for the construction of neurons, but also conduct neuronal functions through glutamate-glutamine cycle in astrocyte-neuron crosstalk. In the present study, the effect of PFOS exposure on rat primary hippocampal neurons or cortex astrocytes was evaluated. Then the role of the astrocytes in PFOS-induced toxic effect on neurons was explored with astrocyte-neuron co-culture system. Exposure of rat primary hippocampal neurons to PFOS has led to oxidation-antioxidation imbalance, increased apoptosis and abnormal autophagy. The adverse effect of PFOS on rat primary cortex astrocytes manifested in the form of altered extracellular glutamate and glutamine concentrations, decreased glutamine synthase activity, as well as decreased gene expression of glutamine synthase, glutamate transporters and glutamine transporters in the glutamate-glutamine cycle. Especially, the alleviation of PFOS-inhibited neurite outgrowth in neurons could be observed in astrocyte-neuron co-culture system, though the ability of astrocytes in fostering neurite outgrowth was affected by PFOS. These results indicated that both astrocytes and neurons might be the targets of PFOS-induced neurotoxicity, and astrocytes could protect against PFOS-inhibited neurite outgrowth in primary cultured neurons. Our research might render some information in explaining the mechanisms of PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenwei Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Qi Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chang Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
31
|
Chen F, Deng Z, Xiong Z, Zhang B, Yang J, Hu J. A ROS-mediated lysosomal-mitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food Funct 2016; 6:3828-37. [PMID: 26449932 DOI: 10.1039/c5fo00518c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rh2 (GRh2), isolated from Panax ginseng C. A. Meyer, has been proven as an anticancer compound both in vitro and in vivo. In the present study, we investigated the role of the lysosomes during the apoptosis of HepG2 cells induced by GRh2. The results showed that GRh2 significantly induced intracellular reactive oxygen species (ROS) generation in the HepG2 cells, which consequently resulted in early lysosomal membrane permeabilization with the release of cathepsin B (Cat B) to the cytosol. Western blot analysis showed that the released Cat B in the cytosol contributed to Bid cleavage. Subsequently mitochondrial damage was observed in the HepG2 cells. Interestingly, when the HepG2 cells were pre-treated with N-Acetyl-L-Cysteine (NAC) for 1 h, which inhibited ROS generation before being exposed to GRh2, the permeabilization of lysosomal membranes and the levels of Cat B in the cytosol were down-regulated. Moreover, mitochondrial damage was alleviated when the HepG2 cells were pre-treated with leupeptin (Leu). From the above results, it could be concluded that GRh2 induced apoptosis of the HepG2 cells through accumulation of ROS and activation of the lysosomal-mitochondrial apoptotic pathway involving the release of Cat B.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - ZeYuan Deng
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - ZengXing Xiong
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - JianYuan Yang
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - JiangNing Hu
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China. and College of Life Science & Food Engineering, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
32
|
Yao X, Sha S, Wang Y, Sun X, Cao J, Kang J, Jiang L, Chen M, Ma Y. Perfluorooctane Sulfonate Induces Autophagy-Dependent Apoptosis through Spinster 1-Mediated lysosomal-Mitochondrial Axis and Impaired Mitophagy. Toxicol Sci 2016; 153:198-211. [DOI: 10.1093/toxsci/kfw118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Qiu T, Chen M, Sun X, Cao J, Feng C, Li D, Wu W, Jiang L, Yao X. Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway. Biochem Biophys Res Commun 2016; 477:781-785. [PMID: 27363333 DOI: 10.1016/j.bbrc.2016.06.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Min Chen
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Chang Feng
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Dandan Li
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Wei Wu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China.
| |
Collapse
|
34
|
Keiter S, Burkhardt-Medicke K, Wellner P, Kais B, Färber H, Skutlarek D, Engwall M, Braunbeck T, Keiter SH, Luckenbach T. Does perfluorooctane sulfonate (PFOS) act as chemosensitizer in zebrafish embryos? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:317-324. [PMID: 26803730 DOI: 10.1016/j.scitotenv.2015.12.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/19/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
Earlier studies have shown that perfluorooctane sulfonate (PFOS) increases the toxicity of other chemicals by enhancing their uptake by cells and tissues. The present study aimed at testing whether the underlying mechanism of enhanced uptake of chemicals by zebrafish (Danio rerio) embryos in the presence of PFOS is by interference of this compound with the cellular efflux transporter Abcb4. Modifications of uptake/clearance and toxicity of two Abcb4 substrates, the fluorescent dye rhodamine B (RhB) and vinblastine, by PFOS were evaluated using 24 and 48h post-fertilization (hpf) embryos. Upon 90min exposure of 24hpf embryos to 1μM RhB and different PFOS concentrations (3-300μM) accumulation of RhB in zebrafish was increased by up to 11.9-fold compared to controls, whereas RhB increases in verapamil treatments were 1.7-fold. Co-administration of PFOS and vinblastine in exposures from 0 to 48hpf resulted in higher vinblastine-caused mortalities in zebrafish embryos indicating increased uptake of this compound. Interference of PFOS with zebrafish Abcb4 activity was further studied using recombinant protein obtained with the baculovirus expression system. PFOS lead to a concentration-dependent decrease of the verapamil-stimulated Abcb4 ATPase activity; at higher PFOS concentrations (250, 500μM), also the basal ATPase activity was lowered indicating PFOS to be an Abcb4 inhibitor. In exposures of 48hpf embryos to a very high RhB concentration (200μM), accumulation of RhB in embryo tissue and adsorption to the chorion were increased in the presence of 50 or 100μM PFOS. In conclusion, the results indicate that PFOS acts as inhibitor of zebrafish Abcb4; however, the exceptionally large PFOS-caused effect amplitude of RhB accumulation in the 1μM RhB experiments and the clear PFOS effects in the experiments with 200μM RhB suggest that an additional mechanism appears to be responsible for the potential of PFOS to enhance uptake of Abcb4 substrates.
Collapse
Affiliation(s)
- Susanne Keiter
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Kathleen Burkhardt-Medicke
- Department Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; Institute of Hydrobiology, Dresden University of Technology, D-01062 Dresden, Germany
| | - Peggy Wellner
- Department Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Britta Kais
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freudstr. 25, D-53127 Bonn, Germany
| | - Dirk Skutlarek
- Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freudstr. 25, D-53127 Bonn, Germany
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), Department of Natural Science, University of Örebro, Fakultetsgatan 1, S-701 12 Örebro, Sweden
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), Department of Natural Science, University of Örebro, Fakultetsgatan 1, S-701 12 Örebro, Sweden
| | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany.
| |
Collapse
|
35
|
Ordoñez R, Fernández A, Prieto-Domínguez N, Martínez L, García-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res 2015; 59:178-89. [PMID: 25975536 PMCID: PMC4523438 DOI: 10.1111/jpi.12249] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/22/2022]
Abstract
Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Néstor Prieto-Domínguez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Laura Martínez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José C. Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| |
Collapse
|
36
|
O’Donovan TR, Rajendran S, O’Reilly S, O’Sullivan GC, McKenna SL. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS One 2015; 10:e0134676. [PMID: 26248051 PMCID: PMC4527721 DOI: 10.1371/journal.pone.0134676] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Many epithelial cancers, particularly gastrointestinal tract cancers, remain poor prognosis diseases, due to resistance to cytotoxic therapy and local or metastatic recurrence. We have previously shown that apoptosis incompetent esophageal cancer cells induce autophagy in response to chemotherapeutic agents and this can facilitate their recovery. However, known pharmacological inhibitors of autophagy could not enhance cytotoxicity. In this study, we have examined two well known, clinically approved autophagy inducers, rapamycin and lithium, for their effects on chemosensitivity in apoptosis incompetent cancer cells. Both lithium and rapamycin were shown to induce autophagosomes in esophageal and colorectal cancer cells by western blot analysis of LC3 isoforms, morphology and FACS quantitation of Cyto-ID or mCherry-GFP-LC3. Analysis of autophagic flux indicates inefficient autophagosome processing in lithium treated cells, whereas rapamycin treated cells showed efficient flux. Viability and recovery was assessed by clonogenic assays. When combined with the chemotherapeutic agent 5-fluorouracil, rapamycin was protective. In contrast, lithium showed strong enhancement of non-apoptotic cell death. The combination of lithium with 5-fluorouracil or oxaliplatin was then tested in the syngenic mouse (balb/c) colorectal cancer model—CT26. When either chemotherapeutic agent was combined with lithium a significant reduction in tumor volume was achieved. In addition, survival was dramatically increased in the combination group (p < 0.0001), with > 50% of animals achieving long term cure without re-occurrence (> 1 year tumor free). Thus, combination treatment with lithium can substantially improve the efficacy of chemotherapeutic agents in apoptosis deficient cancer cells. Induction of compromised autophagy may contribute to this cytotoxicity.
Collapse
Affiliation(s)
- Tracey R. O’Donovan
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Simon Rajendran
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Seamus O’Reilly
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Gerald C. O’Sullivan
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sharon L. McKenna
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
37
|
Visagie MH, Mqoco TV, Liebenberg L, Mathews EH, Mathews GE, Joubert AM. Influence of partial and complete glutamine-and glucose deprivation of breast-and cervical tumorigenic cell lines. Cell Biosci 2015; 5:37. [PMID: 26225207 PMCID: PMC4518607 DOI: 10.1186/s13578-015-0030-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Due to their high proliferative requirements, tumorigenic cells possess altered metabolic systems whereby cells utilize higher quantities of glutamine and glucose. These altered metabolic requirements make it of interest to investigate the effects of physiological non-tumorigenic concentrations of glucose and glutamine on tumorigenic cells since deprivation of either results in a canonical amino acid response in mammalian cell. METHODS The influence of short-term exposure of tumorigenic cells to correlating decreasing glutamine- and glucose quantities were demonstrated in a highly glycolytic metastatic breast cell line and a cervical carcinoma cell line. Thereafter, cells were propagated in medium containing typical physiological concentrations of 1 mM glutamine and 6 mM glucose for 7 days. The effects on morphology were investigated by means of polarization-optical transmitted light differential interference contrast. Flow cytometry was used to demonstrate the effects of glutamine-and glucose starvation on cell cycle progression and apoptosis induction. Fluorometrics were also conducted to investigate the effects on intrinsic apoptosis induction (mitocapture), reactive oxygen species production (2,7-dichlorofluorescein diacetate) and acidic vesicle formation (acridine orange). RESULTS Morphological data suggests that glutamine-and glucose deprivation resulted in reduced cell density and rounded cells. Glutamine-and glucose starvation also resulted in an increase in the G2M phase and a sub-G1 peak. Complete starvation of glutamine and glucose resulted in the reduction of the mitochondrial membrane potential in both cell lines with MDA-MB-231 cells more prominently affected when compared to HeLa cells. Further, starved cells could not be rescued sufficiently by propagating since cells possessed an increase in reactive oxygen species, acidic compartments and vacuole formation. CONCLUSION Starvation from glutamine and glucose for short periods resulted in decreased cell density, rounded cells and apoptosis induction by means of reactive oxygen species generation and mitochondrial dysfunction. In addition, the metastatic cell line reacted more prominently to glutamine-and glucose starvation due to their highly glycolytic nature. Satisfactory cellular rescue was not possible as cells demonstrated oxidative stress and depolarized mitochondrial membrane potential. This study contributes to the knowledge regarding the in vitro effects and signal transduction of glucose and/or l-glutamine deprivation in tumorigenic cell lines.
Collapse
Affiliation(s)
- Michelle Helen Visagie
- />Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Thandi Vuyelwa Mqoco
- />Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Leon Liebenberg
- />Centre for Research and Continued Engineering Development, North-West University, Lynnwood Ridge, South Africa
| | - Edward Henry Mathews
- />Centre for Research and Continued Engineering Development, North-West University, Lynnwood Ridge, South Africa
| | - George Edward Mathews
- />Centre for Research and Continued Engineering Development, North-West University, Lynnwood Ridge, South Africa
| | - Anna Margaretha Joubert
- />Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| |
Collapse
|
38
|
Liu YN, Wang YX, Liu XF, Jiang LP, Yang G, Sun XC, Geng CY, Li QJ, Chen M, Yao XF. Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells. Toxicon 2014; 95:30-7. [PMID: 25553592 DOI: 10.1016/j.toxicon.2014.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
Citreoviridin (CIT) is one of toxic mycotoxins derived from fungal species in moldy cereals. Whether CIT exerts hepatotoxicity and the precise molecular mechanisms of CIT hepatotoxicity are not completely elucidated. In this study, the inhibitor of autophagosome formation, 3-methyladenine, protected the cells against CIT cytotoxicity, and the autophagy stimulator rapamycin further decreased the cell viability of CIT-treated HepG2 cells. Knockdown of Atg5 with Atg5 siRNA alleviated CIT-induced cell death. These finding suggested the hypothesis that autophagic cell death contributed to CIT-induced cytotoxicity in HepG2 cells. CIT increased the autophagosome number in HepG2 cells observed under a transmission electron microscope, and this effect was confirmed by the elevated LC3-II levels detected through Western blot. Reduction of P62 protein levels and the result of LC3 turnover assay indicated that the accumulation of autophagosomes in the CIT-treated HepG2 cells was due to increased formation rather than impaired degradation. The pretreatment of HepG2 cells with the ROS inhibitor NAC reduced autophagosome formation and reversed the CIT cytotoxicity, indicating that CIT-induced autophagic cell death was ROS-dependent. In summary, ROS-dependent autophagic cell death of HpeG2 cells described in this study may help to elucidate the underlying mechanism of CIT cytotoxicity.
Collapse
Affiliation(s)
- Ya-Nan Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Yue-Xia Wang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xiao-Fang Liu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Li-Ping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Xian-Ce Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Cheng-Yan Geng
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Qiu-Juan Li
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Min Chen
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China.
| | - Xiao-Feng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|