1
|
Żółnowska I, Gostyńska-Stawna A, Stawny M. Molecular mechanisms underlying hepatoprotective activity of lutein in the context of intestinal failure-associated liver disease. Pharmacol Res 2024; 209:107421. [PMID: 39293582 DOI: 10.1016/j.phrs.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Intestinal failure-associated liver disease (IFALD) is a spectrum of liver diseases occurring in patients not exposed to liver-damaging factors other than those linked to intestinal dysfunction. The pathogenesis of this disease is multifactorial. It is estimated that up to 90 % of people taking long-term parenteral nutrition may develop IFALD, with particular risk for premature neonates and infants due to their immature antioxidant protection and bile acid metabolism. The lack of effective prevention and treatment methods for IFALD encourages scientists to search for new therapeutic solutions. The use of lutein as a substance with antioxidant and anti-inflammatory effects seems to be of great potential in such indication, especially since patients on parenteral nutrition are at risk of deficits in various plant-based nutrients, including lutein. In this review, we explain the pathogenesis of IFALD and summarize knowledge of the hepatoprotective properties of lutein, underscoring its potential as a treatment option. The hepatoprotective effects of lutein and their proposed mechanisms of action are supported by studies on cells and animals exposed to various liver-damaging factors, such as lipopolysaccharide, high-fat diet, alcohol, and more. Finally, we provide perspectives on the future application of lutein in therapy.
Collapse
Affiliation(s)
- Izabela Żółnowska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, Poznan 60-812, Poland.
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland.
| |
Collapse
|
2
|
Montuori E, Lima S, Marchese A, Scargiali F, Lauritano C. Lutein Production and Extraction from Microalgae: Recent Insights and Bioactive Potential. Int J Mol Sci 2024; 25:2892. [PMID: 38474137 PMCID: PMC10931717 DOI: 10.3390/ijms25052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Serena Lima
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Arima Marchese
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Francesca Scargiali
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
3
|
Liu Y, Yang G, Huo S, Wu J, Ren P, Cao Y, Gao J, Tong L, Min D. Lutein suppresses ferroptosis of cardiac microvascular endothelial cells via positive regulation of IRF in cardiac hypertrophy. Eur J Pharmacol 2023; 959:176081. [PMID: 37797674 DOI: 10.1016/j.ejphar.2023.176081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Shiqiao Huo
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Jingquan Gao
- Department of Nursing, School of Medicine, Lishui University, Lishui, China.
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China.
| | - Dongyu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
4
|
Różanowska MB, Czuba-Pelech B, Landrum JT, Różanowski B. Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Cultured Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2021; 10:antiox10050753. [PMID: 34068492 PMCID: PMC8151661 DOI: 10.3390/antiox10050753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein, and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photo-oxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on photocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77 × 1010, 0.55 × 1010, and 1.23 × 1010 M-1s-1 for dehydrolutein, lutein, and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in the protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein, but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292-087-5057
| | - Barbara Czuba-Pelech
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - John T. Landrum
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | | |
Collapse
|
5
|
Turk C, Camlar M, Diniz G, Arslan FD, Oren MM, Ozer F. Effects of Lutein on Brain Damage and Vasospasm in an Experimental Subarachnoid Hemorrhage Model. World Neurosurg 2020; 143:e450-e455. [PMID: 32750510 DOI: 10.1016/j.wneu.2020.07.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Vasospasm developing after subarachnoid hemorrhage (SAH) is an important cause of mortality and morbidity. Lutein is a carotenoid with antioxidant and anti-inflammatory properties. The aim of present study was to investigate effects of lutein on the basilar artery and nerve tissues. METHODS Wistar rats were randomly divided into 3 groups: control (group 1), SAH (group 2), and SAH treated with lutein (group 3). Lutein was administered for 3 days by means of orogastric gavage. Basilar artery lumen area, wall thickness, serum total antioxidant status, serum total oxidant status, and oxidative stress index were calculated. Histopathologic and immunohistochemical analyses were conducted. RESULTS No statistically significant difference was found between groups in terms of wall thickness; lumen area; and serum total antioxidant status, serum total oxidant status, and oxidative stress index values. A statistically significant difference was found between groups colored with terminal deoxynucleotidyl transferase dUTP nick end labeling (P < 0.005). Post hoc analysis was used to examine the results between groups. Results of group 1 and group 3 were equal (P = 1) and lower than group 2 (P = 0.04 and P = 0.006, respectively). CONCLUSIONS Lutein was found to have a positive effect on width of the basilar artery lumen area. Therefore, positive effects of lutein on vasospasm might be statistically significant if lutein is administered at higher doses. Lutein was found to be effective in preventing brain damage after SAH. To our knowledge, this study is the first in the literature to examine the effect of lutein on vasospasm and brain damage after SAH.
Collapse
Affiliation(s)
- Caglar Turk
- Department of Neurosurgery, Artvin State Hospital, Artvin, Turkey.
| | - Mahmut Camlar
- Department of Neurosurgery, Tepecik Research and Training Hospital, University of Health Sciences, Izmir, Turkey
| | - Gülden Diniz
- Department of Pathology, Izmir Democracy University, Izmir, Turkey
| | - Fatma Demet Arslan
- Department of Biochemistry, Tepecik Research and Training Hospital, University of Health Sciences, Izmir, Turkey
| | - Meryem Merve Oren
- Department of Public Health, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Fusun Ozer
- Department of Neurosurgery, Tepecik Research and Training Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
6
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Chequer FM, Venancio VP, Almeida MR, Aissa AF, Bianchi MLP, Antunes LM. Erythrosine B and quinoline yellow dyes regulate DNA repair gene expression in human HepG2 cells. Toxicol Ind Health 2017; 33:765-774. [PMID: 28893156 DOI: 10.1177/0748233717715186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythrosine B (ErB) is a cherry pink food colorant and is widely used in foods, drugs, and cosmetics. Quinoline yellow (QY) is a chinophthalon derivative used in cosmetic compositions for application to the skin, lips, and/or body surface. Previously, ErB and QY synthetic dyes were found to induce DNA damage in HepG2 cells. The aim of this study was to investigate the molecular basis underlying the genotoxicity attributed to ErB and QY using the RT2 Profiler polymerase chain reaction array and by analyzing the expression profile of 84 genes involved in cell cycle arrest, apoptosis, and DNA repair in HepG2 cells. ErB (70 mg/L) significantly decreased the expression of two genes ( FEN1 and REV1) related to DNA base repair. One gene ( LIG1) was downregulated and 20 genes related to ATR/ATM signaling ( ATR, RBBP8, RAD1, CHEK1, CHEK2, TOPB1), nucleotide excision repair ( ERCC1, XPA), base excision repair ( FEN1, MBD4), mismatch repair ( MLH1, MSH3, TP73), double strand break repair ( BLM), other DNA repair genes ( BRIP1, FANCA, GADD45A, REV1), and apoptosis ( BAX, PPP1R15A) were significantly increased after treatment with QY (20 mg/L). In conclusion, our data suggest that the genotoxic mechanism of ErB and QY dyes involves the modulation of genes related to the DNA repair system and cell cycle.
Collapse
Affiliation(s)
- Farah Md Chequer
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,2 Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Vinicius P Venancio
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,3 Department of Nutrition and Food Science, Texas A&M University, TX, USA
| | - Mara R Almeida
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre F Aissa
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lourdes P Bianchi
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lusânia Mg Antunes
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Venancio VP, Marques MC, Almeida MR, Mariutti LRB, Souza VCDO, Barbosa F, Pires Bianchi ML, Marzocchi-Machado CM, Mercadante AZ, Antunes LMG. Chrysobalanus icaco L. fruits inhibit NADPH oxidase complex and protect DNA against doxorubicin-induced damage in Wistar male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:885-893. [PMID: 27494754 DOI: 10.1080/15287394.2016.1193454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Chrysobalanus icaco L. is an underexplored plant found in tropical areas around the globe. Currently, there is no apparent information regarding the effects C. icaco fruits may exert in vivo or potential role in health promotion. This study aimed at providing evidence regarding the in vivo influence of this fruit on antigenotoxicity, antimutagenicity, and oxidative stress in rats. Male Wistar rats were treated with 100, 200, or 400 mg/kg body weight (bw)/d C. icaco fruit for 14 d. Doxorubicin (DXR, 15 mg/kg bw, ip) was used for DNA damaging and as an oxidant to generate reactive oxygen species (ROS). Genomic instability was assessed by the comet assay and micronucleus (MN) test, while antioxidant activity was determined by oxidative burst of neutrophils. Chrysobalanus icaco fruit polyphenols were quantified and characterized by high-performance liquid chromatography coupled to a diode array detector and tandem mass spectrometer (HPLC-DAD-MS/MS). The concentrations of 19 chemical elements were determined by inductively coupled plasma-mass spectroscopy (ICP-MS). Significant amounts of polyphenols, magnesium, and selenium were found in C. icaco fruit. This fruit displayed in vivo antioxidant activity against DXR-induced damage in rat peripheral blood neutrophils, antigenotoxicity in peripheral blood cells, and antimutagenicity in bone-marrow cells and peripheral blood cells. Correlation analyses between endpoints examined indicated that the mechanism underlying chemopreventive actions of C. icaco fruit was attributed to inhibition of NADPH oxidase complex manifested as low levels of DNA damage in animals exposed to DXR. Data indicate that phytochemicals and minerals in C. icaco fruit protect DNA against damage in vivo associated with their antioxidant properties.
Collapse
Affiliation(s)
- Vinicius Paula Venancio
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | - Mara Ribeiro Almeida
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | | | - Fernando Barbosa
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Maria Lourdes Pires Bianchi
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Cleni Mara Marzocchi-Machado
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | - Lusânia Maria Greggi Antunes
- a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
9
|
Choo YM, Ahmad Kamar A, Tengku Kamalden TAF, Looi ML, Tan K, Lai NM. Lutein and zeaxanthin for reducing morbidity and mortality in preterm infants. Hippokratia 2016. [DOI: 10.1002/14651858.cd012178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yao Mun Choo
- University of Malaya; Department of Paediatrics; Kuala Lumpur Malaysia
| | | | | | - Mee Lee Looi
- Taylors University; School of Biosciences; Subang Jay Malaysia
| | - Kenneth Tan
- Monash University; Department of Paediatrics; 246 Clayton Road Clayton Melbourne Victoria Australia VIC 3168
- Monash Children's Hospital; Monash Newborn; 246 Clayton Road Melbourne Australia
| | - Nai Ming Lai
- Taylor's University; School of Medicine; Subang Jaya Malaysia
- Monash University; School of Pharmacy; Subang Jaya Malaysia
| |
Collapse
|
10
|
Roldán-Fidalgo A, Martín Saldaña S, Trinidad A, Olmedilla-Alonso B, Rodríguez-Valiente A, García-Berrocal JR, Ramírez-Camacho R. In vitro and in vivo effects of lutein against cisplatin-induced ototoxicity. ACTA ACUST UNITED AC 2016; 68:197-204. [PMID: 26850526 DOI: 10.1016/j.etp.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cisplatin is a commonly prescribed drug that produces ototoxicity as a side effect. Lutein is a carotenoid with antioxidant and anti-inflammatory properties previously tested for eye, heart and skin diseases but not evaluated to date in ear diseases. AIM To evaluate the protective effects of lutein on HEI-OC1 auditory cell line and in a Wistar rat model of cisplatin ototoxicity. MATERIALS AND METHODS In vitro study: Culture HEI-OC1 cells were exposed to lutein (2.5-100 μM) and to 25 μM cisplatin for 24h. In vivo study: Twenty eight female Wistar rats were randomized into three groups. Group A (n=8) received intratympanic lutein (0.03 mL) (1mg/mL) in the right ear and saline solution in the left one to determine the toxicity of lutein. Group B (n=8) received also intraperitoneal cisplatin (10mg/kg) to test the efficacy of lutein against cisplatin ototoxicity. Group C (n=12) received intratympanic lutein (0.03 mL) (1mg/mL) to quantify lutein in cochlear fluids (30 min, 1h and 5 days after treatment). Hearing function was evaluated by means of Auditory Steady-State Responses before the procedure and 5 days after (groups A and B). Morphological changes were studied by confocal laser scanning microscopy. RESULTS In vitro study: Lutein significantly reduced the cisplatin-induced cytotoxicity in the HEI-OC1 cells when they were pre-treated with lutein concentrations of 60 and 80 μM. In vivo study: Intratympanic lutein (1mg/mL) application showed no ototoxic effects. However it did not achieve protective effect against cisplatin-induced ototoxicity in Wistar rats. CONCLUSIONS Although lutein has shown beneficial effects in other pathologies, the present study only obtained protection against cisplatin ototoxicity in culture cells, but not in the in vivo model. The large molecule size, the low dose administered, and restriction to diffusion in the inner ear could account for this negative result.
Collapse
Affiliation(s)
- A Roldán-Fidalgo
- Department of Otorhinolaryngology, Hospital Puerta de Hierro Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain.
| | - S Martín Saldaña
- Foundation for Biomedical Research, Puerta de Hierro Hospital, Madrid, Spain
| | - A Trinidad
- Department of Otorhinolaryngology, Hospital Puerta de Hierro Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain
| | - B Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition, CSIC, Madrid, Spain
| | - A Rodríguez-Valiente
- Department of Otorhinolaryngology, Hospital Puerta de Hierro Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain
| | - J R García-Berrocal
- Department of Otorhinolaryngology, Hospital Puerta de Hierro Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain
| | - R Ramírez-Camacho
- Department of Otorhinolaryngology, Hospital Puerta de Hierro Majadahonda, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Romualdo GR, Fragoso MF, Borguini RG, de Araújo Santiago MCP, Fernandes AAH, Barbisan LF. Protective effects of spray-dried açaí ( Euterpe oleracea Mart) fruit pulp against initiation step of colon carcinogenesis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bioactive Egg Components and Inflammation. Nutrients 2015; 7:7889-913. [PMID: 26389951 PMCID: PMC4586567 DOI: 10.3390/nu7095372] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.
Collapse
|
13
|
Song MH, Shin EC, Hwang DY, Jang IS. Effects of lutein or lutein in combination with vitamin C on mRNA expression and activity of antioxidant enzymes and status of the antioxidant system in SD rats. Lab Anim Res 2015; 31:117-24. [PMID: 26472964 PMCID: PMC4602078 DOI: 10.5625/lar.2015.31.3.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/14/2015] [Accepted: 08/28/2015] [Indexed: 12/02/2022] Open
Abstract
This study was conducted to investigate the effects of lutein alone or in combination with vitamin C on the antioxidant defense system in rats. A total of 18 eight-week-old male Sprague Dawley (SD) rats were randomly assigned to three groups for 4 weeks: control (CON), lutein (LUT, 50 mg lutein/kg BW) and lutein plus vitamin C (LVC, 50 mg lutein/kg BW+1,000 mg vitamin C/kg BW). No differences in body weight, relative live weight or plasma biochemical profiles were observed among treatment groups. In the hepatic antioxidant defense systems, the mRNA expression of superoxide dismutase (SOD) in the LUT and LVC groups was significantly (P<0.05) higher than that in the CON group, whereas the mRNA level of glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) was not affected by the administration of antioxidants. SOD and GST activities in the LUT and LVC groups were significantly higher (P<0.05) than those in the CON group, whereas GPX, CAT and lipid peroxidation did not differ among groups. In addition, the LVC group showed a significant (P<0.05) increase in plasma and hepatic total antioxidant power (TAP) relative to the CON group. Overall, administration of lutein in combination with vitamin C improved the status of the total antioxidant defense system in SD rats.
Collapse
Affiliation(s)
- Min-Hae Song
- Department of Animal Science and Biotechnology and the Regional Animal Research Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Eu-Chul Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - In-Surk Jang
- Department of Animal Science and Biotechnology and the Regional Animal Research Center, Gyeongnam National University of Science and Technology, Jinju, Korea
| |
Collapse
|