1
|
Castellanos-Tapia L, Tejero-Barrera ME, Salas-Silva S, Simoni-Nieves A, Escobedo-Calvario A, Gomez-Quiroz LE. Mediterranean-like mix of fatty acids induces cellular protection on lipid-overloaded hepatocytes from western diet fed mice. Ann Hepatol 2021; 19:489-496. [PMID: 32663612 DOI: 10.1016/j.aohep.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVE Non-alcoholic fatty liver disease remains as one of the main liver disorders worldwide. It is widely accepted that is the kind of lipid, rather than the amount deposited in the cells that determines cell damage. Cholesterol and saturated free fatty acids are deleterious lipids when accumulated but, in contrast, there are some valuable lipids that could counteract those with harmful properties. Much of this knowledge arises from studies using a single fatty acid, but the effects of a combination of fatty acids, as obtained by diet has been poorly addressed. In the present work, we were focused to figure out the cellular effect of two different mixes of fatty acids, one with high proportion of saturated fatty acids, and another one with high proportion of unsaturated fatty acids (Mediterranean-like) in a cellular model of steatosis. MATERIAL AND METHODS Primary mouse hepatocytes from animals fed with a western diet (high fat and carbohydrates diet), were treated with both mixes of fatty acids for 24 h. RESULTS Our data clearly show that only the high unsaturated fatty acid mix induced a decrease in triglycerides (47.5%) and cholesterol (59%) content in steatotic hepatocytes mediating cellular protection associated to the decrement of ROS and oxidative damage. The mixture of high saturated fatty acids exhibited no effects, preserving high levels of cholesterol and triglycerides and oxidative damage. In conclusion, our results show that Mediterranean-like mix of fatty acids exerts cellular protection in steatosis by decreasing triglycerides, cholesterol, ROS content and oxidative damage.
Collapse
Affiliation(s)
- Lyssia Castellanos-Tapia
- Nutrigenomics Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico; Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico
| | | | - Soraya Salas-Silva
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Posgrado en Biologia Experimental, DCBS, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
2
|
Pyun DH, Kim TJ, Kim MJ, Hong SA, Abd El-Aty AM, Jeong JH, Jung TW. Endogenous metabolite, kynurenic acid, attenuates nonalcoholic fatty liver disease via AMPK/autophagy- and AMPK/ORP150-mediated signaling. J Cell Physiol 2020; 236:4902-4912. [PMID: 33283879 DOI: 10.1002/jcp.30199] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress plays a causative role in the development of nonalcoholic fatty liver disease (NAFLD). Kynurenic acid (KA) is a tryptophan metabolite that has been shown to exert anti-inflammatory effects in macrophages and endothelial cells. However, the role of KA in ER stress-associated development of NAFLD has not been fully explored. In the current study, we observed decreased KA levels in the serum of obese subjects. Treated hepatocytes with KA attenuated palmitate-induced lipid accumulation and downregulated lipogenesis-associated genes as well as ER stress markers in a dose-dependent manner. Furthermore, KA augmented AMP-activated protein kinase (AMPK) phosphorylation, oxygen-regulated protein 150 (ORP150) expression, and autophagy markers. The small interfering RNA-mediated suppression of AMPK and ORP150, or 3-methyladenine also abrogated the effects of KA on ER stress and lipid accumulation in hepatocytes. In accordance with in vitro observations, KA administration to mice fed a high-fat diet ameliorated hepatic lipid accumulation and decreased the expression of lipogenic genes as well as ER stress. Moreover, KA treatment increased hepatic AMPK phosphorylation, ORP150 expression, and autophagy related markers in mouse livers. Knockdown of AMPK using in vivo transfection mitigated the effects of KA on hepatic steatosis and ER stress as well as autophagy and ORP150 expression. These results suggest that KA ameliorates hepatic steatosis via the AMPK/autophagy- and AMPK/ORP150-mediated suppression of ER stress. In sum, KA might be used as a promising therapeutic agent for treatment of NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong Jun Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of Science, Qilu University of Technology, Jinan, China.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Raffaele M, Carota G, Sferrazzo G, Licari M, Barbagallo I, Sorrenti V, Signorelli SS, Vanella L. Inhibition of Heme Oxygenase Antioxidant Activity Exacerbates Hepatic Steatosis and Fibrosis In Vitro. Antioxidants (Basel) 2019; 8:antiox8080277. [PMID: 31387260 PMCID: PMC6719023 DOI: 10.3390/antiox8080277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
The progression of non-alcoholic fatty liver disease (NAFLD) and the development of hepatic fibrosis is caused by changes in redox balance, leading to an increase of reactive oxygen species (ROS) levels. NAFLD patients are at risk of progressing to non-alcoholic steatohepatitis (NASH), associated to cardiovascular diseases (CVD), coronary heart disease and stroke. Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. The present work was directed to determine whether use of an inhibitor of HO-1 activity affects lipid metabolism and fibrosis process in hepatic cells. Oil Red assay and mRNA analysis were used to evaluate the triglycerides content and the lipid metabolism pathway in HepG2 cells. ROS measurement, RT-PCR and Soluble collagen assay were used to assess the intracellular oxidant, the fibrosis pathway and the soluble collagen in LX2 cells. The activity of HO-1 was inhibited using Tin Mesoporphyrin IX (SnMP). Our study demonstrates that a non-functional HO system results in an increased lipid storage and collagen release in hepatocytes. Consequently, an increase of HO-1 levels may provide a therapeutic approach to address the metabolic alterations associated with NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Salvatore S Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
4
|
Rai V, Bose S, Saha S, Chakraborty C. Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis. Heliyon 2019; 5:e01502. [PMID: 31011652 PMCID: PMC6462775 DOI: 10.1016/j.heliyon.2019.e01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Oral Submucous fibrosis (OSF) is a chronic inflammatory mucosal disease of unknown etiology. Statistics show cases of OSF which has a high rate of overall prevalence and increase the chance of malignant transformation. As we know malignant cells is situated in a very complex microenvironment with altered metabolic pathway including intermediates which participate in oxidative stress process which enhances metabolic rewiring and promotes tumor progression. This study aims to evaluate the tumor microenvironment and their role in metabolic reprogramming. METHODS This study was conducted on the serum sample of OSF (n = 20) compared to the healthy group (n = 20) using ELISA. The serum levels of intermediate by-products of metabolic pathway and oxidative stress induced biomolecular damage products were determined. The sensitivity of results was analyzed by correlating it with markers of metabolic status (Glucose, Total cholesterol, Total protein). RESULTS Metabolic pathway intermediates molecules like Fatty Acids (FAA), Ascorbic acid, Citrate, Oxaloacetate (OAA), levels were significantly high in the serum of OSF cases. This indicated that intermediates act as a metabolic switch that drives cells to adapt malignant transformation pathway. Markers related to oxidative DNA damage (8-hydroxy-2' -deoxyguanosine), Oxidative lipid peroxidation (8-epi-Prostaglandin F2α), and Protein carbonyl were significantly up-regulated. This significant increase in oxidative stress marker revealed the reprogramming of the metabolic pathway for fulfilling the nutritional requirement of cancer cells. A further significant correlation was observed with metabolic products confirmed altered metabolic status. CONCLUSION Our findings could identify the differentiating intermediate pathway metabolites and oxidative damage to biomolecules that are leading to rewiring of metabolism in the OSF group. Findings described in the study can be helpful to explain further the molecular aspects that lead to the progression of OSF towards carcinogenesis.
Collapse
Affiliation(s)
- Vertika Rai
- School of Medical Science and Technology, IIT Kharagpur, India
| | - Surajit Bose
- Awadh Dental College and Hospital, Jamshedpur, India
| | - Satadal Saha
- School of Medical Science and Technology, IIT Kharagpur, India
| | | |
Collapse
|
5
|
Lonicera caerulea Extract Attenuates Non-Alcoholic Fatty Liver Disease in Free Fatty Acid-Induced HepG2 Hepatocytes and in High Fat Diet-Fed Mice. Nutrients 2019; 11:nu11030494. [PMID: 30813654 PMCID: PMC6471428 DOI: 10.3390/nu11030494] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Honeyberry (Lonicera caerulea) has been used for medicinal purposes for thousands of years. Its predominant anthocyanin, cyanidin-3-O-glucoside (C3G), possesses antioxidant and many other potent biological activities. We aimed to investigate the effects of honeyberry extract (HBE) supplementation on HepG2 cellular steatosis induced by free fatty acids (FFA) and in diet-induced obese mice. HepG2 cells were incubated with 1 mM FFA to induce lipid accumulation with or without HBE. Obesity in mice was induced by a 45% high fat diet (HFD) for 6 weeks and subsequent supplementation of 0.5% HBE (LH) and 1% HBE (MH) for 6 weeks. HBE suppressed fatty acid synthesis and ameliorated lipid accumulation in HepG2 cells induced by FFA. Moreover, HBE also decreased lipid accumulation in the liver in the supplemented HBE group (LH, 0.5% or MH, 1%) compared with the control group. The expressions of adipogenic genes involved in hepatic lipid metabolism of sterol regulatory element-binding protein-1 (SREBP-1c), CCAAT/enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid synthase (FAS) were decreased both in the HepG2 cells and in the livers of HBE-supplemented mice. In addition, HBE increased mRNA and protein levels of carnitine palmitoyltransferase (CPT-1) and peroxisome proliferator-activated receptor α (PPARα), which are involved in fatty acid oxidation. Furthermore, HBE treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and Acetyl-CoA Carboxylase (ACC). Honeyberry effectively reduced triglyceride accumulation through down-regulation of hepatic lipid metabolic gene expression and up-regulation of the activation of AMPK and ACC signaling in both the HepG2 cells as well as in livers of diet-induced obese mice. These results suggest that HBE may actively ameliorate non-alcoholic fatty liver disease.
Collapse
|
6
|
Domínguez-Pérez M, Simoni-Nieves A, Rosales P, Nuño-Lámbarri N, Rosas-Lemus M, Souza V, Miranda RU, Bucio L, Uribe Carvajal S, Marquardt JU, Seo D, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. Cholesterol burden in the liver induces mitochondrial dynamic changes and resistance to apoptosis. J Cell Physiol 2018; 234:7213-7223. [PMID: 30239004 DOI: 10.1002/jcp.27474] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. Recent data suggest that impaired hepatic cholesterol homeostasis and its accumulation are relevant to the pathogenesis of NAFLD/NASH. Despite a vital physiological function of cholesterol, mitochondrial dysfunction is an important consequence of dietary-induced hypercholesterolemia and was, subsequently, linked to many pathophysiological conditions. The aim in the current study was to evaluate the morphological and molecular changes of cholesterol overload in mouse liver and particularly, in mitochondria, induced by a high-cholesterol (HC) diet for one month. Histopathological studies revealed microvesicular hepatic steatosis and significantly elevated levels of liver cholesterol and triglycerides leading to impaired liver synthesis. Further, high levels of oxidative stress could be determined in liver tissue as well as primary hepatocyte culture. Transcriptomic changes induced by the HC diet involved disruption in key pathways related to cell death and oxidative stress as well as upregulation of genes related to glutathione homeostasis. Impaired liver function could be associated with a decrease in mitochondrial membrane potential and ATP content and significant alterations in mitochondrial dynamics. We demonstrate that cholesterol overload in the liver leads to mitochondrial changes which may render damaged hepatocytes proliferative and resistant to cell death whereby perpetuating liver damage.
Collapse
Affiliation(s)
- Mayra Domínguez-Pérez
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Arturo Simoni-Nieves
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México
| | - Patricia Rosales
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México
| | - Natalia Nuño-Lámbarri
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City, Mexico
| | - Mónica Rosas-Lemus
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México City, Mexico
| | - Verónica Souza
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Leticia Bucio
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Salvador Uribe Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México City, Mexico
| | - Jens U Marquardt
- First Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daekwan Seo
- Bioinformatics Department, Macrogen Corp, Rockville, Maryland
| | - Luis E Gomez-Quiroz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
7
|
Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8:12923. [PMID: 30150688 PMCID: PMC6110824 DOI: 10.1038/s41598-018-31025-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Obesogenic lipids and the sphingolipid ceramide have been implicated as potential cofactors in alcoholic liver disease (ALD) patients. However, the mechanisms by which these lipids modulate lipid trafficking in ethanol-treated human liver cells to promote steatosis, an early stage of ALD, are poorly understood. We measured fatty acid (FA) uptake, triglyceride export, FA synthesis and FA oxidation in human hepatoma (VL-17A) cells in response to ethanol and the exogenous lipids oleate, palmitate and C2 ceramide. We found that in combination with ethanol, both oleate and palmitate promote lipid droplet accumulation while C2 ceramide inhibits lipid droplet accumulation by enhancing FA oxidation. Further, using both a pharmacologic and siRNA approach to reduce peroxisome proliferator-activated receptors α (PPARα) gene expression, we demonstrate that C2 ceramide abrogates ethanol-mediated suppression of FA oxidation through an indirect PPARα mechanism. Together, these data suggest that lipids interact differentially with ethanol to modulate hepatocellular lipid droplet accumulation and may provide novel targets for preventing the earliest stage of alcoholic liver disease, alcoholic steatosis.
Collapse
|
8
|
Zhao MG, Sheng XP, Huang YP, Wang YT, Jiang CH, Zhang J, Yin ZQ. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction. Biomed Pharmacother 2018; 104:229-239. [PMID: 29775890 DOI: 10.1016/j.biopha.2018.03.170] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of triterpenic acids-enriched fraction from Cyclocarya paliurus (CPT) on nonalcoholic fatty liver disease (NAFLD) were investigated using in vivo and in vitro models. In high fat diet-induced Wister rats, CPT significantly increased superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) ratio, reduced malondialdehyde (MDA) and protein carbonyl (PCO) levels. Moreover, CPT restored mitochondrial membrane potential dysfunction, decreased cytochrome P450 enzyme 2E1 (CYP2E1) activity, improved nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated antioxidant enzyme heme oxygenase1 (HO-1) expression. In free fatty acids-induced HepG2 cells, CPT dramatically decreased ROS content, increased mitochondrial NADH dehydrogenase (Complex I) and mitochondrial cytochrome C oxidase (Complex IV) levels. Furthermore, CPT could upregulate HO-1, quinine oxidoreductase 1 (NQO1) expression, and increase Nrf2 translocation from cytoplasm-to-nucleus. The results indicated CPT could protect mitochondria function and improve oxidative stress by activating Nrf2. Therefore, it can be inferred that CPT may be a potential agent against NAFLD.
Collapse
Affiliation(s)
- Meng-Ge Zhao
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xue-Ping Sheng
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ya-Ping Huang
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yi-Ting Wang
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Rosales-Cruz P, Domínguez-Pérez M, Reyes-Zárate E, Bello-Monroy O, Enríquez-Cortina C, Miranda-Labra R, Bucio L, Gómez-Quiroz LE, Rojas-Del Castillo E, Gutiérrez-Ruíz MC, Souza-Arroyo V. Cadmium exposure exacerbates hyperlipidemia in cholesterol-overloaded hepatocytes via autophagy dysregulation. Toxicology 2018; 398-399:41-51. [DOI: 10.1016/j.tox.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
|
10
|
Engstler AJ, Aumiller T, Degen C, Dürr M, Weiss E, Maier IB, Schattenberg JM, Jin CJ, Sellmann C, Bergheim I. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut 2016; 65:1564-71. [PMID: 26006114 DOI: 10.1136/gutjnl-2014-308379] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/08/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Increased fasting blood ethanol levels, suggested to stem from an increased endogenous ethanol synthesis in the GI tract, are discussed to be critical in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to further delineate the mechanisms involved in the elevated blood ethanol levels found in patients with NAFLD. DESIGN In 20 nutritionally and metabolically screened children displaying early signs of NAFLD and 29 controls (aged 5-8 years), ethanol plasma levels were assessed. Ethanol levels along the GI tract, in vena cava and portal vein, intestinal and faecal microbiota, and activity of alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) were measured in wild-type, ob/ob and anti-TNFα antibody (aT) treated ob/ob mice. RESULTS Despite not differing in dietary pattern or prevalence of intestinal overgrowth, fasting ethanol levels being positively associated with measures of insulin resistance were significantly higher in children with NAFLD than in controls. Ethanol levels were similar in portal vein and chyme obtained from different parts of the GI tract between groups while ethanol levels in vena cava plasma were significantly higher in ob/ob mice. ADH activity was significantly lower in liver tissue obtained from ob/ob mice in comparison to wild-type controls and ob/ob mice treated with aT. CONCLUSIONS Taken together, our data of animal experiments suggest that increased blood ethanol levels in patients with NAFLD may result from insulin-dependent impairments of ADH activity in liver tissue rather than from an increased endogenous ethanol synthesis. TRIAL REGISTRATION NUMBER NCT01306396.
Collapse
Affiliation(s)
- Anna Janina Engstler
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tobias Aumiller
- Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Christian Degen
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marion Dürr
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Eva Weiss
- Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Ina Barbara Maier
- Department of Nutritional Medicine (180a), University of Hohenheim, Stuttgart, Germany
| | - Jörn Markus Schattenberg
- I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Cheng Jun Jin
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Cathrin Sellmann
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ina Bergheim
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
11
|
Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7960386. [PMID: 27143995 PMCID: PMC4842075 DOI: 10.1155/2016/7960386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022]
Abstract
Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.
Collapse
|
12
|
Cai X, Bao L, Wang N, Xu M, Mao R, Li Y. Dietary Nucleotides Supplementation and Liver Injury in Alcohol-Treated Rats: A Metabolomics Investigation. Molecules 2016; 21:435. [PMID: 27043516 PMCID: PMC6273469 DOI: 10.3390/molecules21040435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Previous studies suggested that nucleotides were beneficial for liver function, lipid metabolism and so on. The present study aimed to investigate the metabolic response of dietary nucleotides supplementation in alcohol-induced liver injury rats. Methods: Five groups of male Wistar rats were used: normal control group (basal diet, equivalent distilled water), alcohol control group (basal diet, 50% alcohol (v/v)), dextrose control group (basal diet, isocaloric amount of dextrose), and 0.04% and 0.16% nucleotides groups (basal diet supplemented with 0.4 g and 1.6 g nucleotides kg−1 respectively, 50% alcohol (v/v)). The liver injury was measured through traditional liver enzymes, expression of oxidative stress markers and histopathological examination. Ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to identify liver metabolite profiles. Results: Nucleotides supplementation prevented the progression of hepatocyte steatosis. The levels of total proteins, globulin, alanine aminotransferase, aspartate aminotransferase, total cholesterol triglyceride, as well as the oxidative stress markers altered by alcohol, were improved by nucleotides supplementation. Elevated levels of liver bile acids (glycocholic acid, chenodeoxyglycocholic acid, and taurodeoxycholic acid), as well as lipids (stearic acid, palmitic acid, oleic acid, phosphatidylcholine, and lysophosphatidylethanolamine) in alcohol-treated rats were reversed by nucleotides supplementation. In addition, supplementation with nucleotides could increase the levels of amino acids, including valyl-Leucine, l-leucine, alanyl-leucine and l-phenylalanine. Conclusion: These data indicate potential biomarkers and confirm the benefit of dietary nucleotides on alcoholic liver injury.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 102206, China.
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
13
|
Vecchione G, Grasselli E, Compalati AD, Ragazzoni M, Cortese K, Gallo G, Voci A, Vergani L. Ethanol and fatty acids impair lipid homeostasis in an in vitro model of hepatic steatosis. Food Chem Toxicol 2016; 90:84-94. [PMID: 26854922 DOI: 10.1016/j.fct.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
Excess ethanol consumption and fatty acid intake lead to a cumulative effect on liver steatosis through still unclear mechanisms. This study aimed to characterize the lipid homoeostasis alterations under the exposure of hepatocytes to ethanol alone or combined with fatty acids. FaO hepatoma cells were incubated in the absence (C) or in the presence of 100 mM ethanol (EtOH) or 0.35 mM oleate/palmitate (FFA) alone or in the combination (FFA/EtOH). Content of intra- and extra-cellular triglycerides (TAGs) and of lipid droplets (LDs), expression of lipogenic and lipolytic genes, and oxidative stress-related parameters were evaluated. Exposure to either FFAs or EtOH given separately led to steatosis which was augmented when they were combined. Our results show that FFA/EtOH: (i) increased the LD number, but reduced their size compared to separate treatments; (ii) up-regulated PPARγ and SREBP-1c and down-regulated sirtuin-1 (SIRT1); (iii) impaired FFA oxidation; (iv) did not change lipid secretion and oxidative stress. Our findings indicate that one of the major mechanisms of the metabolic interference between ethanol and fat excess is the impairment of FFA oxidation, in addition to lipogenic pathway stimulation. Interestingly, ethanol combined with FFAs led to a shift from macrovesicular to microvesicular steatosis that represents a more dangerous condition.
Collapse
Affiliation(s)
- Giulia Vecchione
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Elena Grasselli
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Andrea D Compalati
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Milena Ragazzoni
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Katia Cortese
- DIMES, Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Gabriella Gallo
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Adriana Voci
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Laura Vergani
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.
| |
Collapse
|
14
|
Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9209825. [PMID: 26788255 PMCID: PMC4691636 DOI: 10.1155/2016/9209825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.
Collapse
|