1
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
2
|
Kim S, Kim G, Cho SH, Oh R, Kim JY, Lee YB, Jin SM, Hur KY, Kim JH. Association between total cholesterol levels and all-cause mortality among newly diagnosed patients with cancer. Sci Rep 2024; 14:58. [PMID: 38168969 PMCID: PMC10761709 DOI: 10.1038/s41598-023-50931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
We aimed to determine the association between cholesterol values and the risk of all-cause mortality in newly diagnosed patients with cancer in a large-scale longitudinal cohort. Newly diagnosed patients with cancer were reviewed retrospectively. Cox proportional hazards regression models determined the association between baseline levels of total cholesterol (TC), triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) cholesterol and the risk of all-cause mortality. A restricted cubic spline curve was used to identify the association between total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol with the risk of death on a continuous scale and to present the lowest values of lipid measurements associated with death. The median follow-up duration of the study was 5.77 years. Of the 59,217 patients with cancer, 12,624 patients were expired. The multivariable adjusted hazard ratio (aHR) for all-cause mortality in patients with cancer with 1st-5th (≤ 97 mg/dL) and 96th-100th (> 233 mg/dL) in TC levels was 1.54 (95% CI 1.43-1.66) and 1.28 (95% CI 1.16-1.41), respectively, compared to 61st-80th (172-196 mg/dL). The TC level associated with the lowest mortality risk in the multivariable model was 181 mg/dL. In comparison with LDL-C levels in the 61st-80th (115-136 mg/dL), the multivariable aHR for all-cause mortality in cancer patients with LDL-C levels in the 1st-5th (≤ 57 mg/dL) and 96th-100th (> 167 mg/dL) was 1.38 (95% CI 1.14-1.68) and 0.94 (95% CI 0.69-1.28), respectively. The 142 mg/dL of LDL cholesterol showed the lowest mortality risk. We demonstrated a U-shaped relationship between TC levels at baseline and risk of mortality in newly diagnosed patients with cancer. Low LDL levels corresponded to an increased risk of all-cause death.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - So Hyun Cho
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Rosa Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
3
|
Kaela CR, Lilly M, Rheeder JP, Misihairabgwi JM, Alberts JF. Mycological and Multiple Mycotoxin Surveillance of Sorghum and Pearl Millet Produced by Smallholder Farmers in Namibia. Curr Microbiol 2023; 80:164. [PMID: 37014446 PMCID: PMC10073170 DOI: 10.1007/s00284-023-03263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Mycological (mycotoxigenic Fusarium and aflatoxigenic Aspergillus spp.) and multiple mycotoxins [aflatoxin B1 (AFB1), fumonisin B (FB), deoxynivalenol and zearalenone] surveillance was conducted on raw whole grain sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) produced on smallholder farms, and processed products sold at open markets in northern Namibia. Fungal contamination was determined with morphological methods as well as with quantitative Real-Time PCR (qPCR). The concentrations of multiple mycotoxins in samples were determined with liquid chromatography tandem mass spectrometry. The incidence of mycotoxigenic Fusarium spp., Aspergillus flavus and A. parasiticus, as well as the concentrations of AFB1 and FB were significantly (P < 0.001) higher in the malts as compared to the raw whole grains, with Aspergillus spp. and AFB1 exhibiting the highest contamination (P < 0.001). None of the analysed mycotoxins were detected in the raw whole grains. Aflatoxin B1 above the regulatory maximum level set by the European Commission was detected in sorghum (2 of 10 samples; 20%; 3-11 µg/kg) and pearl millet (6 of 11 samples; 55%; 4-14 µg/kg) malts. Low levels of FB1 (6 of 10 samples; 60%; 15-245 µg/kg) were detected in sorghum malts and no FB was detected in pearl millet malts. Contamination possibly occurred postharvest, during storage, and/or transportation and processing. By critically monitoring the complete production process, the sources of contamination and critical control points could be identified and managed. Mycotoxin awareness and sustainable education will contribute to reducing mycotoxin contamination. This could ultimately contribute to food safety and security in northern Namibia where communities are exposed to carcinogenic mycotoxins in their staple diet.
Collapse
Affiliation(s)
- Calvin R Kaela
- Department of Agriculture, Cape Peninsula University of Technology, Private Bag X8, Wellington, South Africa
| | - Mariska Lilly
- Applied Microbial and Health Biotechnology Institute (AMHBI), Cape Peninsula University of Technology, PO Box 1906, Bellville, South Africa
| | - John P Rheeder
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, PO Box 652, Cape Town, South Africa
| | - Jane M Misihairabgwi
- Department of Biochemistry and Microbiology, School of Medicine, University of Namibia, PO Box 13301, Windhoek, Namibia
| | - Johanna F Alberts
- Department of Food Science and Technology, Cape Peninsula University of Technology, PO Box 1906, Bellville, South Africa.
| |
Collapse
|
4
|
Fumonisin B Series Mycotoxins' Dose Dependent Effects on the Porcine Hepatic and Pulmonary Phospholipidome. Toxins (Basel) 2022; 14:toxins14110803. [PMID: 36422977 PMCID: PMC9696778 DOI: 10.3390/toxins14110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.
Collapse
|
5
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
6
|
Ali O, Mézes M, Balogh K, Kovács M, Szabó A. The Effects of Mixed Fusarium Mycotoxins at EU-Permitted Feed Levels on Weaned Piglets' Tissue Lipids. Toxins (Basel) 2021; 13:444. [PMID: 34199083 PMCID: PMC8309798 DOI: 10.3390/toxins13070444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
At exactly the individual permitted EU-tolerance dietary limits, fumonisins (FB: 5 mg/kg diet) and mixed fusariotoxins (DZ: 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet, and FDZ: 5 mg fumonisins + 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet) were administered to piglets (n = 6/group) for three weeks. Bodyweights of intoxicated piglets increased, while feed conversion ratios decreased. In FDZ, both the absolute and relative weight of the liver decreased. In the renal-cellular membrane, the most pronounced alterations were in FDZ treatment, followed by individual FB exposure. In both treatments, high proportions of C20:0 and C22:0 with low fatty acid (FA) unsaturation were found. In hepatocyte phospholipids, FDZ toxins exerted antagonistic interactions, and FB had the strongest increasing effect on FA monounsaturation. Among all investigated organs, the spleen lipids were the least responsive, in which FDZ expressed synergistic reactions on C20:0 (↑ FDZ vs. FB) and C22:0 (↓ FDZ vs. DZ). The antioxidant defense of the kidney was depleted (↓ glutathione concentration by FB-exposure). Blood plasma indicated renal injury (profound increase of urea and creatinine in FB vs. DZ and FDZ). FB strongly increased total-cholesterol and low density lipoprotein concentrations, whereas FDZ synergistically increased gamma-glutamyltransferase, alkaline-phosphatase, calcium and phosphorus levels. Summarized, individual and combined multiple fusariotoxins modified the membrane lipid profile and antioxidant defense of splanchnic organs, and serum biochemicals, without retarding growth in piglets.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
| | - Miklós Mézes
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Krisztián Balogh
- Department of Feed Toxicology, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Páter K. u. 1., 2053 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Melinda Kovács
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| | - András Szabó
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba S. u. 40., 7400 Kaposvár, Hungary
| |
Collapse
|
7
|
Wangia-Dixon RN, Nishimwe K. Molecular toxicology and carcinogenesis of fumonisins: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:44-67. [PMID: 33554724 DOI: 10.1080/26896583.2020.1867449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fumonisins, discovered in 1988 are a group of naturally occurring toxins produced by fusarium pathogenic fungi. Besides their presence in animal feeds, contamination of human foods such as corn, millet, oats, rye, barley, wheat and their products are widespread. Exposure to fumonisins results in species and organ specific toxicities including neurological disorders among equids, pulmonary edema in swine, esophageal cancer in humans and both kidney and liver related toxicities in rodents. This review seeks to consolidate groundbreaking research on the science of fumonisins toxicity, highlight recent progress on fumonisins research, and provide an overview of plausible mechanistic biomarkers for fumonisins exposure assessment.
Collapse
Affiliation(s)
- Ruth Nabwire Wangia-Dixon
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Kizito Nishimwe
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- School of Agriculture and Food Science, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
8
|
Tshalibe R, Rheeder J, Alberts J, Taljaard-Krugell C, Gelderblom W, Shephard G, Lombard M, Burger HM. Multi-mycotoxin exposure of children (0-24 months) in rural maize-subsistence farming areas of the Eastern Cape Province, South Africa. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In South Africa, child malnutrition is highly prevalent among children from in rural areas mostly at risk. In the Eastern Cape (EC) Province, maize is commonly used as complementary and weaning food. Previous studies conducted in parts of EC have indicated high levels of fumonisin B (FB) mycotoxins in home-grown maize, as well as the co-occurrence of other Fusarium mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN). A cross-sectional study of children below 24 months was conducted in rural maize-subsistence farming areas in Centane, EC to determine mycotoxin exposure. Home-grown maize samples (n=171) were collected from households in the study area and analysed by LC-MS/MS for FB, DON and ZEN. Food intakes of 129 children were quantified using a validated quantitative food frequency questionnaire (QFFQ). Individual raw maize consumption was calculated using recipes from the QFFQ. Probable daily intakes (PDIs) for each mycotoxin were determined using a deterministic approach and were compared to the respective mycotoxins’ provisional maximum tolerable daily intake (PMTDI). The numerical means for total FB (sum of fumonisin B1, B2 and B3), DON and ZEN levels in home-grown maize were 1,035, 24.5 and 31.0 μg/kg, respectively. Mean daily maize intakes of children ranged from 2-321 g/day and increased with age. The mean PDIs for total FB, DON and ZEN were 8.4, 0.2 and 0.3 μg/kg body weight (bw)/day, respectively. Exposures stratified by age indicated persistent high mean PDIs for total FB, above the PMTDI of 2 μg/kg bw/day, ranging between 5.0-11.6 μg/kg bw/day. Mean exposure to DON and ZEN were below their relevant PMTDIs (1 and 0.5 μg/kg bw/day, respectively). Individually, 81 and 13% of children had exposures above the PMTDI for total FB and for ZEN, respectively. Results confirm the magnitude of FB exposure among vulnerable groups from rural maize subsistence farming areas in EC.
Collapse
Affiliation(s)
- R.S. Tshalibe
- Centre of Excellence for Nutrition (CEN), Faculty of Health Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - J.P. Rheeder
- Department of Food Sciences and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - J.F. Alberts
- Department of Biotechnology and Consumer Science, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | - C. Taljaard-Krugell
- Centre of Excellence for Nutrition (CEN), Faculty of Health Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - W.C.A. Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - G.S. Shephard
- Department of Biotechnology and Consumer Science, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | - M.J. Lombard
- Centre of Excellence for Nutrition (CEN), Faculty of Health Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - H-M. Burger
- Unit of Research Integrity, Research Directorate, Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| |
Collapse
|
9
|
Wolny-Rokicka E, Tukiendorf A, Wydmański J, Brzezniakiewicz-Janus K, Zembroń-Łacny A. The Effect of Radiotherapy on the Concentration of Plasma Lipids in Elderly Prostate Cancer Patients. Am J Mens Health 2020; 13:1557988319846328. [PMID: 31023130 PMCID: PMC6487772 DOI: 10.1177/1557988319846328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipids play an important role in processes such as the formation of membrane cells or in steroidogenesis, where androgens which stimulate the proliferation of prostate cancer (PCa) cells are produced. Previous studies presented links between cholesterol (CHOL) and PCa and concluded that cholesterol homeostasis changes in PCa patients during treatment and with age. This study further examines the correlation between the lipid profile, the treatment used, and the subjects’ age. Ninety-one subjects (Group 1: >69 years; Group 2: ≤69) histopathologically diagnosed with PCa were tested. Total CHOL, triglycerides (TG), high-density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) were assessed from blood taken before the entire course of radiotherapy (RT) and in 3-month intervals after the treatment was completed, for up to 4 years (range: palliative and radical). In all the subjects, the CHOL decreased over time after RT (p = .0445) with a simultaneous increase of prostate specific antigen (PSA) concentration (p = .0366). A faster decrease of HDL was observed with a higher concentration of PSA (p = .0053) and Gleason score (p = .0304). In all the subjects, the HDL decreased after RT (p = .0159) but in the older palliative group the HDL decrease progressed more slowly (p = .0141). It could be stated, that after radical therapy TG levels tended to be consistently higher among younger men relative to the elderly (p = .0151). But it was observed that RT treatment could lead to a decrease in the lipid serum concentration.
Collapse
Affiliation(s)
- Edyta Wolny-Rokicka
- 1 Department of Radiotherapy, Multispecialty Hospital in Gorzow Wielkopolski, Poland.,2 Faculty of Medicine and Health Sciences, University of Zielona Gora, Poland
| | | | - Jerzy Wydmański
- 4 Department of Radiotherapy, Center of Oncology-Maria Skłodowska-Curie Memorial Institute, Branch in Gliwice, Poland
| | | | | |
Collapse
|
10
|
Ali O, Szabó-Fodor J, Fébel H, Mézes M, Balogh K, Glávits R, Kovács M, Zantomasi A, Szabó A. Porcine Hepatic Response to Fumonisin B 1 in a Short Exposure Period: Fatty Acid Profile and Clinical Investigations. Toxins (Basel) 2019; 11:E655. [PMID: 31717687 PMCID: PMC6891595 DOI: 10.3390/toxins11110655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Scarce studies have investigated the impact of fumonisin B1 (FB1) on the hepatic tissue fatty acid (FA) profile, and no study is available on piglets. A 10-day in vivo experiment was performed on seven piglets/group: control and FB1-fed animals (diet was contaminated with fungal culture: 20 mg FB1/kg diet). Independent sample t-test was carried out at p < 0.05 as the significance level. Neither growth, nor feed efficiency, was affected. The hepatic phospholipid (PL) fatty acids (FAs) were more susceptible for FB1, while triglyceride (TG) was less responsive. The impact of FB1 on hepatic PL polyunsaturated fatty acids (PUFAs) was more pronounced than on saturated fatty acids. Among all PUFAs, predominant ones in response were docosapentaenoicacid (DPA) (↓), docosahexaenoic DHA (↓) and arachidonic acids (↑). This led to a higher omega-6:omega-3 ratio, whereas a similar finding was noted in TGs. Neither total saturation (SFA) nor total monousaturation (MUFA) were affected by the FB1 administration. The liver showed an increase in malondialdehyde, as well as antioxidant capacity (reduced glutathione and glutathione peroxidase). The plasma enzymatic assessment revealed an increase in alkaline phosphatase (ALP), while alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT) were not influenced. The microscopic sections provided evidence of vacuolar degeneration of the hepatocytes' cytoplasm, but it was not severe. Furthermore, the lung edema was developed, while the kidney was not affected. In conclusion, regarding FB1-mediated hepatotoxicity in piglets, the potential effect of slight hepatotoxicity did not compromise growth performance, at least at the dose and exposure period applied.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, 7400 Kaposvár, Hungary; (M.K.); (A.S.)
| | - Judit Szabó-Fodor
- “MTA-KE Mycotoxins in the Food Chain” Research Group, Hungarian Academy of Sciences, Kaposvár University, 7400 Kaposvár, Hungary;
| | - Hedvig Fébel
- Research Institute for Animal Breeding, Nutrition and Meat Science, National Agricultural Research Center, 2053 Herceghalom, Hungary;
| | - Miklós Mézes
- Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, 2103 Gödöllő, Hungary; (M.M.); (K.B.)
| | - Krisztián Balogh
- Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, 2103 Gödöllő, Hungary; (M.M.); (K.B.)
| | | | - Melinda Kovács
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- “MTA-KE Mycotoxins in the Food Chain” Research Group, Hungarian Academy of Sciences, Kaposvár University, 7400 Kaposvár, Hungary;
| | - Arianna Zantomasi
- Department of Animal Science, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Padova, Italy;
| | - András Szabó
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, 7400 Kaposvár, Hungary; (M.K.); (A.S.)
- “MTA-KE Mycotoxins in the Food Chain” Research Group, Hungarian Academy of Sciences, Kaposvár University, 7400 Kaposvár, Hungary;
| |
Collapse
|
11
|
Bordini JG, Ono MA, Garcia GT, Vizoni É, Amador IR, Hirozawa MT, Ono EYS. Transgenic versus conventional corn: fate of fumonisins during industrial dry milling. Mycotoxin Res 2019; 35:169-176. [DOI: 10.1007/s12550-019-00343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
|
12
|
Relationship of SNP rs2645429 in Farnesyl-Diphosphate Farnesyltransferase 1 Gene Promoter with Susceptibility to Lung Cancer. Int J Genomics 2018; 2018:4863757. [PMID: 29765975 PMCID: PMC5885393 DOI: 10.1155/2018/4863757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose The mevalonate pathway is one of the major metabolic pathways that use acetyl-CoA to produce sterols and isoprenoids. These compounds can be effective in the growth and development of tumors. One of the enzymes involved in the mevalonate pathway is FDFT1. Different variants of this gene are involved in the risk of suffering various diseases. The present study examined the relationship between FDFT1 rs2645429 polymorphism and the risk of nonsmall cell lung cancer (NSCLC) in a population from southern Iran. Method The genotypes of rs2645429 polymorphism of FDFT1 gene were examined in 95 samples: 34 patients with NSCLC and 61 healthy individuals by RFLP method. Results The results of this study indicated that C allele of this polymorphism was effectively associated with the risk of NSCLC in the Iranian population (p value = 0.023; OR = 2.71; 95% CI = 1.12–6.59) and CC genotype has significant relation with susceptibility to NSCLC (p value = 0.029; OR = 3.02; 95% CI = 1.09–8.39). This polymorphism is located in the promoter region FDFT1 gene, and CC genotype may increase the activity of this promoter. This study also found a significant relationship between C allele and metastatic status. C allele was more common in NSCLC patients. (p = 0.04). Conclusion C allele of FDFT1 rs2645429 polymorphism gene can be a risk factor for NSCLC, whereas T allele probably has a low protective role.
Collapse
|
13
|
Braun MS, Wink M. Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives. Compr Rev Food Sci Food Saf 2018; 17:769-791. [DOI: 10.1111/1541-4337.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Santhosh Braun
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| | - Michael Wink
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| |
Collapse
|
14
|
Burger HM, Abel S, Gelderblom WCA. Modulation of key lipid raft constituents in primary rat hepatocytes by fumonisin B 1 - Implications for cancer promotion in the liver. Food Chem Toxicol 2018; 115:34-41. [PMID: 29510220 DOI: 10.1016/j.fct.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Fumonisin B1 (FB1), a group 2B natural occurring carcinogenic mycotoxin, modulated lipid and fatty acid (FA) constituents of lipid rafts isolated from primary hepatocytes following exposure to a cytotoxic concentration of FB1 (250 μM). The major effects observed in rafts, included a significant (p < 0.05) increase in raft cholesterol (CHOL) and glycerophospholipid such as phosphatidylethanolamine (PE), whereas sphingomyelin (SM) decreased (p < 0.05). Changes in lipid constituents resulted in the disruption of important membrane fluidity parameters represented as a decreased (p < 0.05) in the phosphatidylcholine (PC)/PE and PC/(PE+SM) ratios and an increase (p < 0.05) in the CHOL/PL (PL=PC+PE) ratio, suggesting the preservation of lipid raft rigidity and integrity. Observed FA changes in the raft PE fraction included a significant (p < 0.05) increase in C18:2ω-6, C20:3ω-6, C20:4ω-6, C22:4ω-6, C22:5ω-3 and C22:6ω-3, with an increase in total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Modulation of the FA content in PE, specifically the C20:4ω-6 PC/PE ratio and PUFA levels, together with changes in CHOL and SM are key determinants regulating the integrity and function of lipid rafts. In primary hepatocytes these changes are associated with the inhibition of cell proliferation and induction of apoptosis. A lipogenic mechanism is proposed whereby FB1 modulates lipid rafts and differentially target cell survival indices of normal and preneoplastic hepatocytes during cancer promotion in the liver.
Collapse
Affiliation(s)
- H-M Burger
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - S Abel
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - W C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
15
|
Prognostic role of serum total cholesterol and high-density lipoprotein cholesterol in cancer survivors: A systematic review and meta-analysis. Clin Chim Acta 2018; 477:94-104. [DOI: 10.1016/j.cca.2017.11.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
|
16
|
Omori AM, Ono EYS, Bordini JG, Hirozawa MT, Fungaro MHP, Ono MA. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene. Food Microbiol 2018. [PMID: 29526201 DOI: 10.1016/j.fm.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 104 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p < 0.05) with Fusarium sp. counts (CFU/g). These results suggest that the PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples.
Collapse
Affiliation(s)
- Aline Myuki Omori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina (UEL), CEP 86057-970, Londrina, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- Department of Biotechnology and Biochemistry, Center of Exact Sciences, State University of Londrina (UEL), CEP 86057-970, Londrina, Paraná, Brazil
| | - Jaqueline Gozzi Bordini
- Department of Biotechnology and Biochemistry, Center of Exact Sciences, State University of Londrina (UEL), CEP 86057-970, Londrina, Paraná, Brazil
| | - Melissa Tiemi Hirozawa
- Department of Biotechnology and Biochemistry, Center of Exact Sciences, State University of Londrina (UEL), CEP 86057-970, Londrina, Paraná, Brazil
| | | | - Mario Augusto Ono
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina (UEL), CEP 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
17
|
Qian G, Tang L, Lin S, Xue KS, Mitchell NJ, Su J, Gelderblom WC, Riley RT, Phillips TD, Wang JS. Sequential dietary exposure to aflatoxin B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative of a synergistic interaction. Food Chem Toxicol 2016; 95:188-95. [PMID: 27430420 DOI: 10.1016/j.fct.2016.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Dietary co-exposure to aflatoxin B1 (AFB1) and fumonisin B1 (FB1) and their interaction on hepatocellular carcinogenesis is of particular concern in toxicology and public health. In this study we evaluated the liver preneoplastic effects of single and sequential dietary exposure to AFB1 and FB1 in the F344 rat carcinogenesis model. Serum biochemical alterations, liver histopathological changes, and the formation of liver glutathione S transferase positive (GST-P+) foci were the major outcome parameters examined. Compared to the AFB1-only treatment, the FB1-only treatment induced less dysplasia, and more apoptosis and mitoses. Sequential AFB1 and FB1 treatment lead to increased numbers of dysplasia, apoptosis and foci of altered hepatocytes, as compared to either mycotoxin treatment alone. More importantly, sequential exposure to AFB1 and FB1 synergistically increased the numbers of liver GTP-P+ foci by approximately 7.3-and 12.9-fold and increased the mean sizes of GST-P+ foci by 6- and 7.5-fold, respectively, as compared to AFB1- or FB1-only treatment groups. In addition, liver ALT and AST levels were significantly increased after sequential treatment as compared to single treatment groups. The results demonstrate the interactive effect of dietary AFB1 and FB1 in inducing liver GST-P+ foci formation and provide information to model future intervention studies.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Shuhan Lin
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kathy S Xue
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Nicole J Mitchell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jianjia Su
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Wentzel C Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Ronald T Riley
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA; USDA-ARS, Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, National Poultry Disease Research Center, Athens, GA, USA
| | - Timothy D Phillips
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Riedel S, Abel S, Burger HM, van der Westhuizen L, Swanevelder S, Gelderblom WCA. Differential modulation of the lipid metabolism as a model for cellular resistance to fumonisin B1-induced cytotoxic effects in vitro. Prostaglandins Leukot Essent Fatty Acids 2016; 109:39-51. [PMID: 27269712 DOI: 10.1016/j.plefa.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/30/2022]
Abstract
Differential sensitivity of primary hepatocytes and Chang cells to the cancer promoter fumonisin B1 (FB1)-induced cytotoxic effects were investigated in relation to changes in membrane lipid distribution. In contrast to primary hepatocytes, Chang cells were resistant to FB1-induced cytotoxic effects. This was associated with a high cholesterol (Chol) and sphingomyelin (SM) and low phosphatidylcholine (PC) content, resulting in a significant (P<0.05) decrease in phosphatidylethanolamine (PE)/PC ratio, increased Chol/total phosphoglyceride (TPG) ratios and low total polyunsaturated fatty acids (PUFA) content in PC and PE, suggesting a more rigid membrane structure. High levels of C18:1 and reduced polyunsaturated fatty acid (PUFA) levels are likely to provide selective resistance to FB1-induced oxidative stress. FB1-associated lipid changes included decreases in SM and Chol, increases in sphinganine (Sa) and PE with the increases in key saturated, monounsaturated, and PUFAs in PE as key role players in the differential responses to FB1-induced cell growth responses in cells.
Collapse
Affiliation(s)
- S Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - S Abel
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - H-M Burger
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - L van der Westhuizen
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - S Swanevelder
- Biostatistics Unit, South African Medical Research Council, PO Box 19070, Tygerberg, South Africa.
| | - W C A Gelderblom
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
19
|
Jia HM, Li Q, Zhou C, Yu M, Yang Y, Zhang HW, Ding G, Shang H, Zou ZM. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression. Sci Rep 2016; 6:23441. [PMID: 27006086 PMCID: PMC4804211 DOI: 10.1038/srep23441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.
Collapse
Affiliation(s)
- Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Qi Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chao Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|