1
|
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life (Basel) 2024; 14:1500. [PMID: 39598298 PMCID: PMC11595627 DOI: 10.3390/life14111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Vincristine, a vinca alkaloid, is used in chemotherapy protocols for cancers such as acute leukemia, Hodgkin's disease, neuroblastoma, cervical carcinoma, lymphomas, breast cancer, and melanoma. Among the common adverse effects of vincristine is peripheral neuropathy, with most patients receiving a cumulative dose over 4 mg/m2 who develop varying degrees of sensory neuropathy. The onset of vincristine-induced peripheral neuropathy can greatly affect patients' quality of life, often requiring dose adjustments or the discontinuation of treatment. Moreover, managing vincristine-induced peripheral neuropathy is challenging, with few effective therapeutic strategies available. In the past decade, preclinical studies have explored diverse substances aimed at preventing or alleviating VIPN. Our review consolidates these findings, focusing on the analgesic efficacy and potential mechanisms of various agents, including pharmaceutical drugs, natural compounds, and antioxidants, that show promise in reducing neuropathic pain and protecting neural integrity in preclinical models. Key novel therapeutic options, such as metabolic agents (liraglutide), enzyme inhibitors (ulinastatin), antipsychotics (aripiprazole), interleukin-1 receptor antagonists (anakinra), hormones (oxytocin), and antioxidants (thioctic acid), are highlighted for their neuroprotective, anti-inflammatory, and antioxidant effects. Through this synthesis, we aim to enhance the current understanding of VIPN management by identifying pharmacological strategies that target critical molecular pathways, laying the groundwork for future clinical studies. By clarifying these novel pharmacological approaches and elucidating their mechanisms of action, this review provides a foundation for developing more effective VIPN treatment strategies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (C.C.)
| | | |
Collapse
|
2
|
Zhu C, Zhang M, Gong S, Du J, Ma L, Liu Y, Li Y, Yu J, Liu N. Identification of Matrine as a Kirsten rats Arcomaviral oncogene homolog inhibitor alleviating chemotherapy-induced neuropathic pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155841. [PMID: 38971025 DOI: 10.1016/j.phymed.2024.155841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) represents a prevailing and severe clinical concern, characterized by limited availability of clinically effective treatment strategies. Current evidence endorses matrine's potential as a neuroprotective and analgesic agent for CIPN. Nevertheless, the precise targets and mechanisms of action of matrine remain insufficiently explored, impeding comprehensive pharmacological investigation and clinical application. OBJECTIVE This study endeavors to elucidate the analgesic and neuroprotective effects of matrine in mice with vincristine-induced neuropathic pain. A focal point is the identification of matrine's specific target and the underlying molecular mechanisms governing its analgesic and neuroprotective actions. METHODS To discern matrine's analgesic effects in CIPN mice, we conducted behavioral experiments encompassing the Von Frey filament test and Hargreaves Test. Furthermore, we conducted electrophysiological and histopathological assessments involving HE staining, Nissl staining, and Fluoro-Jade B staining to evaluate matrine's effects on neuroprotection within dorsal root ganglia and the spinal cord of CIPN mice. Sequentially, thermal shift assay, GTP hydrolysis assay, and nucleotide exchange assay were executed to validate matrine's inhibitory effects on KRAS. Molecular docking and site-directed mutagenesis experiments were implemented to identify the precise binding pocket of matrine on KRAS. Lastly, matrine's inhibitory effects on downstream signaling pathways of KRAS were confirmed through experiments conducted at animal model. RESULTS Matrine exhibited a notable increase in mechanical withdrawal threshold and thermal withdrawal latency in vincristine-treated mice. This compound substantially ameliorated the neurofunctional blockade associated with sensory and motor functions induced by vincristine. Moreover, matrine mitigated pathological damage within DRG and the L4-L5 spinal cord regions. The study's MST experiments indicated matrine's substantial elevation of KRAS's melting temperature. The GTP hydrolysis and nucleotide exchange assays revealed concentration-dependent inhibition of KRAS activity by matrine. Molecular docking provided insight into the binding mode of matrine with KRAS, while site-directed mutagenesis verified the specific binding site of matrine on KRAS. Lastly, matrine's inhibition of downstream Raf/Erk1/2 and PI3K/Akt/mTOR signaling pathways of KRAS was confirmed in VCR mice. CONCLUSION Compared to previous studies, our research has identified matrine as a natural inhibitor of the elusive protein KRAS, often considered "undruggable." Furthermore, this study has revealed that matrine exerts its therapeutic effects on chemotherapy-induced peripheral neuropathy (CIPN) by inhibiting KRAS activation, subsequently suppressing downstream signaling pathways such as Raf/Erk1/2 and PI3K/Akt/mTOR. This investigation signifies the discovery of a novel target for matrine, thus expanding the potential scope of its involvement in KRAS-related biological functions and diseases. These findings hold the promise of providing a crucial experimental foundation for forthcoming drug development initiatives centered around matrine, thereby advancing the field of pharmaceutical research.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Mengting Zhang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750004, PR China
| | - Shuaishuai Gong
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yuxiang Li
- School of nursing, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Bartkowiak-Wieczorek J, Bienert A, Czora-Poczwardowska K, Kujawski R, Szulc M, Mikołajczak P, Wizner AM, Jamka M, Hołysz M, Wielgus K, Słomski R, Mądry E. Cannabis sativa L. Extract Alleviates Neuropathic Pain and Modulates CB1 and CB2 Receptor Expression in Rat. Biomolecules 2024; 14:1065. [PMID: 39334832 PMCID: PMC11430414 DOI: 10.3390/biom14091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals. RESULTS VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group. CONCLUSION Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use.
Collapse
Affiliation(s)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.B.); (A.-M.W.)
| | - Kamila Czora-Poczwardowska
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Radosław Kujawski
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Przemysław Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.C.-P.); (R.K.); (M.S.); (P.M.)
| | - Anna-Maria Wizner
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.B.); (A.-M.W.)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (M.J.); (K.W.)
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (M.J.); (K.W.)
| | - Ryszard Słomski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, 60-630 Poznan, Poland;
| | - Edyta Mądry
- Physiology Department, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
4
|
Goel R, Kumar N, Kumar Saxena P, Pratap Singh A, Bana S. Pitavastatin attenuates neuropathic pain induced by partial sciatic nerve in Wistar rats. J Pharm Pharmacol 2023; 75:66-75. [PMID: 36383203 DOI: 10.1093/jpp/rgac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Pitavastatin is a competitive HMG-CoA reductase inhibitor for lowering of cholesterol level and low density lipoprotein cholesterol. This study was designed to evaluate the effect of pitavastatin in neuropathic pain induced by partial sciatic nerve ligation along with neuronal changes in Wister rats. METHODS Pitavastatin was started three days prior to the surgery and continued for 14 days The pain was determined by thermal hyperalgesia and cold allodynia. The biochemical changes were estimated at the end of the study. The levels of cytokines were measured using an ELISA test. Western blot analysis was used to detect levels of expression of JNK, p-JNK, ERK, p-ERK, p38MAPK, p-p38MAPK. The sciatic nerve was investigated histopathologically. KEY FINDINGS Pitavastatin significantly ameliorated nerve pain induced by PSNL and also attenuated the biochemical changes in a dose-dependent manner. The levels of inflammatory mediators were inhibited by pitavastatin. There was significant improvement in sciatic nerve fibres histology. The levels of p-38, p-ERK, and p-JNK and their associated phosphorylated proteins were reduced after treatment with pitavastatin. CONCLUSION The present study indicates that treatment with pitavastatin reversed the PSNL-induced neuropathy in Wister rats and may be an additional therapeutic strategy in the management of neuropathic pain.
Collapse
Affiliation(s)
- Radha Goel
- Department of Pharmacology, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Nitin Kumar
- Department of Pharmacognosy, IIMT College of Medical Science, IIMT University, Ghaziabad, Uttar Pradesh, India
| | - Prasoon Kumar Saxena
- Department of Pharmacognosy, SRM Modinagar College of Pharmacy, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Alok Pratap Singh
- Department of Pharmaceutics, SRM Modinagar College of Pharmacy, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Sweeti Bana
- Department of Pharmacology, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Khan J, Ali G, Khurshid A, Saeed A, Ahmad S, Ullah N, Khan A, Sewell RD, Zakria M. Mechanistic efficacy assessment of selected novel methanimine derivatives against vincristine induced Neuropathy: In-vivo, Ex-vivo and In-silico correlates. Int Immunopharmacol 2022; 112:109246. [PMID: 36116153 DOI: 10.1016/j.intimp.2022.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
Vincristine induced peripheral neuropathy (VIPN) is a serious untoward side effect suffered by cancer patients, which still lacks an adequate therapeutic approach. This study examined the alleviating potential of novel methanimine derivatives i.e. (E)-N-(4-nitrobenzylidene)-4-chloro-2-iodobenzamine (KB 9) and (E)-N-(2-methylbenzylidene)-4-chloro-2-iodobenzamine (KB 10) in VIPN. Vincristine was injected in BALB/c mice for 10 days to instigate nociceptive neuropathy. Dynamic and static allodynia, thermal (hot and cold) hyperalgesia were evaluated at 0, 5, 10 and 14 days using cotton brush, Von Frey filament application, hot plate test, acetone drop and cold water respectively. Tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), lipid peroxide (LPO), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and reactive oxygen species (ROS) assays were performed to assess the efficacy of KB9 and KB10 against neuroinflammation and oxidative stress utilizing ELISA, immunohistochemistry and western blot analysis in brain and sciatic nerve tissues. Computational studies were executed to determine the stable binding conformation of both compounds with respect to COX-2 and NF-κB. Interestingly, both compounds substantially reduced protein expression related to neuroinflammation, oxidative stress (LPO, GST, SOD, CAT) and pain (NF-κB, COX-2, IL-1β and TNF-α). This molecular analysis suggested that the neuroprotective effect of KB9 and KB10 was mediated via regulation of inflammatory signaling pathways. Overall, this study demonstrated that KB9 and KB10 ameliorated vincristine induced neuropathy, through anti-inflammatory, anti-nociceptive and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan.
| | - Najeeb Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Ashrafullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Robert D Sewell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom.
| | - Muhammad Zakria
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
6
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Akbarian R, Chamanara M, Rashidian A, Abdollahi A, Ejtemaei Mehr S, Dehpour AR. Atorvastatin prevents the development of diabetic neuropathic nociception by possible involvement of nitrergic system. J Appl Biomed 2021; 19:48-56. [PMID: 34907715 DOI: 10.32725/jab.2021.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/28/2021] [Indexed: 11/05/2022] Open
Abstract
AIMS Diabetic neuropathy has been identified as a common complication caused by diabetes. However, its pathophysiological mechanisms are not fully understood yet. Statins, also known as HMG-CoA reductase inhibitors, alleviate the production of cholesterol. Despite this cholesterol-reducing effect of statins, several reports have demonstrated their beneficial properties in neuropathic pain. In this study, we used streptozotocin (STZ)-induced diabetic model to investigate the possible role of nitric oxide (NO) in the antineuropathic-like effect of atorvastatin. METHODS Diabetes was induced by a single injection of STZ. Male rats orally received different doses of atorvastatin for 21 days. To access the neuropathy process, the thermal threshold of rats was assessed using hot plate and tail-flick tests. Moreover, sciatic motor nerve conduction velocity (MNCV) studies were performed. To assess the role of nitric oxide, N(G)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG), and 7-nitroindazole (7NI) were intraperitoneally administered along with some specific doses of atorvastatin. KEY FINDINGS Atorvastatin significantly reduced the hyperalgesia in diabetic rats. L-NAME pretreatment with atorvastatin showed the antihyperalgesic effect, suggesting the possible involvement of the NO pathway in atorvastatin protective action. Furthermore, co-administration of atorvastatin with AG and 7NI resulted in a significant increase in pain threshold in diabetic rats. SIGNIFICANCE Our results reveal that the atorvastatin protective effect on diabetic neuropathy is mediated at least in a part via the nitric oxide system.
Collapse
Affiliation(s)
- Reyhaneh Akbarian
- Tehran University of Medical Sciences, Experimental Medicine Research Center, Tehran, Iran.,Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | - Mohsen Chamanara
- Aja University of Medical Sciences, Faculty of Medicine, Department of Pharmacology, Tehran, Iran
| | - Amir Rashidian
- Tehran University of Medical Sciences, Experimental Medicine Research Center, Tehran, Iran.,Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | - Alireza Abdollahi
- Tehran University of Medical Sciences, Imam Hospital complex, Department of Pathology, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Tehran University of Medical Sciences, Experimental Medicine Research Center, Tehran, Iran.,Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | - Ahmad Reza Dehpour
- Tehran University of Medical Sciences, Experimental Medicine Research Center, Tehran, Iran.,Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Hyperlipidaemia is associated with the development of neuropathy. Indeed, a mechanistic link between altered lipid metabolism and peripheral nerve dysfunction has been demonstrated in a number of experimental and clinical studies. Furthermore, post hoc analyses of clinical trials of cholesterol and triglyceride-lowering pharmacotherapy have shown reduced rates of progression of diabetic neuropathy. Given, there are currently no FDA approved disease-modifying therapies for diabetic neuropathy, modulation of lipids may represent a key therapeutic target for the treatment of diabetic nerve damage. This review summarizes the current evidence base on the role of hyperlipidaemia and lipid lowering therapy on the development and progression of peripheral neuropathy. RECENT FINDINGS A body of literature supports a detrimental effect of dyslipidaemia on nerve fibres resulting in somatic and autonomic neuropathy. The case for an important modulating role of hypertriglyceridemia is stronger than for low-density lipoprotein cholesterol (LDL-C) in relation to peripheral neuropathy. This is reflected in the outcomes of clinical trials with the different therapeutic agents targeting hyperlipidaemia reporting beneficial or neutral effects with statins and fibrates. The potential concern with the association between proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor therapy and cognitive decline raised the possibility that extreme LDL-C lowering may result in neurodegeneration. However, studies in murine models and data from small observational studies indicate an association between increased circulating PCSK9 levels and small nerve fibre damage with a protective effect of PCSK9i therapy against small fibre neuropathy. Additionally, weight loss with bariatric surgery leads to an improvement in peripheral neuropathy and regeneration of small nerve fibres measured with corneal confocal microscopy in people with obesity with or without type 2 diabetes. These improvements correlate inversely with changes in triglyceride levels. SUMMARY Hyperlipidaemia, particularly hypertriglyceridemia, is associated with the development and progression of neuropathy. Lipid modifying agents may represent a potential therapeutic option for peripheral neuropathy. Post hoc analyses indicate that lipid-lowering therapies may halt the progression of neuropathy or even lead to regeneration of nerve fibres. Well designed randomized controlled trials are needed to establish if intensive targeted lipid lowering therapy as a part of holistic metabolic control leads to nerve fibre regeneration and improvement in neuropathy symptoms.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bilal Bashir
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
9
|
Skiold LCJ, Estefania RPP, Carolina GPMP, Mery LMR, Fernando CHE, Jair LC. Synergistic interaction between B vitamins and statins to counter nociception in rats. Drug Dev Res 2020; 82:440-447. [PMID: 33305435 DOI: 10.1002/ddr.21767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022]
Abstract
Evidence suggests that the antinociceptive activity of various drugs can be increased when administered in combination with B vitamins (BVs). The aim of this study was to examine the potential interaction between statins and BVs to counter nociception, the latter measured by the formalin test. Rats were orally administered atorvastatin (1, 3, 10 and 30 mg/kg), pravastatin (1, 3, 10 and 30 mg/kg), rosuvastatin (1, 3, 10 and 30 mg/kg), BVs (31, 56, 100 and 180 mg/kg) or calculated combinations of BVs with each drug. The effective dose 30 (ED30 ) was calculated for each statin and BVs and subjected to isobolographic analysis, thus finding the ED30 of the combinations. The antinociceptive experimental ED30 values for BVs administered with atorvastatin, pravastatin or rosuvastatin were 1.53 ± 0.38, 6.74 ± 0.04 and 4.26 ± 0.39, respectively, being lower (p < .05) than the corresponding theoretical ED30 : 28.02 ± 2.20, 28.17 ± 2.20 and 29.86 ± 2.21. Since BVs likely boost the antinociceptive effect of statins, these combinations could possibly be advantageous in pain management.
Collapse
Affiliation(s)
- López-Canales Jorge Skiold
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina de Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - García-Paz María Paola Carolina
- Servicio de Pediatría, Hospital General de Zona Regional No. 25, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - López-Mayorga Ruth Mery
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina de Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Castillo-Henkel Enrique Fernando
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina de Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Lozano-Cuenca Jair
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
10
|
Bai Q, Cao J, Dong T, Tao F. <p>Transcriptome Analysis of Dorsal Root Ganglion in Rats with Knee Joint Inflammation</p>. J Pain Res 2020; 13:2709-2720. [PMID: 33149663 PMCID: PMC7604464 DOI: 10.2147/jpr.s278474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, People’s Republic of China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
- Correspondence: Tieli Dong The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China Email
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
- Feng Tao Texas A&M University College of Dentistry, Dallas, Texas, USA Email
| |
Collapse
|
11
|
Pergolizzi JV, Magnusson P, LeQuang JA, Razmi R, Zampogna G, Taylor R. Statins and Neuropathic Pain: A Narrative Review. Pain Ther 2020; 9:97-111. [PMID: 32020545 PMCID: PMC7203325 DOI: 10.1007/s40122-020-00153-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The frequently prescribed drug class of statins have pleiotropic effects and have been implicated in neuropathic pain syndromes. This narrative review examines studies of statin-induced neuropathic pain which to date have been conducted only in animal models. However, the pathophysiology of diabetic neuropathy in humans may shed some light on the etiology of neuropathic pain. Statins have exhibited a paradoxical effect in that statins appear to reduce neuropathic pain in animals but have been associated with neuropathic pain in humans. While there are certain postulated mechanisms offering elucidation as to how statins might be associated with neuropathic pain, there is, as the American Heart Association stated, to date no definitive association between statins and neuropathic pain. Statins are important drugs that reduce cardiovascular risk factors and should be prescribed to appropriate patients with these risk factors but some of this population is also at elevated risk for neuropathic pain from other causes.
Collapse
Affiliation(s)
| | - Peter Magnusson
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden
| | | | - Robin Razmi
- Department of Infectious Disease, Region Gävleborg/Uppsala University, Gävle, Sweden
| | | | | |
Collapse
|
12
|
Attenuation of vincristine-induced neuropathy by synthetic cyclohexenone-functionalized derivative in mice model. Neurol Sci 2019; 40:1799-1811. [PMID: 31041611 DOI: 10.1007/s10072-019-03884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
Abstract
Vincristine (VCR) is a well-known anticancer drug which frequently induced painful neuropathy and impairs the quality of life of patients. The present study was designed to investigate the alleviative potential of a novel cyclohexenone derivative (CHD), i.e., ethyl 6-(4-methoxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate, against VCR-induced neuropathic pain in mice model. VCR was administered intraperitoneally for 10 days in two cycles to induce neuropathic pain. Static and dynamic mechanical allodynia was evaluated using von Frey hair filaments and cotton buds, respectively. Paw thermal hyperalgesia was determined through a hot plate analgesiometer. The tail cold immersion hyperalgesia and paw cold allodynia were determined by available standard protocols. The formalin nociception was induced via subplantar injection of formalin. The antioxidant potential was evaluated via 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity. The outcome of this study revealed that CHD (30-45 mg/kg) and gabapentin (75 mg/kg) significantly enhanced the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in static and dynamic allodynia, respectively, and increased the PWL in thermal hyperalgesia and tail withdrawal latency (TWL) as compared to the VCR-treated group. CHD significantly augmented the paw withdrawal duration (PWD) in paw cold allodynia, while the same compound only increased the paw elevation and paw licking in the delayed phase of formalin nociception. Moreover, CHD significantly inhibited the DPPH free radical scavenging action (IC50 = 56), butylated hydroxytoluene (BHT) (IC50 = 39), and ascorbic acid (IC50 = 2.93). In conclusion, CHD exhibited a profile of potential attenuative effect against the VCR-induced neuropathic pain which might be attributed to its possible antinociceptive and antioxidant effect.
Collapse
|
13
|
Sałat K, Furgała A, Sałat R. Evaluation of cebranopadol, a dually acting nociceptin/orphanin FQ and opioid receptor agonist in mouse models of acute, tonic, and chemotherapy-induced neuropathic pain. Inflammopharmacology 2018; 26:361-374. [PMID: 29071457 PMCID: PMC5859690 DOI: 10.1007/s10787-017-0405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cebranopadol (a.k.a. GRT-6005) is a dually acting nociceptin/orphanin FQ and opioid receptor agonist that has been recently developed in Phase 2 clinical trials for painful diabetic neuropathy or cancer pain. It also showed analgesic properties in various rat models of pain and had a better safety profile as compared to equi-analgesic doses of morphine. Since antinociceptive properties of cebranopadol have been studied mainly in rat models, in the present study, we assessed analgesic activity of subcutaneous cebranopadol (10 mg/kg) in various mouse pain models. METHODS We used models of acute, tonic, and chronic pain induced by thermal and chemical stimuli, with a particular emphasis on pharmacoresistant chronic neuropathic pain evoked by oxaliplatin in which cebranopadol was used alone or in combination with simvastatin. KEY RESULTS As shown in the hot plate test, the analgesic activity of cebranopadol developed more slowly as compared to morphine (90-120 min vs. 60 min). Cebranopadol displayed a significant antinociceptive activity in acute pain models, i.e., the hot plate, writhing, and capsaicin tests. It attenuated nocifensive responses in both phases of the formalin test and reduced cold allodynia in oxaliplatin-induced neuropathic pain model. Its efficacy was similar to that of morphine. Used in combination and administered simultaneously, 4 or 6 h after simvastatin, cebranopadol did not potentiate antiallodynic activity of this cholesterol-lowering drug. Cebranopadol did not induce any motor deficits in the rotarod test. CONCLUSION Cebranopadol may have significant potential for the treatment of various pain types, including inflammatory and chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Kinga Sałat
- Chair of Pharmacodynamics, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland.
| | - Anna Furgała
- Chair of Pharmacodynamics, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Robert Sałat
- Faculty of Production Engineering, Warsaw University of Life Sciences, 164 Nowoursynowska St, 02-787, Warsaw, Poland
| |
Collapse
|
14
|
Effect of simvastatin on sensorial, motor, and morphological parameters in sciatic nerve crush induced-neuropathic pain in rats. Inflammopharmacology 2017; 26:793-804. [PMID: 29188473 DOI: 10.1007/s10787-017-0425-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
The present study compares the effects of a low and high doses of simvastatin in a model of peripheral neuropathy by evaluating sensorial, motor, and morphological parameters. First, male Wistar rats were orally treated with vehicle (saline, 1 mL/kg), simvastatin (2 and 80 mg/kg) or morphine (2 mg/kg, s.c.), 1 h before 2.5% formalin injection. Neuropathic pain was induced by crushing the sciatic nerve, and mechanical and cold allodynia, nerve function, histology, MPO and NAG concentrations, as well as mevalonate induced-nociception were evaluated. Animals were orally treated with vehicle, simvastatin, or gabapentin (30 mg/kg) for 18 days. Simvastatin (2 and 80 mg/kg) reduced the inflammatory pain induced by formalin, but failed to decrease the paw edema. Mechanical allodynia was reduced by the simvastatin (2 mg/kg) until the 12th day after injury and until the 18th day by gabapentin. However, both simvastatin and gabapentin treatments failed in attenuated cold allodynia or improved motor function. Interestingly, both doses of simvastatin showed a neuroprotective effect and inhibited MPO activity without altering kidney and hepatic parameters. Additionally, only the higher dose of simvastatin reduced the cholesterol levels and the nociception induced by mevalonate. Our results reinforce the antinociceptive, antiallodynic, and anti-inflammatory effects of oral simvastatin administration, which can strongly contribute to the sciatic nerve morphology preservation. Furthermore, our data suggest that lower and higher doses of simvastatin present beneficial effects that are dependent and independent of the mevalonate pathway, respectively, without causing signs of nerve damage.
Collapse
|
15
|
Khangura RK, Bali A, Kaur G, Singh N, Jaggi AS. Neuropathic pain attenuating effects of perampanel in an experimental model of chronic constriction injury in rats. Biomed Pharmacother 2017; 94:557-563. [DOI: 10.1016/j.biopha.2017.07.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 01/31/2023] Open
|
16
|
Pharmacological investigations on mast cell stabilizer and histamine receptor antagonists in vincristine-induced neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1087-1096. [PMID: 28916845 DOI: 10.1007/s00210-017-1426-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/08/2017] [Indexed: 01/10/2023]
Abstract
The present study was designed to investigate the role of mast cells and mast cell-derived histamine in vincristine-induced neuropathic pain. Neuropathic pain was induced by administration of vincristine (100 μg/kg, i.p.) over a period of 10 days, with a break of 2 days, and pain behavioural estimations including pin prick, hot plate and acetone spray tests were performed to assess mechanical and heat hyperalgesia and cold allodynia, respectively, on days 0, 14 and 28. Mast cell stabilizer, sodium cromoglycate, H1 receptor antagonist promethazine and H2 receptor antagonist ranitidine were administered over a period of 12 days. Administration of vincristine resulted in significant development of heat and mechanical hyperalgesia as well as cold allodynia. Furthermore, the pain observed was markedly elevated on the 28th day in comparison to the 14th day. Administration of sodium cromoglycate, promethazine and ranitidine significantly reduced mechanical and heat hyperalgesia and cold allodynia. However, the pain-attenuating effects of ranitidine were significantly less as compared to sodium cromoglycate and promethazine, which suggests that H1 receptors play a more important role than H2 receptors in vincristine-induced neuropathic pain. It may be concluded that vincristine may degranulate mast cells to release inflammatory mediators, particularly histamine which may act through H1 (primarily H1) and H2 receptors to induce neuropathic pain.
Collapse
|
17
|
Vieira G, Cavalli J, Gonçalves ECD, Gonçalves TR, Laurindo LR, Cola M, Dutra RC. Effects of Simvastatin Beyond Dyslipidemia: Exploring Its Antinociceptive Action in an Animal Model of Complex Regional Pain Syndrome-Type I. Front Pharmacol 2017; 8:584. [PMID: 28928655 PMCID: PMC5591456 DOI: 10.3389/fphar.2017.00584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP) was induced by ischemia and reperfusion (IR) injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP) channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs) activator] and bradykinin (BK) stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2). Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron). Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I.
Collapse
Affiliation(s)
- Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Cellular Biology and Developmental, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| | - Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Larissa R Laurindo
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| |
Collapse
|