1
|
Wang XQ, Yang J, Zhang M, Wu D, Hu T, Yang J. Highly stable lanthanide(III) metal-organic frameworks as ratiometric fluorescence sensors for vitamin B 6. Dalton Trans 2023; 52:13387-13394. [PMID: 37676645 DOI: 10.1039/d3dt01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Three lanthanide(III)-based metal-organic frameworks, formulated as [(CH3)2NH2]2[Ln6(μ3-OH)8(EBTC)3(H2O)6]·4H2O·2DMF (Ln = Eu (1), Tb (2) and Ce (3)), were synthesized using a rigid tetracarboxylate organic ligand (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid, H4EBTC). Complexes 1-3 possess 12-connected hexanuclear [Ln6(μ3-OH)8(OOC-)12(H2O)6] clusters with the ftw topology, which were stable in water and acid/alkaline aqueous solution. Due to the antenna effect, complexes 1 and 2 presented double fluorescence emission peaks, which are the characteristic emission peaks of Ln3+ ions and the ligand H4EBTC, respectively. The doped bimetallic EuxTb1--x-MOFs were obtained by tuning the Eu(III)/Tb(III) ratio during the reaction, which exhibited a colour change from red, orange, and yellow to green. Furthermore, complexes 1, 2 and Eu2Tb8-MOF as ratiometric fluorescence sensors exhibited excellent sensing ability for vitamin B6 (VB6) in phosphate buffer solution (pH = 7.35) and real samples with high selectivity and reusability. The low detection limit (LOD) values were calculated to be 1.03 μM for complex 1, 0.25 μM for complex 2 and 0.11 μM for Eu2Tb8-MOF in aqueous solution. Finally, a visual film based on Ln-MOF@SA was prepared to detect VB6 with high reusability.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jiandong Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Man Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Dan Wu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
- Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
2
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
3
|
Yu H, Kim S, Chang PS. Lipase-catalyzed production of pyridoxine monolaurate in solvent-free bioreactor system. Food Chem 2023; 399:133949. [DOI: 10.1016/j.foodchem.2022.133949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
|
4
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Khatiwada S, Lecomte V, Fenech MF, Morris MJ, Maloney CA. Effects of Micronutrient Supplementation on Glucose and Hepatic Lipid Metabolism in a Rat Model of Diet Induced Obesity. Cells 2021; 10:1751. [PMID: 34359921 PMCID: PMC8304500 DOI: 10.3390/cells10071751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity increases the risk of metabolic disorders, partly through increased oxidative stress. Here, we examined the effects of a dietary micronutrient supplement (consisting of folate, vitamin B6, choline, betaine, and zinc) with antioxidant and methyl donor activities. Male Sprague Dawley rats (3 weeks old, 17/group) were weaned onto control (C) or high-fat diet (HFD) or same diets with added micronutrient supplement (CS; HS). At 14.5 weeks of age, body composition was measured by magnetic resonance imaging. At 21 weeks of age, respiratory quotient and energy expenditure was measured using Comprehensive Lab Animal Monitoring System. At 22 weeks of age, an oral glucose tolerance test (OGTT) was performed, and using fasting glucose and insulin values, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated as a surrogate measure of insulin resistance. At 30.5 weeks of age, blood and liver tissues were harvested. Liver antioxidant capacity, lipids and expression of genes involved in lipid metabolism (Cd36, Fabp1, Acaca, Fasn, Cpt1a, Srebf1) were measured. HFD increased adiposity (p < 0.001) and body weight (p < 0.001), both of which did not occur in the HS group. The animals fed HFD developed impaired fasting glucose, impaired glucose tolerance, and fasting hyperinsulinemia compared to control fed animals. Interestingly, HS animals demonstrated an improvement in fasting glucose and fasting insulin. Based on insulin release during OGTT and HOMA-IR, the supplement appeared to reduce the insulin resistance developed by HFD feeding. Supplementation increased hepatic glutathione content (p < 0.05) and reduced hepatic triglyceride accumulation (p < 0.001) regardless of diet; this was accompanied by altered gene expression (particularly of CPT-1). Our findings show that dietary micronutrient supplementation can reduce weight gain and adiposity, improve glucose metabolism, and improve hepatic antioxidant capacity and lipid metabolism in response to HFD intake.
Collapse
Affiliation(s)
- Saroj Khatiwada
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (S.K.); (V.L.); (M.J.M.)
| | - Virginie Lecomte
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (S.K.); (V.L.); (M.J.M.)
| | - Michael F. Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, 108 North Terrace, Adelaide, SA 5001, Australia;
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (S.K.); (V.L.); (M.J.M.)
| | - Christopher A. Maloney
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (S.K.); (V.L.); (M.J.M.)
| |
Collapse
|
6
|
Electrochemical vitamin sensors: A critical review. Talanta 2021; 222:121645. [DOI: 10.1016/j.talanta.2020.121645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
|
7
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
8
|
Nowacka-Woszuk J. Nutrigenomics in livestock-recent advances. J Appl Genet 2019; 61:93-103. [PMID: 31673964 PMCID: PMC6968980 DOI: 10.1007/s13353-019-00522-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/13/2023]
Abstract
The study of the effects of nutrients on genome functioning, in terms of gene transcription, protein levels, and epigenetic mechanisms, is referred to as nutrigenomics. Nutrigenomic studies in farm animals, as distinct from rodents, are limited by the high cost of keeping livestock, their long generational distance, and ethical aspects. Yet farm animals, and particularly pigs, can serve as valuable animal models for human gastrological diseases, since they possess similar size, physiology, and nutritional habits and can develop similar pathological states. In livestock, the effects of dietary modifications have mostly been studied with reference to effective breeding and their influence on production traits and animal health. The majority of such studies have looked at the impact of various sources and quantities of fat and protein, supplementation with microelements, and plant-derived additives. The period of life of the animal—whether prenatal, neonatal, or mature—is typically considered when a modified diet is used. This review presents a summary of recent nutrigenomic studies in livestock.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|