1
|
Pereira AR, Campos AS, Matos MJ, Maistro EL. Study of the DNA damage and cell death in human peripheral blood mononuclear and HepG2/C3A cells exposed to the synthetic 3-(3-hydroxyphenyl)-7-hydroxycoumarin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:33-46. [PMID: 37886814 DOI: 10.1080/15287394.2023.2274331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hydroxycoumarins are an important source of biologically active compounds. Previous studies have shown that the number and position of the hydroxyl substituents in the scaffold play an important role for the observed biological activity. In the present study, 3-(3-hydroxyphenyl)-7-hydroxycoumarin was synthesized, and potential cytogenotoxic effects determined in human HepG2/C3A cells displaying phase 1 and phase 2 enzymes (metabolizing cell ability) and compared to human peripheral blood mononuclear cells (PBMC) without xenobiotics metabolizing capacity. Cell viability was determined with concentrations between 0.01 and 10 µg/ml of 3-(3-hydroxyphenyl)-7-hydroxycoumarin using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and trypan blue tests. Genotoxicity was determined utilizing the comet assay, and the clastogenic/aneugenic potential employing the micronucleus (MN) test. The results of the in vitro cytotoxicity assays showed a significant decrease in cell viability of PBMC following exposure to 10 µg/ml concentration of the studied compound after 48 and 72 hr. Comet assay observations noted significant DNA damage in PBMC after 4 hr treatment. No marked cytogenotoxic effects were found in HepG2/C3A cells. No chromosomal mutations were observed in both cell lines. It is important to note that 3-(3-hydroxyphenyl)-7-hydroxycoumarin may exert beneficial pharmacological actions at the low micromolar range and with half-life less than 24 hr. Therefore, the results obtained encourage the continuation of studies on this new molecule for medicinal purposes, but its potential toxicity at higher concentrations and longer exposure times needs to be investigated in further studies.
Collapse
Affiliation(s)
- André Rogerio Pereira
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Ashley Silva Campos
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, España
| | - Edson Luis Maistro
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| |
Collapse
|
2
|
Sachan K, Verma S, Arora K, Bharti U, Singh PK, Singh S. Traditional Herbal Medications Utilized in the Indian Medical System forthe Management of Diabetes: An Updated Review and Clinical Implications. Curr Diabetes Rev 2024; 20:e230124226017. [PMID: 38275040 DOI: 10.2174/0115733998273029231121094725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 01/27/2024]
Abstract
Phytomedicine, also called botanical medicine, is the practice of using plants to treat disease. Diabetes, for example, has been treated and prevented with herbal medication for a lot longer than Western medicine. Worldwide, diabetes has become a major health concern. The management of diabetes and hyperglycemia, two of the most common public health threats, is far from ideal. When hyperglycemia persists or is not under control, diabetes-related complications, like blindness, lower limb amputations, renal disease, and cardiovascular disease, play a significant role in the morbidity and mortality of the disease. Although chemicals and biochemical agents can assist in managing diabetes, there is currently no complete cure for the disease. Herbal remedies are one of many methods that can be used to treat and prevent diabetes and its subsequent problems. Numerous traditional treatments have been discovered for diabetes as a result of extensive research efforts. However, there are many factors to consider when deciding which herbs to use, such as the patient's financial status, the presence or absence of co-morbidities, and the accessibility, cost-effectiveness, and safety profile of the herbs. This article focuses on the use of herbal and natural remedies in the treatment and prevention of diabetes, the mechanisms by which these remedies lower blood glucose levels, and the specific herbal items now utilized in the management of diabetes.
Collapse
Affiliation(s)
- Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Suryakant Verma
- School of Pharmacy, Bharat Institute of Technology, Meerut, Uttar Pradesh, India
| | - Kunal Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Ujjwal Bharti
- ITS College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Pannala VR, Wallqvist A. High-Throughput Transcriptomics Differentiates Toxic versus Non-Toxic Chemical Exposures Using a Rat Liver Model. Int J Mol Sci 2023; 24:17425. [PMID: 38139254 PMCID: PMC10743995 DOI: 10.3390/ijms242417425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
To address the challenge of limited throughput with traditional toxicity testing, a newly developed high-throughput transcriptomics (HTT) platform, together with a 5-day in vivo rat model, offers an alternative approach to estimate chemical exposures and provide reasonable estimates of toxicological endpoints. This study contains an HTT analysis of 18 environmental chemicals with known liver toxicity. They were evaluated using male Sprague Dawley rats exposed to various concentrations daily for five consecutive days via oral gavage, with data collected on the sixth day. Here, we further explored the 5-day rat model to identify potential gene signatures that can differentiate between toxic and non-toxic liver responses and provide us with a potential histopathological endpoint of chemical exposure. We identified a distinct gene expression pattern that differentiated non-hepatotoxic compounds from hepatotoxic compounds in a dose-dependent manner, and an analysis of the significantly altered common genes indicated that toxic chemicals predominantly upregulated most of the genes and several pathways in amino acid and lipid metabolism. Finally, our liver injury module analysis revealed that several liver-toxic compounds showed similarities in the key injury phenotypes of cellular inflammation and proliferation, indicating potential molecular initiating processes that may lead to a specific end-stage liver disease.
Collapse
Affiliation(s)
- Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Dos Santos Silva E, Matos MJ, Maistro EL. Evaluation of in vitro cytotoxic and genotoxic effects of the 3-(3,4-dihydroxyphenyl)-8-hydroxycoumarin. J Appl Toxicol 2023; 43:1488-1498. [PMID: 37118884 DOI: 10.1002/jat.4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023]
Abstract
A wide variety of natural and synthetic coumarins present therapeutic potential. Therefore, the assessment of their safety for humans is essential. 3-(3,4-Dihydroxyphenyl)-8-hydroxycoumarin is a coumarin derivative with antioxidant properties, among other biological activities. The aim of this study is to evaluate the cytotoxic and genotoxic potential of this molecule on peripheral blood mononuclear cells (PBMC) and human hepatocellular carcinoma cells (HepG2/C3A). The results obtained for the cytotoxicity assays, evaluated by the trypan blue staining assay, using concentrations between 0.1 and 20 μg/mL, showed that there is no decrease in cell viability for both cell lines. The MTT assay showed a significant decrease in the viability of HepG2/C3A cells at the highest concentrations tested, after 48 h, for all the tested concentrations, after 72 h of exposure. Regarding the genotoxic assays, the data obtained by the comet assay and the micronucleus test, up to the tested concentration of 10 μg/mL, do not show significant DNA damage and/or chromosomal mutations, for both cell lines. However, at the highest tested concentration of 20 μg/mL, a small but significant genotoxic effect was observed in PBMC. In view of the observed results, it can be concluded that the 3-(3,4-dihydroxyphenyl)-8-hydroxycoumarin, up to a concentration of 10 μg/mL, does not present genotoxic effects in human cells with and without liver enzymes metabolism. Additional studies with higher concentrations of this molecule need to be performed to address its complete biosafety.
Collapse
Affiliation(s)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Edson Luis Maistro
- Faculdade de Medicina de Marilia, FAMEMA, Marília, Brazil
- Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia, Universidade Estadual Paulista-UNESP, Marília, Brazil
| |
Collapse
|
5
|
Britza SM, Musgrave IF, Farrington R, Byard RW. Intestinal epithelial damage due to herbal compounds - an in vitro study. Drug Chem Toxicol 2023; 46:247-255. [PMID: 34979837 DOI: 10.1080/01480545.2021.2021929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial injury from herbal products has rarely been reported, despite the gut being the first point of contact for oral preparations. These products often consist of multiple herbs, thereby potentially exposing consumers to higher levels of reactive phytochemicals than predicted due to pharmacokinetic interactions. The phytochemical coumarin, found in many herbal products, may be taken in combination with herbal medicines containing astragalosides and atractylenolides, purported cytochrome P450 (CYP) modulators. As herbal use increases, the need to predict interactions in multiple at-risk organ systems is becoming critical. Hence, to determine whether certain herbal preparations containing coumarin may cause damage to the intestinal epithelium, Caco2 cells were exposed to common phytochemicals. Coumarin, astragaloside IV (AST-IV) or atractylenolide I (ATR-I) solutions were exposed to Caco2 cultures in increasing concentrations, individually or combined. Coumarin produced a significant concentration-dependant fall in cell viability that was potentiated when CYP enzymes were induced with rifampicin and incubated with CYP3A4 inhibitor econazole, suggesting a role for other CYP enzymes generating toxic metabolites. ATR-I alone produced no toxicity in uninduced cells but showed significant toxicity in rifampicin-induced cells. ATR-I had no effect on coumarin-induced toxicity. AST-IV was nontoxic alone but produced significant toxicity when combined with nontoxic concentrations of coumarin. The combination of coumarin, ATR-I and AST-IV was significantly toxic, but no synergistic interaction was seen. This investigation was conducted to determine the likelihood for intestinal-based interactions, with the results demonstrating coumarin is potentially toxic to intestinal epithelium, and combinations with other phytochemicals can potentiate this toxicity.
Collapse
Affiliation(s)
- Susan M Britza
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia.,Forensic Science South Australia, Adelaide, South Australia
| |
Collapse
|
6
|
Görmez Ö, Akay S, Gözmen B, Kayan B, Kalderis D. Degradation of emerging contaminant coumarin based on anodic oxidation, electro-Fenton and subcritical water oxidation processes. ENVIRONMENTAL RESEARCH 2022; 208:112736. [PMID: 35041815 DOI: 10.1016/j.envres.2022.112736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The degradation of emerging contaminant coumarin was separately investigated in anodic, electro-Fenton and subcritical water oxidation processes. With respect to the anodic and electro-Fenton oxidation, the influence of constant current, treatment time and initial concentration of coumarin was studied. Regarding subcritical water oxidation, the effect of the oxidant concentration, temperature, treatment time and initial coumarin concentration was investigated. In anodic and electro-Fenton oxidation processes, coumarin degradation proceeded in a similar manner, achieving 99% degradation, after 180 min at a constant current of 200 mA. In both set-ups, further increasing the applied current lowered the degradation efficiency due to the formation of by-products and the increasing occurrence of side-reactions. The highest degradation of 88% was achieved in subcritical conditions, specifically at 200 °C, using 150 mM H2O2 and after 37.5 min of treatment. Under subcritical conditions, temperature was the most prominent parameter, followed by the H2O2 concentration. Under all methodologies, increasing treatment time had a small positive effect on coumarin degradation, indicating that time is not the most influential parameter. A comparison of the three methodologies in terms of performance as well as energy consumption and simplicity of operation highlighted the advantages of subcritical water oxidation.
Collapse
Affiliation(s)
- Özkan Görmez
- Department of Chemistry, Arts and Science Faculty, Mersin University, Mersin, Turkey.
| | - Sema Akay
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey.
| | - Belgin Gözmen
- Department of Chemistry, Arts and Science Faculty, Mersin University, Mersin, Turkey.
| | - Berkant Kayan
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey.
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, 73100, Crete, Greece.
| |
Collapse
|
7
|
Britza SM, Musgrave IF, Byard RW. Implications for herbal polypharmacy: coumarin-induced hepatotoxicity increased through common herbal phytochemicals astragaloside IV and atractylenolide I. Toxicol Mech Methods 2022; 32:606-615. [PMID: 35354423 DOI: 10.1080/15376516.2022.2057267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatotoxicity is a well-known adverse effect of many substances, with toxicity often resulting from interactions of drugs with other drug-like substances. With the increased availability of complementary and alternative medicines, including herbal medicines, the likelihood of adverse interactions between drugs and drug-like substances in herbs increases. However, the impact of potential herb-herb interactions is little understood. To assess the potential of two cytochrome P450 enzyme modulating phytochemicals common to many herbal medicines, atractylenolide I (ATR-I) and astragaloside IV (AST-IV), to interact with coumarin, another phytochemical common in many foods, a hepatocyte function model with a liver carcinoma cell line, HepG2, was exposed to these agents. To determine the effects of cytochrome P450 modulation by these phytochemicals certain cells were induced with rifampicin to induce cytochrome P450. Increasing concentrations of ATR-I combined with a fixed, nontoxic concentration of coumarin (200 µM), demonstrated significant additive interactions. 300 µM ATR-I produced a 31% reduction in cell viability (p < 0.01) with coumarin in rifampicin uninduced cells. In rifampicin-induced cells, ATR-I (100-300 µM) produced a significant reduction in cell viability (p < 0.01) with coumarin (200 µM). AST-IV with fixed coumarin (200 µM) showed 27% toxicity at 300 µM AST-IV in rifampicin uninduced cells (p < 0.05) and 30% toxicity in rifampicin induced cells (p < 0.05). However, when fixed coumarin and AST-IV were combined with increasing concentrations of ATR-I no further significant increase in toxicity was observed (p > 0.05). These results demonstrate the potential toxic interactive capabilities of common traditional Chinese herbal medicine phytochemicals and underline the potential importance of coumarin-mediated toxicity.
Collapse
Affiliation(s)
- Susan M Britza
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ian F Musgrave
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Roger W Byard
- School of Biomedicine, The University of Adelaide, Adelaide, Australia.,Forensic Science South Australia, Adelaide, Australia
| |
Collapse
|
8
|
Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells 2022; 11:cells11020288. [PMID: 35053404 PMCID: PMC8774478 DOI: 10.3390/cells11020288] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.
Collapse
|
9
|
A novel sight of the primary active compounds from Umbelliferae: focusing on mitochondria. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9:80-94. [PMID: 35005109 PMCID: PMC8720699 DOI: 10.1016/j.gendis.2021.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Dehui Kong
- School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongsheng Liu
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Mingkai Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Corresponding author. Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi Province 710032, PR China.
| |
Collapse
|
11
|
Wu Z, Geng Y, Buist-Homan M, Moshage H. Scopoletin and umbelliferone protect hepatocytes against palmitate- and bile acid-induced cell death by reducing endoplasmic reticulum stress and oxidative stress. Toxicol Appl Pharmacol 2021; 436:115858. [PMID: 34979142 DOI: 10.1016/j.taap.2021.115858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The number of patients with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing due to the growing epidemic of obesity. Non-alcoholic steatohepatitis (NASH), the inflammatory stage of NAFLD, is characterized by lipid accumulation in hepatocytes, chronic inflammation and hepatocyte cell death. Scopoletin and umbelliferone are coumarin-like molecules and have antioxidant, anti-cancer and anti-inflammatory effects. Cytoprotective effects of these compounds have not been described in hepatocytes and the mechanisms of the beneficial effects of scopoletin and umbelliferone are unknown. AIM To investigate whether scopoletin and/or umbelliferone protect hepatocytes against palmitate-induced cell death. For comparison, we also tested the cytoprotective effect of scopoletin and umbelliferone against bile acid-induced cell death. METHODS Primary rat hepatocytes were exposed to palmitate (1 mmol/L) or the hydrophobic bile acid glycochenodeoxycholic acid (GCDCA; 50 μmol/L). Apoptosis was assessed by caspase-3 activity assay, necrosis by Sytox green assay, mRNA levels by qPCR, protein levels by Western blot and production of reactive oxygen species (ROS) by fluorescence assay. RESULTS Both scopoletin and umbelliferone protected against palmitate and GCDCA-induced cell death. Both palmitate and GCDCA induced the expression of ER stress markers. Scopoletin and umbelliferone decreased palmitate- and GCDCA-induced expression of ER stress markers, phosphorylation of the cell death signaling intermediate JNK as well as ROS production. CONCLUSION Scopoletin and umbelliferone protect against palmitate and bile acid-induced cell death of hepatocytes by inhibition of ER stress and ROS generation and decreasing phosphorylation of JNK. Scopoletin and umbelliferone may hold promise as a therapeutic modality for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Wang Y, Wang R, Qi X, Li W, Guan Q, Wang R, Li X, Li Y, Yang Z, Feng Y. Novel transethosomes for the delivery of brucine and strychnine: Formulation optimization, characterization and in vitro evaluation in hepatoma cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Rietjens IM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rosol TJ, Davidsen JM, Harman CL, Murray IJ, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Cinnamomum and Myroxylon-derived flavoring ingredients. Food Chem Toxicol 2020; 135:110949. [DOI: 10.1016/j.fct.2019.110949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023]
|
14
|
Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, Ern LY, Ashraf NA, Kit SW, Yee TS, Pichika MR, Gorain B, Kesharwani P. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8:361-376. [PMID: 29992107 PMCID: PMC6035310 DOI: 10.1016/j.jtcme.2017.08.012] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Herbal medicine, phytomedicine or botanical medicine are synonymous, utilizes plants intended for medicinal purposes. Medicinal use of herbal medicine in the treatment and prevention of diseases including diabetes has a long history compared to conventional medicine. Diabetes is one of the major public health concerns over the world. Diabetes or hyperglycemia is considered to be one of the common public health hazard; optimal control of which is still not possible. Persistent hyperglycemia or uncontrolled diabetes has the potential to cause serious complications such as kidney disease, vision loss, cardiovascular disease, and lower-limb amputations which contributed towards morbidity and mortality in diabetes. There are various approaches to treat and prevent diabetes as well as its secondary complications, one of it is herbal medicines. However, the selection of herbs might depends on several factors, which include the stage of progression of diabetes, types of comorbidities that the patients are having, availability, affordability as well as the safety profile of the herbs. This review focuses on the herbal and natural remedies that play the role in the treatment or prevention of this morbid disorder - diabetes, including their underlying mechanisms for the blood glucose-lowering property and the herbal products already been marketed for the remedial action of diabetes.
Collapse
Affiliation(s)
- Hira Choudhury
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Chua Kui Hua
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Cheah Shi Mun
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Jessmie Koh Jing
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Lillian Kong
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Liang Yee Ern
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Nik Ahmad Ashraf
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Soohg Wai Kit
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Tan Sin Yee
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Petalling Jaya, Kuala Lumpur, Selangor, 47301, Malaysia
| | - Prashant Kesharwani
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| |
Collapse
|
15
|
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules 2018; 23:E250. [PMID: 29382051 PMCID: PMC6017103 DOI: 10.3390/molecules23020250] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Many naturally occurring substances, traditionally used in popular medicines around the world, contain the coumarin moiety. Coumarin represents a privileged scaffold for medicinal chemists, because of its peculiar physicochemical features, and the versatile and easy synthetic transformation into a large variety of functionalized coumarins. As a consequence, a huge number of coumarin derivatives have been designed, synthesized, and tested to address many pharmacological targets in a selective way, e.g., selective enzyme inhibitors, and more recently, a number of selected targets (multitarget ligands) involved in multifactorial diseases, such as Alzheimer's and Parkinson's diseases. In this review an overview of the most recent synthetic pathways leading to mono- and polyfunctionalized coumarins will be presented, along with the main biological pathways of their biosynthesis and metabolic transformations. The many existing and recent reviews in the field prompted us to make some drastic selections, and therefore, the review is focused on monoamine oxidase, cholinesterase, and aromatase inhibitors, and on multitarget coumarins acting on selected targets of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
16
|
Changes in coumarin kinetics and subcellular localization of CYP2E1 contribute to bile duct damage and reduce hepatocellular damage after repeated administration of coumarin in rats. Toxicol Lett 2017; 280:99-105. [PMID: 28803882 DOI: 10.1016/j.toxlet.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
Coumarin exhibits different hepatotoxicity in rats depending on the administration frequency. To investigate the underlying mechanisms for the differences, we administered coumarin to rats as a single dose or repeatedly for 4 weeks. We found large increases in blood levels of liver enzymes and noticeable centrilobular hepatic necrosis after a single dose of coumarin. After repeated administration, enzyme levels mildly increased, while those of γ-GTP and total bilirubin significantly increased, suggesting bile duct damage. In the control group, cytochrome P450 2E1 (CYP2E1) showed a diffuse subcellular distribution but accumulated within the hepatocyte endoplasmic reticulum after repeated coumarin administration. The maximum blood concentrations of coumarin and its metabolites were significantly lower upon repeated administration. The results suggest that changes in coumarin pharmacokinetics and CYP2E1 subcellular distribution contribute to resistance to coumarin-induced hepatic necrosis, while cytotoxicity of metabolic conjugates shown in vitro may contribute to bile duct damage upon repeated coumarin administration.
Collapse
|