1
|
Dos Santos BG, Klein CP, August PM, Crestani MS, Hozer RM, Saccomori AB, Dal Magro BM, Rodrigues KS, Matté C. Naringin supplementation during pregnancy alters rat offspring's brain redox system and mitochondrial function. Brain Res 2025; 1847:149317. [PMID: 39515745 DOI: 10.1016/j.brainres.2024.149317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Naringin supplementation is known to ameliorate oxidative stress in the central nervous system (CNS) and improve cognitive function in disease models using adult rodents. However, if this supplementation is applied during critical periods of development, would it still be beneficial? To address this question, we used pregnant Wistar rats that were supplemented daily with naringin (100 mg/kg) during gestation. After delivery, pups were euthanized on postnatal day (PND) 1, 7, and 21. The prefrontal cortex, hippocampus, striatum, and cerebellum were dissected for redox system and mitochondrial function evaluation. Our data demonstrated that naringin supplementation to pregnant rats during gestation differentially affected the brain structures analyzed, inducing a dysregulation in the redox homeostasis, mainly on PND1. Redox and mitochondrial alterations found in offspring's cerebellum on PND1 were also observed on PND7, and persisted up to PND21, indicating a higher susceptibility of this structure to the effects triggered by maternal naringin supplementation. In contrast to what was observed in the cerebellum, we found a progressive decline in the number of alterations in the prefrontal cortex, hippocampus, and striatum from PND1 up to PND21, suggesting that these brain structures are not as susceptible as the cerebellum to the naringin's effects. Thus, our findings demonstrate a possible negative programming effect triggered by maternal naringin supplementation during pregnancy in the offspring's brain, especially in the cerebellum.
Collapse
Affiliation(s)
- B G Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C P Klein
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - P M August
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M S Crestani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R M Hozer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A B Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - B M Dal Magro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - K S Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C Matté
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Kalandakanond-Thongsong S, Daendee S, Thongsong B, Srikiatkhachorn A. Daidzein, but not genistein, has anxiolytic-liked effect on intact male Wistar rats. Behav Brain Res 2024; 474:115172. [PMID: 39094955 DOI: 10.1016/j.bbr.2024.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The phytoestrogens daidzein and genistein are ubiquitous in human food. This study aimed to elucidate their anxiety-liked effects, their effects on the reproductive organs, and the molecular mechanism behind any anxiety-liked effects in intact adult male Wistar rats. These phytoestrogens are of interest due to their posited health benefits, particularly for female, but with some effect on males as well. This study comprised two experiments: (1) Male Wistar rats received either a vehicle, daidzein, or genistein (0.25, 0.50, or 1.00 mg/kg) by subcutaneously injection for four weeks. They were then tested for anxiety-liked behaviors. Then, the brain monoamines in anxiolytic rats were determined; (2) The modulation of gamma aminobutyric acid receptors by phytoestrogens was further analyzed by administration of diazepam to phytoestrogen-treated rats before behavioral tests. In the first experiment, the biological parameters measured, including body weight, daily food intake and reproductive organ weights were unaffected by either genistein or daidzein. However, anxiolytic-like effect was observed in the low-dose daidzein (0.25 mg/kg) group. Higher doses of daidzein or genistein of all doses had no effect. Further, the low-dose daidzein did not alter brain monoamine levels. In the second experiment, the anxiolytic-like behavior of daidzein-treated rats receiving diazepam did not differ from that of the rats treated with just diazepam or just daidzein. In conclusion, 4-week exposure to daidzein or genistein had no negative effects on the reproductive organs, body weight, food intake, anxiogenic-like behavior, or monoaminergic and diazepam-modulated GABAergic neurotransmissions of intact male rats. However, beneficial anxiolytic-like effects were apparent after low-dose treatment with daidzein.
Collapse
Affiliation(s)
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand.
| | - Boonrit Thongsong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
3
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects. Anim Reprod Sci 2022; 246:106896. [PMID: 34893378 DOI: 10.1016/j.anireprosci.2021.106896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
The renewal of the natural resources is one of the most concerning aspects of modern farming. In animal production, there are many barriers breeders and researchers have to overcome to develop new practices to improve reproductive potential and hasten sexual maturation of the commercially viable species, while maintaining meat quality and sustainability. With the utilization of molecular biology techniques, there have been relevant advances in the knowledge of spermatogenesis, especially in mammals, resulting in new possibilities to control male fertility and the selection of desirable characteristics. Most of these discoveries have not been implemented in animal production. In this review, recent studies are highlighted on the molecular pathways involved in spermatogenesis in the context of animal production. There is also exploration of the interaction between environmental factors and spermatogenesis and how this knowledge may revolutionize animal production techniques. Furthermore, new insights are described about the inheritance of desired characteristics in mammals and there is a review of nefarious actions of pollutants, nutrition, and metabolism on reproductive potential in subsequent generations. Even though there are these advances in knowledge base, results from recent studies indicate there are previously unrecognized environmental effects on spermatogenesis. The molecular mechanisms underlying this interaction are not well understood. Research in spermatogenesis, therefore, remains pivotal as a pillar of animal production sustainability.
Collapse
|
6
|
Solano F, Hernández E, Juárez-Rojas L, Rojas-Maya S, López G, Romero C, Casillas F, Betancourt M, López A, Heidari R, Ommati MM, Retana-Márquez S. Reproductive disruption in adult female and male rats prenatally exposed to mesquite pod extract or daidzein. Reprod Biol 2022; 22:100683. [PMID: 35932513 DOI: 10.1016/j.repbio.2022.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
Phytoestrogens are considered to be endocrine disruptors, since they can alter the endocrine system, thus disturbing many reproductive events. The intake of diets containing a high content of phytoestrogens has increased worldwide in human populations and in domestic animals. Phytoestrogens in maternal blood can pass through the placenta to the fetus in high amounts and can have long-term organizational effects. Mesquite (Prosopis sp) is a leguminous plant widely used to feed several livestock species, and is also used in the human diet. In this study we assessed the effects of exposure to mesquite pod extract during the periconception and pregnancy periods on the reproduction of male and female descendants. The females of three experimental groups received one of the following treatments: 1) vehicle injection; 2) mesquite pod extract or 3) the isoflavone daidzein during the periconception and pregnancy periods. Estrous cyclicity, sexual behavior and hormones, as well as uterine and vaginal epithelia were evaluated in the female descendants. In the males, sexual behavior and hormones, apoptosis in testicular cells and sperm quality were evaluated. In females the following was observed: alterations in estrous cycles, decreased sexual behavior, estradiol and progesterone levels, increased uterine and vaginal epithelia. In males, we observed a decrease in sexual behavior, testosterone and sperm quality, and apoptosis increased in testicular cells. All these effects were similar to those caused by daidzein. These results indicate that prenatal exposure to mesquite pod extract or daidzein, administered to females before and during pregnancy, can disrupt normal organizational-activational programming of reproductive physiology in female and male descendants.
Collapse
Affiliation(s)
- Floriberta Solano
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Eunice Hernández
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Susana Rojas-Maya
- Department of Neuroendocrinology of Reproductive Behavior, Veterinary Faculty, National Autonomous University of Mexico, Mexico
| | - Gabriela López
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Carlos Romero
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico.
| |
Collapse
|
7
|
Yang W, Deng J, Gao J, Yang H, Chen Q, Niya Z, Ling X, Zhang G, Zou P, Sun L, Huang L, Liu J, Cao J, Ao L. Associations between isoflavone exposure and reproductive damage in adult males: evidence from human and model system studies. Biol Reprod 2022; 107:1360-1373. [PMID: 35948002 DOI: 10.1093/biolre/ioac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/21/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
It's controversial whether exposure to isoflavones, constituents of certain plants such as soy bean, exerts male reproductive toxicity. This study was designed to investigate whether isoflavone exposure during adulthood could have deleterious impacts on male reproductive health by the cross-sectional study, animal experiments, and in vitro tests. In the cross-sectional study, we observed that urinary isoflavones were not significantly associated with semen quality including sperm concentrations, sperm count, progressive motility, and total motility, respectively (All P-value for trend>0.05). However, negative associations were found between plasma testosterone and urinary Σisoflavones, genistein, glycitein, and dihydrodaidzein (all P-value for trend <0.05). In the animal experiments, serum and intratesticular testosterone levels were decreased in mice exposed to several dosages of genistein. Genistein administration caused up-regulation of estrogen receptor alpha (ERα) and down-regulation of cytochrome P45017A1 (CYP17A1) protein levels in testes of mice. However, genistein treatment during adulthood did not induce appreciable structural damages of reproductive system in mice. In vitro tests, we observed that genistein of different dosages (0.01, 2.5, 10 μM) caused a concentration dependent inhibition of testosterone production by TM3 Leydig cells (half-maximal inhibitory concentration = 3.796 nM, P < 0.05). Elevated protein expression of ERα and decreased mRNA/protein level of CYP17A1 were also observed in genistein-treated cells. Protein level of CYP17A1 and testosterone concentration were significantly restored in the ERα siRNA-transfected cells, compared to cells that treated with genistein alone (P < 0.05). The results demonstrate that exposure to isoflavones during adulthood may be associated with alterations of reproductive hormones. Particularly for genistein, which inhibits testosterone biosynthesis through up-regulation of ERα in Leydig cells of mice, might induce the disruption of testosterone production in human. The present study provides novel perspective into potential targets for male reproductive compromise induced by isoflavone exposure.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jiuyang Deng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jianfang Gao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Zhou Niya
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Guowei Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| |
Collapse
|
8
|
Rashid R, Kumari A, Chattopadhyay N, Jha R, Rajender S. Genistein lowers fertility with pronounced effect in males: Meta-analyses on pre-clinical studies. Andrologia 2022; 54:e14511. [PMID: 35760341 DOI: 10.1111/and.14511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Genistein, an isoflavonoid, is found in a plethora of plant-based foods, and has been approved for use in various therapies. A couple of studies in adult men observed a negative correlation between genistein exposure and reproductive parameters. To assess the effects of genistein exposure on reproduction and fertility in males and females, we performed quantitative meta-analyses by pooling data from published studies on animals that assessed various reproductive parameters. Pooled analysis showed significant decreases in sperm count in males exposed to genistein during adulthood (Hedges's g = -2.51, p = 0.013) and in utero (Hedges's g = -0.861, p = 0.016) compared with controls. In males exposed to genistein in utero, serum testosterone levels decreased (Hedges's g = -6.301, p = 0.000) and luteinizing hormone (LH) (Hedges's g = 7.127, p = 0.000) and FSH (Hedges's g = 6.19, p = 0.000) levels increased in comparison with controls. In females, the number of corpora lutea (Hedges's g = -2.103, p = 0.019) and the litter size (Hedges's g = -1.773, p-value = 0.000) decreased; however, female reproductive hormones remained unaffected. These meta-analyses show that genistein has detrimental effects on male reproductive system and on the progression and sustenance of pregnancy, with more pronounced adverse impact in males, particularly when exposed in utero.
Collapse
Affiliation(s)
- Rumaisa Rashid
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anamika Kumari
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Jha
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Ronis MJJ, Gomez-Acevedo H, Shankar K, Hennings L, Sharma N, Blackburn ML, Miousse I, Dawson H, Chen C, Mercer KE, Badger TM. Soy Formula Is Not Estrogenic and Does Not Result in Reproductive Toxicity in Male Piglets: Results from a Controlled Feeding Study. Nutrients 2022; 14:nu14051126. [PMID: 35268101 PMCID: PMC8912539 DOI: 10.3390/nu14051126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Soy infant formula which is fed to over half a million infants per year contains isoflavones such as genistein, which have been shown to be estrogenic at high concentrations. The developing testis is sensitive to estrogens, raising concern that the use of soy formulas may result in male reproductive toxicity. In the current study, male White-Dutch Landrace piglets received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/kg/d) (M + E2) or supplemented with genistein (84 mg/L of diet; (M + G) from postnatal day 2 until day 21. E2 treatment reduced testis weight (p < 0.05) as percentage of body weight, significantly suppressed serum androgen concentrations, increased tubule area, Germ cell and Sertoli cell numbers (p < 0.05) relative to those of Sow or Milk groups. Soy formula had no such effects relative to Sow or Milk groups. mRNAseq revealed 103 differentially expressed genes in the M + E2 group compared to the Milk group related to endocrine/metabolic disorders. However, little overlap was observed between the other treatment groups. These data suggest soy formula is not estrogenic in the male neonatal piglet and that soy formula does not significantly alter male reproductive development.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Str., New Orleans, LA 70112, USA
- Correspondence:
| | - Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kartik Shankar
- Department of Pediatrics-Nutrition, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neha Sharma
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Michael L. Blackburn
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Isabelle Miousse
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Harry Dawson
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Celine Chen
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas M. Badger
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
10
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
11
|
Pool KR, Chazal F, Smith JT, Blache D. Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Front Endocrinol (Lausanne) 2022; 13:880861. [PMID: 35574027 PMCID: PMC9097266 DOI: 10.3389/fendo.2022.880861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens can impact on reproductive health due to their structural similarity to estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are known to influence reproductive capacity in numerous species. Estrogenic pastures continue to persist in sheep production systems, yet there has been little headway in our understanding of the underlying mechanisms that link phytoestrogens with compromised reproduction in sheep. Here we review the known and postulated actions of phytoestrogens on reproduction, with particular focus on competitive binding with nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the downstream impacts on normal physiological function. The review examines the evidence that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes depend on the developmental period when an individual is exposed to phytoestrogen.
Collapse
|
12
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
The Beneficial Role of Natural Endocrine Disruptors: Phytoestrogens in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3961445. [PMID: 34527172 PMCID: PMC8437597 DOI: 10.1155/2021/3961445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with a growing incidence rate primarily among the elderly. It is a neurodegenerative, progressive disorder leading to significant cognitive loss. Despite numerous pieces of research, no cure for halting the disease has been discovered yet. Phytoestrogens are nonestradiol compounds classified as one of the endocrine-disrupting chemicals (EDCs), meaning that they can potentially disrupt hormonal balance and result in developmental and reproductive abnormalities. Importantly, phytoestrogens are structurally, chemically, and functionally akin to estrogens, which undoubtedly has the potential to be detrimental to the organism. What is intriguing, although classified as EDCs, phytoestrogens seem to have a beneficial influence on Alzheimer's disease symptoms and neuropathologies. They have been observed to act as antioxidants, improve visual-spatial memory, lower amyloid-beta production, and increase the growth, survival, and plasticity of brain cells. This review article is aimed at contributing to the collective understanding of the role of phytoestrogens in the prevention and treatment of Alzheimer's disease. Importantly, it underlines the fact that despite being EDCs, phytoestrogens and their use can be beneficial in the prevention of Alzheimer's disease.
Collapse
|
14
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Lozi AA, Pinto da Matta SL, Sarandy MM, Silveira Alves de Melo FC, Araujo DC, Novaes RD, Gonçalves RV. Relevance of the Isoflavone Absorption and Testicular Function: A Systematic Review of Preclinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8853172. [PMID: 33628321 PMCID: PMC7895610 DOI: 10.1155/2021/8853172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/09/2022]
Abstract
Isoflavone is a phytoestrogen found in different types of food that can act as endocrine disrupters leading to testicular dysfunction. Currently, fragmented data on the action of this compound in the testicles make it difficult to assess its effects to define a safe dose. Thus, we systematically reviewed the preclinical evidence of the impact of isoflavone on testicular function. We also determined which form (aglycones or glycosylated) was the most used, which allowed us to understand the main biological processes involved in testicular function after isoflavone exposure. This systematic review was carried out according to the PRISMA guidelines using a structured search on the biomedical databases MEDLINE (PubMed), Scopus, and Web of Science, recovering and analyzing 22 original studies. The bias analysis and the quality of the studies were assessed by the criteria described in the risk of bias tool developed by SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). The aglycones and glycosylated isoflavones proved to be harmful to the reproductive health, and the glycosylates at doses of 50, 100, 146, 200, 300, 500, and 600 mg/kg, in addition to 190 and 1000 mg/L, appear to be even more harmful. The main testicular pathologies resulting from the use of isoflavones are associated with Leydig cells resulting from changes in molecular functions and cellular components. The most used isoflavone to evaluate testicular changes was the genistein/daidzein conjugate. The consumption of high doses of isoflavones promotes changes in the functioning of Leydig cells, inducing testicular changes and leading to infertility in murine models.
Collapse
Affiliation(s)
- Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Diane Costa Araujo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
16
|
Eustache F, Bennani Smires B, Moison D, Bergès R, Canivenc-Lavier MC, Vaiman D, Auger J. Different exposure windows to low doses of genistein and/or vinclozolin result in contrasted disorders of testis function and gene expression of exposed rats and their unexposed progeny. ENVIRONMENTAL RESEARCH 2020; 190:109975. [PMID: 32827888 DOI: 10.1016/j.envres.2020.109975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Living species including humans are continuously exposed to low levels of a myriad of endocrine active compounds that may affect their reproductive function. In contrast, experimental designs scrutinizing this question mostly consider the gestational/lactational period, select high unrealistic doses and, have rarely investigated the possible reproductive consequences in the progeny. The present study aimed at assessing comparatively a set of male reproductive endpoints according to exposure windows, gestational/lactational versus pre-pubertal to adulthood, using low doses of endocrine active substances in male rats as well as their unexposed male progeny. Animals were orally exposed to 1 mg/kg bw/d of genistein and/or vinclozolin, from conception to weaning or from prepuberty to young adulthood. A number of reproductive endpoints were assessed as well as testicular mRNA expression profiles, in the exposed rats and their unexposed progeny. Overall, the low dosage used only affected weakly most of classical reproductive endpoints. However, the gestational/lactational exposure to vinclozolin alone or combined to genistein significantly delayed the puberty onset. Contrasting with the gestational/lactational exposure, a decreased sperm production was found in the animals exposed to genistein and vinclozolin from the pre-pubertal period but also in their progeny for vinclozolin and the mixture. The expression level of several genes involved in meiosis, apoptosis and steroidogenesis was also affected differentially as a function of the exposure window in both exposed rats and unexposed offspring. We also provide further evidence that doses of endocrine active substances relevant with human exposure may affect the male reproductive phenotype and testicular transcriptome in the exposed generation as well as in the indirectly exposed offspring.
Collapse
Affiliation(s)
- Florence Eustache
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France.
| | - Badria Bennani Smires
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Delphine Moison
- INSERM UMR967, Laboratoire de Développement des Gonades, Equipe "Stabilité Génomique, Cellules Souches et Radiations", Université Paris 7, Sorbonne Paris Cité and CEA, Fontenay-aux-Roses, France
| | - Raymond Bergès
- INRA UMR1324, Centre des Sciences Du Goût et de L'Alimentation, Dijon, France
| | | | - Daniel Vaiman
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Jacques Auger
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| |
Collapse
|
17
|
Neonatal exposure to genistein affects reproductive physiology and behavior in female and male Long-Evans rats. Behav Pharmacol 2020; 31:610-621. [PMID: 32925206 DOI: 10.1097/fbp.0000000000000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was designed to examine the effects of neonatal genistein exposure on measures of reproductive physiology and behavior. Approximately 24 h after birth, female and male Long-Evans rat pups were injected daily with genistein (150 µg, subcutaneous; n = 29) or olive oil (n = 23) between postnatal days 1 and 5. After weaning, we examined all subjects daily until they reached puberty (i.e. vaginal opening in female rats and preputial separation in male rats). For all female subjects, we also examined vaginal cytology. After monitoring estrous cyclicity, the female subjects were given the opportunity to interact with a gonadally intact male or a sexually receptive female rat on the day of behavioral estrus to assess sexual motivation (i.e. partner-preference test with and without physical contact), which has never been evaluated before. For all male subjects, we assessed the development of copulatory behavior and sexual motivation (partner-preference test without physical contact). Consistent with previous findings, we found that neonatal exposure to genistein did not affect puberty onset in female or male rats. However, female rats exposed to genistein displayed significantly more irregular estrous cycles than controls. Neonatal genistein exposure also altered the development of male copulatory behavior, as indicated by an increase in mount frequency and intromission frequency and shorter interintromission intervals. We extended previous findings confirming that neither female nor male sexual motivation was affected by neonatal genistein. The results of the present study have important implications for the development of reproductive physiology and behavior in human neonates exposed to genistein in soy-based baby formula.
Collapse
|
18
|
Kuang L, Lei M, Li C, Guo Z, Ren Y, Zhang X, Zheng J, Zhang C, Yang C, Mei X, Tang L, Ji Y, Deng X, Yang R, Xie X. Whole transcriptome sequencing reveals that non-coding RNAs are related to embryo morphogenesis and development in rabbits. Genomics 2020; 112:2203-2212. [DOI: 10.1016/j.ygeno.2019.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
|
19
|
Shi Z, Lv Z, Hu C, Zhang Q, Wang Z, Hamdard E, Dai H, Mustafa S, Shi F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals (Basel) 2020; 10:ani10030377. [PMID: 32111017 PMCID: PMC7143625 DOI: 10.3390/ani10030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Spermatogenesis and hormones secretions are important life-threating and complicated process, which can be affected by environmental estrogens. Genistein, a type of isoflavones, widely exists in the soybean products diet, which exerts a controversial role in reproductive regulation for its special structures or functions. The results of the study revealed that low-dose genistein treatment increased the level of testosterone in the mice serum, and positively regulated expression of spermatogenesis-related genes, which enhanced spermatogenesis and testicular development. However, High-dose genistein treatment induced apoptosis of germ cells and inhibited proliferation of germ cells during spermatogenesis. Reproductive alterations in the structures and functions of testis were dose-dependent in different genistein treatments. Abstract Sexual hormones are essential for the process of spermatogenesis in the testis. However, the effect of maternal genistein (GEN) on the pups’ testicular development remain-unclear. Our present study evaluated the effects of supplementing GEN for parental and offspring mice on the reproductive function and growth performance of the male pups. Mothers during gestation and lactation period were assigned to a control diet (CON group), low dose GEN (LGE group) diet (control diet +40 mg/kg GEN), and high dose of GEN (HGE group) diet (control diet +800 mg/kg GEN). Their male offspring underwent the same treatment of GEN after weaning. LGE treatment (40 mg/kg GEN) significantly increased body weights (p < 0.001), testes weights (p < 0.05), diameters of seminiferous tubule (p < 0.001) and heights of seminiferous epithelium (p < 0.05) of offspring mice. LGE treatment also increased serum testosterone (T) levels and spermatogenesis scoring (p < 0.05). However, HGE treatment (800mg/kg GEN) significantly decreased body weights (p < 0.001), testes weights (p < 0.05) and testis sizes (p < 0.001). Furthermore, mRNA expressions of ESR2 (p < 0.05), CYP19A1 (p < 0.001), SOX9 (p < 0.001) and BRD7 (p < 0.001) in testis of mice were increased in the LGE group. Similarly, HGE treatment increased mRNA expressions of ESR2 (p < 0.05) and CYP19A1 (p < 0.001). However, mRNA expressions of SOX9 and BRD7 were decreased significantly in the HGE group (p < 0.001). Meanwhile, higher ratio apoptotic germ cells and abnormal sperms were detected in the HGE group (p < 0.001). In conclusion, exposure to a low dose of GEN during fetal and neonatal life could improve testicular development of offspring mice, whereas, unfavorable adverse effects were induced by a high dose of GEN.
Collapse
|
20
|
Vaadala S, Ponneri N, Karanam VS, Sainath SB, Reddy PS, Pamuru RR, Mohammed A. Recovery of Prenatal Baicalein Exposure Perturbed Reproduction by Postnatal Exposure of Testosterone in Male Mice. Int J Endocrinol 2020; 2020:5012736. [PMID: 33293955 PMCID: PMC7714599 DOI: 10.1155/2020/5012736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023] Open
Abstract
Baicalein (BC), a flavonoid, which lacks the qualities of reproductive health and shows adverse effects, is tested in this study. Inseminated mice were injected with 30, 60, and 90 mg BC/Kg body weight on gestation days 11, 13, 15, and 17. The F1 BC-exposed males of each dosage were divided into six groups. First three groups (n = 6 from each BC dosage) were used for assessment of reproductive performance, the others (n = 4 from each BC dosage) were administered with testosterone 4.16 mg/kg body weight on postnatal days 21, 31, and 41. The reproductive health of adult F1 males at the age of 55 and 60 was tested. Prenatal BC exposure showed reduced fertility after cohabitation with control females. The BC exposure significantly reduced the body weight, tissue indices, and sperm parameters (motility, count, viability, and daily sperm count) and altered the sperm membrane in a hypoosmotic swelling test. A downward trend was observed in testicular steroidogenic marker enzymes (3β- and 17β-steroid dehydrogenases) and serum testosterone, whereas increase in serum titers of FSH and LH along with altered the testicular histology. Conversely, testosterone (4.16 mg/kg body weight) partially recovered reduced male reproductive health by BC. BC impaired male reproductive health due to low levels of testosterone is reverted by external testosterone is evidenced in this study.
Collapse
Affiliation(s)
- Sridevi Vaadala
- Department of Biochemistry, Yogi Vemana University, Vemanapuram, Kadapa 516 005, AP, India
| | - Naveen Ponneri
- Department of Biochemistry, Yogi Vemana University, Vemanapuram, Kadapa 516 005, AP, India
| | | | - Sri Bhashyam Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Kakutur, P. S. Nellore 524 320, AP, India
| | | | | | - Arifullah Mohammed
- Institute of Food Security and Sustainable Agriculture (IFSSA), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
- Faculty of Agro-based Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
21
|
Co-exposure to endocrine disruptors: effect of bisphenol A and soy extract on glucose homeostasis and related metabolic disorders in male mice. Endocr Regul 2019; 52:76-84. [PMID: 29715189 DOI: 10.2478/enr-2018-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is a xenoestrogen, which is commonly used as a monomer of polycarbonate plastics food containers and epoxy resins. Little is known about the interaction effects between xeno- and phyto- estrogens on glucose homeostasis or other metabolic disorders. The aim of this study was to examine effects of individual or combined exposure to low doses of BPA and soy extract on glucose metabolism in mice with the goal to establish its potential mechanisms. METHODS Fifty-four male mice were randomly divided into six groups. Mice were treated with soy extract at 60 or 150 mg/kg by daily gavage with or without subcutaneously administration of BPA (100 μg/kg/day) for four weeks at the same time, while the control group received a vehicle. Serum levels of fasting glucose, insulin, adiponectin, testosterone, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured. Homeostatic model assessment-β cell function (HOMA-β) index was also determined. RESULTS BPA exposure induced hyperglycemia and significantly reduced HOMA-β, serum levels of insulin, adiponectin, testosterone, and TAC and noticeably enhanced MDA in BPA group compared to control one. While treatment with soy extract in high dose (150 mg/kg) significantly decreased the levels of fasting blood glucose and MDA and notably improved the serum levels of insulin, HOMA-β, and TAC compared to BPA group. CONCLUSION Soy extract may protect against some adverse effects of BPA. These findings represent the first report suggesting a potential effect between soy extract and BPA in low doses, however, further studies are needed to confirm these results.
Collapse
|
22
|
Sarkar D, Joshi D, Singh SK. Maternal BDE-209 exposure during lactation causes testicular and epididymal toxicity through increased oxidative stress in peripubertal mice offspring. Toxicol Lett 2019; 311:66-79. [DOI: 10.1016/j.toxlet.2019.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
|
23
|
Yuan G, Liu Y, Liu G, Wei L, Wen Y, Huang S, Guo Y, Zou F, Cheng J. Associations between semen phytoestrogens concentrations and semen quality in Chinese men. ENVIRONMENT INTERNATIONAL 2019; 129:136-144. [PMID: 31128434 DOI: 10.1016/j.envint.2019.04.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phytoestrogens (PEs) are naturally estrogen-like chemicals, and increasing evidences have indicated their endocrine disruption effects on male reproductivity, but the conclusions from previous epidemiological studies were controversial. OBJECTIVE To examine the associations between nine phytoestrogens in semen and semen quality in a Chinese population. METHODS In this cross-sectional study, a total of 1319 reproductive-aged men were recruited from Shenzhen, China. Semen phytoestrogens were measured by ultra-performance liquid chromatography and tandem mass spectrometry. Semen quality was assessed by sperm concentration, sperm count, progressive motility, total motility, volume, and the sperm motion parameters. Both multivariate linear regression and logistic regression models were conducted to evaluate the associations between semen phytoestrogens and semen quality with adjustment for confounders. RESULTS In logistic regression models, we found significant associations between semen secoisolariciresinol (SEC) and lower sperm concentrations (odd ratios (OR): 2.38; 95% confidence interval, 95% CI: 1.47, 3.93), sperm counts (OR: 2.27; 95% CI: 1.34, 3.94), and total motility (OR: 1.55; 95% CI: 1.08, 2.24). Negative associations were also observed for semen genistein (GEN) with sperm counts (OR: 2.28; 95% CI: 1.29, 4.14; p for trend = 0.04) and sperm concentrations (OR: 1.98; 95% CI: 1.21, 3.03; p for trend = 0.07). Semen naringenin (NAR) were found to be positively associated with progressive motility (OR: 0.57; 95% CI: 0.38, 0.83) and total motility (OR: 0.57; 95% CI: 0.40, 0.81). Results from multivariate linear regression models were similar to those from logistic regression models for semen SEC, GEN, and NAR. CONCLUSIONS We suggested that semen levels of phytoestrogens may be associated with semen quality in men. Further investigations are warranted to confirm the findings in prospective studies and to explore the underlying mechanism.
Collapse
Affiliation(s)
- Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lan Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinsheng Guo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
24
|
Hu C, Wong WT, Wu R, Lai WF. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr 2019; 60:2098-2112. [PMID: 31272191 DOI: 10.1080/10408398.2019.1630598] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soybeans and their food products exist in the market in various forms, ranging from crude oils and bean meals to nutritious products (e.g. soy milk powers). With the availability of technologies for mass production of soy products and for enrichment of soy components (e.g. phospholipids, saponins, isoflavones, oligosaccharides and edible fiber), the nutritional values of soy products have been enhanced remarkably, offering the potential for functional food development. Among different bioactive components in soybeans, one important component is isoflavones, which have been widely exploited for health implications. While there are studies supporting the health benefits of isoflavones, concerns on adverse effects have been raised in the literature. The objective of this article is to review the recent understanding of the biological activities, adverse effects, and use of isoflavones in functional food development.
Collapse
Affiliation(s)
- Chengshen Hu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Center for Human Tissue and Organs Degeneration, Institute of Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Runyu Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
25
|
Abo-Elsoud MA, Hashem NM, Nour El-Din ANM, Kamel KI, Hassan GA. Soybean isoflavone affects in rabbits: Effects on metabolism, antioxidant capacity, hormonal balance and reproductive performance. Anim Reprod Sci 2019; 203:52-60. [PMID: 30819569 DOI: 10.1016/j.anireprosci.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022]
Abstract
Though soybean isoflavones (SBI) have pharmaceutical properties, the compounds also have endocrine disrupting activities that may adversely affect fertility of mammals. The effects of SBI on metabolism, antioxidant capacity, hormonal balance and reproductive performance of male rabbits were investigated. Adult male rabbits (n = 21) fed an isoflavone-free diet were orally treated with 0 (control; CON), 5 (small; LSBI) or 20 (large; HSBI) mg of SBI/kg body weight/day for 12 weeks. Both SBI doses resulted in lesser blood plasma total protein concentrations, while there were no effects on glucose and cholesterol concentrations compared to CON. The HSBI-treated males had the greatest (P < 0.05) blood plasma total antioxidant capacity and least malondialdehyde. Treatment with both SBI doses induced a 43% increase in triiodothyronine concentrations (P < 0.05) and 82% in reaction times (P < 0.001), while decreased sperm concentrations (P = 0.01) and blood plasma testosterone concentrations (P = 0.017) 26% and 19%, respectively. The total functional sperm fraction was less (P < 0.05) in the HSBI group; however, there was no effect of the LSBI treatment as compared to values for the CON group. The kindling rates of females mated to HSBI-treated males tended to be less (P = 0.081) than those of does mated with LSBI or CON males. In conclusion, only the HSBI treatment improved antioxidant status; whereas, treatment with both LSBI and HSBI doses induced a hormonal imbalance which led to an impaired testis function indicating the sensitivity of the adult male reproductive system to SBI actions.
Collapse
Affiliation(s)
- M A Abo-Elsoud
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - N M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt.
| | - A N M Nour El-Din
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - K I Kamel
- Rabbit and Waterfowl Breeding Department, Animal production Research Institute, Agricultural Research Center, Egypt
| | - G A Hassan
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
26
|
Ronis MJ, Gomez-Acevedo H, Shankar K, Sharma N, Blackburn M, Singhal R, Mercer KE, Badger TM. EB 2017 Article: Soy protein isolate feeding does not result in reproductive toxicity in the pre-pubertal rat testis. Exp Biol Med (Maywood) 2019; 243:695-707. [PMID: 29763383 DOI: 10.1177/1535370218771333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The isoflavone phytoestrogens found in the soy protein isolate used in soy infant formulas have been shown to have estrogenic actions in the developing male reproductive tract resulting in reproductive toxicity. However, few studies have examined potential estrogenicity of soy protein isolate as opposed to that of pure isoflavones. In this study, we fed weanling male Sprague-Dawley rats a semi-purified diet with casein or soy protein isolate as the sole protein source from postnatal day 21 to 33. Additional groups were fed casein or soy protein isolate and treated s.c. with 10 µg/kg/d estradiol via osmotic minipump. Estradiol treatment reduced testis, prostate weights, and serum androgen concentrations ( P < 0.05). Soy protein isolate had no effect. Estradiol up-regulated 489 and down-regulated 1237 testicular genes >1.5-fold ( P < 0.05). In contrast, soy protein isolate only significantly up-regulated expression of 162 genes and down-regulated 16 genes. The top 30 soy protein isolate-up-regulated genes shared 93% concordance with estradiol up-regulated genes. There was little overlap between soy protein isolate down-regulated genes and those down-regulated by estradiol treatment. Functional annotation analysis revealed significant differences in testicular biological processes affected by estradiol or soy protein isolate. Estradiol had major actions on genes involved in reproductive processes including down-regulation of testicular steroid synthesis and expression of steroid receptor activated receptor (Star) and cytochrome P450 17α-hydroxylase/(Cyp17a1). In contrast, soy protein isolate primarily affected pathways associated with macromolecule modifications including ubiquitination and histone methylation. Our results indicate that rather than acting as a weak estrogen in the developing testis, soy protein isolate appears to act as a selective estrogen receptor modulator with little effect on reproductive processes. Impact statement Soy protein isolate (SPI) is the sole protein used to make soy-based infant formulas. SPI contains phytoestrogens, which are structurally similar to estradiol. These phytoestrogens, daidzein, genistein, and equol, fit the definition of endocrine-disrupting compounds, and at high concentrations, have estrogenic actions resulting in reproductive toxicity in the developing male, when provided as isolated chemicals. However, few animal studies have examined the potential estrogenicity of SPI as opposed to pure isoflavones. In this study, SPI feeding did not elicit an estrogenic response in the testis nor any adverse outcomes including reduced testicular growth, or androgen production during early development in rats when compared to those receiving estradiol. These findings are consistent with emerging data showing no differences in reproductive development in males and female children that received breast milk, cow's milk formula, or soy infant formula during the postnatal feeding period.
Collapse
Affiliation(s)
- Martin Jj Ronis
- 1 Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, LA 70112, USA
| | - Horacio Gomez-Acevedo
- 2 Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kartik Shankar
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Neha Sharma
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | | | - Rohit Singhal
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Kelly E Mercer
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Thomas M Badger
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| |
Collapse
|
27
|
Singh S, Singh SK. Chronic exposure to perfluorononanoic acid impairs spermatogenesis, steroidogenesis and fertility in male mice. J Appl Toxicol 2018; 39:420-431. [DOI: 10.1002/jat.3733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
28
|
Liang Y, Zhao W, Wang C, Wang Z, Wang Z, Zhang J. A Comprehensive Screening and Identification of Genistin Metabolites in Rats Based on Multiple Metabolite Templates Combined with UHPLC-HRMS Analysis. Molecules 2018; 23:molecules23081862. [PMID: 30049985 PMCID: PMC6222673 DOI: 10.3390/molecules23081862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023] Open
Abstract
Genistin, an isoflavone belonging to the phytoestrogen family, has been reported to possess various therapeutic effects. In the present study, the genistin metabolites in rats were investigated by UHPLC-LTQ-Orbitrap mass spectrometer in both positive and negative ion modes. Firstly, the data sets were obtained based on data-dependent acquisition method and then 10 metabolite templates were established based on the previous reports. Then diagnostic product ions (DPIs) and neutral loss fragments (NLFs) were proposed to efficiently screen and ascertain the major-to-trace genistin metabolites. Meanwhile, the calculated Clog P values were used to identify the positional isomers with different retention times. Consequently, a total of 64 metabolites, including prototype drug, were positively or putatively characterized. Among them, 40 metabolites were found according to the templates of genistin and genistein, which was the same as the previous research method. After using other metabolite templates, 24 metabolites were added. The results demonstrated that genistin mainly underwent methylation, hydrogenation, hydroxylation, glucosylation, glucuronidation, sulfonation, acetylation, ring-cleavage and their composite reactions in vivo biotransformation. In conclusion, the research not only revealed the genistein metabolites and metabolic pathways in vivo comprehensively, but also proposed a method based on multiple metabolite templates to screen and identify metabolites of other natural compounds.
Collapse
Affiliation(s)
- Yaoyue Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wenjing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenxiao Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zijian Wang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhibin Wang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jiayu Zhang
- Beijing Research Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|