1
|
da Silva AT, Rosa DS, Tavares MRS, Souza RDFS, Navarro DMDAF, de Aguiar JCRDOF, da Silva MV, da Costa MM. Essential oils of Eugenia spp. (myrtaceae) show in vitro antibacterial activity against Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2024:10.1007/s42770-024-01489-6. [PMID: 39190260 DOI: 10.1007/s42770-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Bovine mastitis, an inflammation of the mammary glands, is mainly caused by bacteria such as Staphylococcus aureus. While antibiotics are the primary treatment for this disease, their effectiveness is often diminished due to resistant strains and biofilm formation, creating the need for safer and more efficient therapies. Plant-based oil therapies, particularly those derived from the genus Eugenia, are gaining popularity due to their pharmacological potential and historical use. In this study, we evaluated the antibacterial, antibiofilm, and synergistic potential of essential oils (EOs) from four species of the genus Eugenia (E. brejoensis, E. gracillima, E. pohliana, and E. stictopetala) against S. aureus isolates from bovine mastitis. The EO of E. stictopetala was obtained by hydrodistillation, and its composition was analyzed using gas chromatography coupled with mass spectrometry. The experiment employed seven clinical isolates from mastitis and two control strains: ATCC 33591 (methicillin-resistant S. aureus - MRSA) and ATCC 25923 (methicillin-susceptible and biofilm producer). A broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the EOs and oxacillin. The EO of E. stictopetala contained (E)-caryophyllene (18.01%), β-pinene (8.84%), (E)-nerolidol (8.24%), and α-humulene (6.14%) as major compounds. In the MIC assay, all essential oils showed bactericidal and bacteriostatic effects, especially the species E. brejoensis and E. pohliana, which had MICs ranging from 64 to 256 µg/mL. Regarding the antibiofilm effect, all essential oils were capable of interfering with biofilm formation at subinhibitory concentrations of ½ and ¼ of the MIC. However, they did not significantly affect pre-established biofilms. Additionally, a synergistic interaction was detected between the EOs and oxacillin, with a reduction of 75-93.75% in the antimicrobial MIC. Molecular docking studies indicated that the phytochemicals β-(E)-caryophyllene, (E)-nerolidol, Δ-elemene, and α-cadinol present in the EOs formed more stable complexes with penicillin-binding proteins, indicating a possible mechanism of antibacterial action. Therefore, these results show that the essential oils of Eugenia spp. are promising sources for the development of new therapeutic methods, opening new perspectives for a more effective treatment of bovine mastitis.
Collapse
Affiliation(s)
- Alisson Teixeira da Silva
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Danillo Sales Rosa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | - Marcio Rennan Santos Tavares
- Federal Institute of the Sertão Pernambucano (IF Sertão), Campus Petrolina Rural Area, Petrolina, Pernambuco, CEP 56302-970, Brazil
| | - Renata de Faria Silva Souza
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil
| | | | | | - Márcia Vanusa da Silva
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, CEP 50670-901, Brazil
| | - Mateus Matiuzzi da Costa
- Animal Microbiology and Immunology Laboratory, Federal University of the San Francisco Valley (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco, CEP 56300-000, Brazil.
| |
Collapse
|
2
|
Martin ALAR, Pereira RLS, Rocha JE, Farias PAM, Freitas TS, Caldas FRDL, Figueredo FG, Sampaio NFL, Oliveira-Tintino CDDM, Tintino SR, da Hora GCA, Lima MCP, de Menezes IRA, Carvalho DT, Coutinho HDM, Fonteles MMF. Unlocking bacterial defense: Exploring the potent inhibition of NorA efflux pump by coumarin derivatives in Staphylococcus aureus. Microb Pathog 2024; 190:106608. [PMID: 38503396 DOI: 10.1016/j.micpath.2024.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.
Collapse
Affiliation(s)
- Ana Luíza A R Martin
- Department of Physiology and Pharmacology, Federal University of Ceará - UFC, 60430-160, Fortaleza, Brazil; Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | | | - Janaína Esmeraldo Rocha
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | - Pablo A M Farias
- School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil; CECAPE College, 63024-015, Juazeiro do Norte, Brazil
| | - Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | | | - Fernando G Figueredo
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | - Nadghia Figueiredo Leite Sampaio
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil; School of Medicine, Medical Education Institute - IDOMED, 63048-080, Juazeiro do Norte, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | | | | | - Irwin Rose A de Menezes
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil
| | - Diogo T Carvalho
- School of Pharmacy, Federal University of Alfenas - UNIFAL, 37130-001, Alfenas, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA. 63105-000, Crato, Brazil.
| | - Marta M F Fonteles
- Department of Physiology and Pharmacology, Federal University of Ceará - UFC, 60430-160, Fortaleza, Brazil
| |
Collapse
|
3
|
da Silva L, Donato IA, Bezerra SR, Dos Santos HS, Bandeira PN, do Nascimento MTR, Guedes JM, Freitas PR, de Araújo ACJ, de Freitas TS, Coutinho HDM, de Matos YMLS, de Oliveira LCC, da Cunha FAB. Synthesis, spectroscopic characterization, and antibacterial activity of chalcone (2E)-1-(3'-aminophenyl)-3-(4-dimethylaminophenyl)-prop-2-en-1-one against multiresistant Staphylococcus aureus carrier of efflux pump mechanisms and β-lactamase. Fundam Clin Pharmacol 2024; 38:60-71. [PMID: 37497790 DOI: 10.1111/fcp.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The bacterium Staphylococcus aureus has stood out for presenting a high adaptability, acquiring resistance to multiple drugs. The search for natural or synthetic compounds with antibacterial properties capable of reversing the resistance of S. aureus is the main challenge to be overcome today. Natural products such as chalcones are substances present in the secondary metabolism of plants, presenting important biological activities such as antitumor, antidiabetic, and antimicrobial activity. OBJECTIVES In this context, the aim of this work was to synthesize the chalcone (2E)-1-(3'-aminophenyl)-3-(4-dimethylaminophenyl)-prop-2-en-1-one with nomenclature CMADMA, confirm its structure by nuclear magnetic resonance (NMR), and evaluate its antibacterial properties. METHODS The synthesis methodology used was that of Claisen-Schmidt, and spectroscopic characterization was performed by NMR. For microbiological assays, the broth microdilution methodology was adopted in order to analyze the antibacterial potential of chalcones and to analyze their ability to act as a possible inhibitor of β-lactamase and efflux pump resistance mechanisms, present in S. aureus strain K4100. RESULTS The results obtained show that CMADMA does not show direct antibacterial activity, expressing a MIC of ≥1024 μg/mL, or on the enzymatic mechanism of β-lactamase; however, when associated with ethidium bromide in efflux pump inhibition assays, CMADMA showed promising activity by reducing the MIC of the bromide from 64 to 32 μg/mL. CONCLUSION We conclude that the chalcone synthesized in this study is a promising substance to combat bacterial resistance, possibly acting in the inhibition of the QacC efflux pump present in S. aureus strain K4100, as evidenced by the reduction in the MIC of ethidium bromide.
Collapse
Affiliation(s)
- Larissa da Silva
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, Brazil
| | - Isydório Alves Donato
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, Brazil
| | - Suieny Rodrigues Bezerra
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, Brazil
| | - Hélcio Silva Dos Santos
- Chemical Laboratory of Natural and Synthetic Products (LQPN), State University of Ceará (UECE), Fortaleza, Brazil
- Department of Chemistry, Vale do Acaraú State University, Sobral, Brazil
- Postgraduate Program in Natural Sciences - PPGCN, State University of Ceará, Fortaleza, Brazil
| | - Paulo Nogueira Bandeira
- Chemical Laboratory of Natural and Synthetic Products (LQPN), State University of Ceará (UECE), Fortaleza, Brazil
| | | | - Jesyka Macêdo Guedes
- Chemical Laboratory of Natural and Synthetic Products (LQPN), State University of Ceará (UECE), Fortaleza, Brazil
| | - Priscila Ramos Freitas
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, URCA, Crato, Brazil
| | | | - Thiago Sampaio de Freitas
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry, URCA, Crato, Brazil
| | | | | | | | - Francisco Assis Bezerra da Cunha
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, Brazil
- Chemical Laboratory of Natural and Synthetic Products (LQPN), State University of Ceará (UECE), Fortaleza, Brazil
- Department of Chemistry, Vale do Acaraú State University, Sobral, Brazil
- Postgraduate Program in Natural Sciences - PPGCN, State University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Niknafs S, Meijer MMY, Khaskheli AA, Roura E. In ovo delivery of oregano essential oil activated xenobiotic detoxification and lipid metabolism at hatch in broiler chickens. Poult Sci 2024; 103:103321. [PMID: 38100943 PMCID: PMC10762474 DOI: 10.1016/j.psj.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
In ovo interventions are used to improve embryonic development and robustness of chicks. The objective of this study was to identify the optimal dose for in ovo delivery of oregano essential oil (OEO), and to investigate metabolic impacts. Broiler chickens Ross 308 fertile eggs were injected with 7 levels of OEO (0, 5, 10, 20, 30, 40, and 50 µL) into the amniotic fluid at embryonic d 17.5 (E17.5) (n = 48). Chick quality was measured by navel score (P < 0.05) and/or hatchability rates (P < 0.01) were significantly decreased at doses at or above 10 or 20 µL/egg, respectively, indicating potential toxicity. However, no effects were observed at the 5 µL/egg, suggesting that compensatory mechanisms were effective to maintain homeostasis in the developing embryo. To pursue a better understanding of these mechanisms, transcriptomic analyses of the jejunum were performed comparing the control injected with saline and the group injected with 5 µL of OEO. The transcriptomic analyses identified that 167 genes were upregulated and 90 were downregulated in the 5 µL OEO compared to the control group injected with saline (P < 0.01). Functional analyses of the differentially expressed genes (DEG) showed that metabolic pathways related to the epoxygenase cytochrome P450 pathway associated with xenobiotic catabolic processes were significantly upregulated (P < 0.05). In addition, long-chain fatty acid metabolism associated with ATP binding transporters was also upregulated in the OEO treated group (P < 0.05). The results indicated that low doses of OEO in ovo have the potential to increase lipid metabolism in late stages (E17.5) of embryonic development. In conclusion, in ovo delivery of 5 µL OEO did not show any negative impact on hatchability and chick quality. OEO elevated expression of key enzymes and receptors involved in detoxification pathways and lipid metabolism in the jejunum of hatchling broiler chicks.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Mila M Y Meijer
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Asad A Khaskheli
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
| |
Collapse
|
5
|
de Sousa Ferreira F, de Araújo Neto JB, de Morais Oliveira-Tintino CD, de Araújo ACJ, Ribeiro-Filho J, Freitas PR, Araújo IM, Lima MA, de Azevedo FR, Tintino SR, Coutinho HDM, Navarro DMDAF. Chemical composition and antibacterial effects of Etlingera elatior (Jack) R.M. Smith against Staphylococcus aureus efflux pumps. Chem Biol Interact 2023; 386:110751. [PMID: 37821044 DOI: 10.1016/j.cbi.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Multidrug resistance is a significant health problem worldwide, with increasing mortality rates, especially in the last few years. In this context, a consistent effort has been made to discover new antibacterial agents, and evidence points to natural products as the most promising source of bioactive compounds. This research aimed to characterize the antibacterial effect of the essential oil of Etlingera elatior (EOEE) and its major constituents against efflux pump-carrying Staphylococcus aureus strains. The essential oil was extracted from fresh inflorescences by hydrodistillation. Chemical analysis was performed using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography equipped with a flame ionization detector (GC-FID). The strains RN-4220, 1199B, IS-58, and 1199 of S. aureus were used to evaluate the antibacterial activity and the inhibition of efflux pumps. A total of 23 compounds were identified, including dodecanal and 1-dodecanol as major compounds. EOEE and dodecanal showed weak activity against the strains, while 1-dodecanol inhibited bacterial growth at low concentrations, indicating strong antibacterial activity. In addition, this compound potentiated the activity of norfloxacin against S. aureus 1199. In conclusion, 1-dodecanol was identified as the most effective compound of EOEE, showing significant potential to be used in antibacterial drug development.
Collapse
Affiliation(s)
- Felipe de Sousa Ferreira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Bezerra de Araújo Neto
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Ana Carolina Justino de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Priscilla Ramos Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Isaac Moura Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Micheline Azevedo Lima
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil.
| | | |
Collapse
|
6
|
Wang Q, Zhou X, He S, Wang W, Ma D, Wang Y, Zhang H. Receptor Plants Alleviated Allelopathic Stress from Invasive Chenopodium ambrosioides L. by Upregulating the Production and Autophagy of Their Root Border Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3810. [PMID: 38005707 PMCID: PMC10674979 DOI: 10.3390/plants12223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), as the main food crops, are usually affected by C. ambrosioides in their planting areas. The purpose of this study was to investigate the ultrastructure, autophagy, and release-related gene expression of receptor plant root border cells (RBCs) after exposure to volatile oil from C. ambrosioides and its main component α-terpene, which were studied using maize and soybean as receptor plants. The volatiles inhibited root growth and promoted a brief increase in the number of RBCs. As the volatile concentration increased, the organelles in RBCs were gradually destroyed, and intracellular autophagosomes were produced and continuously increased in number. Transcriptomic analysis revealed that genes involved in the synthesis of the plasma membrane and cell wall components in receptor root cells were significantly up-regulated, particularly those related to cell wall polysaccharide synthesis. Meanwhile, polygalacturonase and pectin methylesterases (PME) exhibited up-regulated expression, and PME activity also increased. The contribution of α-terpene to this allelopathic effect of C. ambrosioides volatile oil exceeded 70%. Based on these results, receptor plant root tips may increase the synthesis of cell wall substances while degrading the intercellular layer, accelerating the generation and release of RBCs. Meanwhile, their cells survived through autophagy of RBCs, indicating the key role of RBCs in alleviating allelopathic stress from C. ambrosioides volatiles.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Xijie Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Shengli He
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Danwei Ma
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Hong Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| |
Collapse
|
7
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
8
|
Martin ALAR, Pereira RLS, Rocha JE, Farias PAM, Freitas TS, de Lemos Caldas FR, Figueredo FG, Sampaio NFL, Ribeiro-Filho J, Menezes IRDA, Brancaglion GA, de Paulo DC, Carvalho DT, Lima MA, Coutinho HDM, Fonteles MMF. In vitro and in silico evidences about the inhibition of MepA efflux pump by coumarin derivatives. Microb Pathog 2023; 182:106246. [PMID: 37454945 DOI: 10.1016/j.micpath.2023.106246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The discovery of antibiotics has significantly transformed the outcomes of bacterial infections in the last decades. However, the development of antibiotic resistance mechanisms has allowed an increasing number of bacterial strains to overcome the action of antibiotics, decreasing their effectiveness against infections they were developed to treat. This study aimed to evaluate the antibacterial activity of synthetic coumarins Staphylococcus aureus in vitro and analyze their interaction with the MepA efflux pump in silico. The Minimum Inhibitory Concentration (MIC) determination showed that none of the test compounds have antibacterial activity. However, all coumarin derivatives decreased the MIC of the standard efflux inhibitor ethidium bromide, indicating antibacterial synergism. On the other hand, the C14 derivative potentiated the antibacterial activity of ciprofloxacin against the resistant strain. In silico analysis showed that C9, C11, and C13 coumarins showed the most favorable interaction with the MepA efflux pump. Nevertheless, due to the present in silico and in vitro investigation limitations, further experimental research is required to confirm the therapeutic potential of these compounds in vivo.
Collapse
Affiliation(s)
- Ana Luíza A R Martin
- Federal University of Ceará - UFC, Brazil; Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | - Pablo A M Farias
- Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | - Fernando G Figueredo
- Regional University of Cariri - URCA, Brazil; Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang J, Hao J, Nie J, Qian R, Li H, Zhao J, Wang Y. Possible Mechanism of Dysphania ambrosioides (L.) Mosyakin & Clemants Seed Extract Suppresses the Migration and Invasion of Human Hepatocellular Carcinoma Cells SMMC-7721. Chem Biodivers 2023; 20:e202200768. [PMID: 36694378 DOI: 10.1002/cbdv.202200768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Mexican tea (Dysphania ambrosioides (L.) Mosyakin & Clemants) is rich in phenolic acids and flavonoids and could be a potential medicinal herb that can be used for prevention of human hepatocellular carcinoma. The objective of this study was to elaborate the possible mechanism for the prevention or treatment of hepatocellular carcinoma using Mexican tea, and to provide new avenues for the utilization of the invasive plant. In this study, the D. ambrosioides seed extracts (CSE) were analyzed by gas chromatography-mass spectrometry, and the effects of CSE on proliferation, migration, invasion, and gene expression of SMMC-7721 cells were investigated. Eight compounds were identified in CSE, and the compound with the highest content was ascaridole (25.82 %). The proliferation was significantly inhibited by CSE (p<0.05), and IC50 values were 0.587 g/L, 0.360 g/L, and 0.361 g/L at 24 h, 36 h, and 48 h, respectively. Migration and invasion were significantly inhibited (p<0.05). The network pharmacology and transcriptome analysis indicated that 2-hydroxy-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one, cis-11-eicosenoic acid and 2-ethylcyclohexanone might be the active compounds. Transcriptome analysis indicated that the Wnt signaling pathway, which is related to migration and invasion, was significantly altered; this was verified by western blot assay. The expression of wnt11, lef1 and mmp7 genes in SMMC-7721 cells was significantly down-regulated (p<0.05), while gsk-3β was significantly up-regulated (p<0.05). These results indicate that CSE inhibits the invasion and migration of SMMC-7721 cells in hepatocellular carcinoma through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Junmei Hao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jintao Nie
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ruihua Qian
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Haiying Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yanan Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
10
|
Li Y, Ge X. Role of Berberine as a Potential Efflux Pump Inhibitor against MdfA from Escherichia coli: In Vitro and In Silico Studies. Microbiol Spectr 2023; 11:e0332422. [PMID: 36786641 PMCID: PMC10100983 DOI: 10.1128/spectrum.03324-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Infections by Gram-negative pathogens are usually difficult to manage due to the drug export by efflux pumps. With the evolution and horizontal transfer of efflux pumps, there is an urgent need to discover safe and effective efflux pump inhibitors. Here, we found that the natural compound berberine (BBR), a traditional medicine for intestinal infection, is an inhibitor against the major facilitator superfamily (MFS) efflux pump MdfA in Escherichia coli. The impact of BBR on MdfA was evaluated in a recombinant E. coli reporter strain. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. At the same time, we conducted molecular dynamics simulations to investigate the mechanisms of BBR's effect on MdfA. Our data indicated that BBR can aggregate to the periplasmic and cytoplasmic sides of MdfA in both of its inward and outward conformations. Protein rigidities were affected to different degrees. More importantly, two major driving forces for the conformational transition, salt bridges and hydrophilic interactions with water, were changed by BBR's aggregation to MdfA, which affected its conformational transition. In summary, our data provide evidence for the extended application of BBR as an efflux pump inhibitor at a clinically meaningful level. We also reveal the mechanisms and provide insights into BBR's effect on the reciprocal motion of MdfA. IMPORTANCE In this work, we evaluated the role of berberine (BBR) as an inhibitor of the MFS efflux pump MdfA from E. coli. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. Molecular dynamics simulations revealed the effect of BBR on the conformational transition of MdfA. Our data suggested that driving forces for MdfA's conformational transition were affected by BBR and provided evidence for BBR's extended application as an effective inhibitor of MdfA.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
11
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12020343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
- Correspondence: ; Tel.: +1-575-562-2464
| |
Collapse
|
12
|
Dagni A, Hegheș SC, Suharoschi R, Pop OL, Fodor A, Vulturar R, Cozma A, Aniq filali O, Vodnar DC, Soukri A, El Khalfi B. Essential oils from Dysphania genus: Traditional uses, chemical composition, toxicology, and health benefits. Front Pharmacol 2022; 13:1024274. [PMID: 36569323 PMCID: PMC9773091 DOI: 10.3389/fphar.2022.1024274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The genus Dysphania belongs to the Amaranthaceae family and is known for its many health benefits. Therefore, it is commonly available worldwide and includes more than 47 species, five species have been mainly reported, and D. ambrosioides has been one of the most widely used plants for thousands of years as a remedy for a wide range of ailments. In recent investigations, the essential oils of the genus Dysphania have been examined for their antibacterial, antioxidant, and antiviral properties related to specific components such as terpenoid compounds that exhibit pharmacological activity. Moreover, some of Dysphania's compounds show a toxicological effect. Therefore, the objective of the study was to provide EO chemical composition and pharmacological data of the genus Dysphania.
Collapse
Affiliation(s)
- Amal Dagni
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| | - Simona Codruta Hegheș
- Department of Drug Analysis, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oufaa Aniq filali
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
13
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
14
|
Evaluation of antibacterial and toxicological activities of essential oil of Ocimum gratissimum L. and its major constituent eugenol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
16
|
Dias KJSDO, Miranda GM, Bessa JR, Araújo ACJD, Freitas PR, Almeida RSD, Paulo CLR, Neto JBDA, Coutinho HDM, Ribeiro-Filho J. Terpenes as bacterial efflux pump inhibitors: A systematic review. Front Pharmacol 2022; 13:953982. [PMID: 36313340 PMCID: PMC9606600 DOI: 10.3389/fphar.2022.953982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
Managing antibiotic resistance is a significant challenge in modern pharmacotherapy. While molecular analyses have identified efflux pump expression as an essential mechanism underlying multidrug resistance, the targeted drug development has occurred slower. Thus, considering the verification that terpenes can enhance the activity of antibiotics against resistant bacteria, the present study gathered evidence pointing to these natural compounds as bacterial efflux pump inhibitors. A systematic search for manuscripts published between January 2007 and January 2022 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Terpene”; AND “Efflux pump”; and “Bacteria.” From a total of 101 articles found in the initial search, 41 were included in this review. Seventy-five different terpenes, 63 bacterial strains, and 22 different efflux pumps were reported, with carvacrol, Staphylococcus aureus SA-1199B, and NorA appearing most frequently mentioned terpene, bacterial strain, and efflux pump (EP), respectively. The Chi-Squared analysis indicated that terpenes are significantly effective EP inhibitors in Gram-positive and Gram-negative strains, with the inhibitory frequency significantly higher in Gram-positive strains. The results of the present review suggest that terpenes are significant efflux pump inhibitors and, as such, can be used in drug development targeting the combat of antibacterial resistance.
Collapse
Affiliation(s)
| | - Gustavo Marinho Miranda
- Laboratory of Genetics and Translational Hematology, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Jonatas Reis Bessa
- Institute of Psychology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ana Carolina Justino De Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Priscilla Ramos Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ray Silva De Almeida
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Cícera Laura Roque Paulo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - José Bezerra De Araújo Neto
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Jaime Ribeiro-Filho
- Laboratory of Genetics and Translational Hematology, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Fiocruz Ceará, Oswaldo Cruz Foundation (FIOCRUZ), Eusébio, Ceará, Brazil
- *Correspondence: Jaime Ribeiro-Filho,
| |
Collapse
|
17
|
Inhibition of Staphylococcus aureus Efflux Pump by O-Eugenol and Its Toxicity in Drosophila melanogaster Animal Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1440996. [PMID: 35909475 PMCID: PMC9325621 DOI: 10.1155/2022/1440996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 01/04/2023]
Abstract
Background Efflux pumps are transmembrane proteins that expel drugs out of a bacterial cell contributing to microorganism drug resistance. Several studies addressing the use of natural products with medicinal properties have intensified given the above. Thus, the aim of the present study was to investigate the antibacterial activity and the O-eugenol potential in Staphylococcus aureus resistance reversal by efflux pump inhibition, as well as to evaluate its toxicity in the Drosophila melanogaster arthropod model. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and the O-eugenol efflux pump inhibition. For the D. melanogaster toxicity assays, mortality and locomotor system damage were performed using the fumigation method. Results O-eugenol presented a MIC of 1024 μg/mL against S. aureus. The association of this compound with the antibiotic tetracycline demonstrated a synergistic effect (p < 0.0001), this also being observed when the antibiotic was associated with ethidium bromide (p < 0.0001); thus, these results may be attributable to an efflux pump inhibition. The D. melanogaster mortality and geotaxis assays revealed the compound is toxic, with an EC50 of 18 μg/mL within 48 hours of exposure. Conclusions While we can conclude that the tested product has an efflux pump inhibitory effect, further studies are needed to elucidate its mechanisms of action, in addition to assays using other strains to verify whether the substance has the same inhibitory effect.
Collapse
|
18
|
Effect of New 2-Thioxoimidazolidin-4-one Compounds against Staphylococcus aureus Clinical Strains and Immunological Markers’ Combinations. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:6720241. [PMID: 35873361 PMCID: PMC9300335 DOI: 10.1155/2022/6720241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022]
Abstract
Although the structure-activity relationship indicates that the 4-thioxoimidazolidin ring is essential for antibacterial activities and pharmaceutical applications, there were no enough studies on the derivatives of this compound. Evaluating the new hydantoin compounds C5 (3-((2-bromobenzylidene) amino)-2- thioxoimidazolidin-4-one) and C6 (3-((4- methoxybenzylidene) amino)-2-thioxoimidazolidin-4-one) that were prepared against clinical Staphylococcus aureus isolates for antibacterial, antibiofilm, and antihemagglutination activities is the aim of this study. Therefore, the potential clinical resistance of the strains was evaluated by their ability to form biofilms, antibiotic resistance, and agglutinate erythrocytes macroscopically and microscopically; besides, the bacterial biofilm was screened for any association with the patient's serum immunoglobulin levels and complements. Despite the effective concentration for C5 and C6 compounds, which is ≤ 31.25 μg/ml, the reduction rate is not concentration-dependent; it depends on the molecular docking of the hydantoin compounds. Hence, the effect of the minimal inhibitory concentrations (MICs) is variable. In this study, the results for the compounds (with the concentration of 31.25–62.5 μg/mL for C5 and 62.5–125 μg/mL for C6) significantly manifest the antibacteria, antibiofilm, and antihemagglutination effects against the virulent strains of S. aureus due to the high percentage of biofilm inhibition that was caused by the new hydantoin compounds. Besides, time-kill kinetics studies showed that these compounds pose bactericidal action. Overall, this study revealed that the new hydantoin derivatives have an interesting potential as new antibacterial drugs through the inhibition of bacterial adhesion. The infections of these isolates activate the complement system through the lectin pathway. Nevertheless, these compounds can be improved in order to be used at even lower concentrations.
Collapse
|
19
|
Pereira LPLA, Ribeiro ECG, Brito MCA, Araruna FOS, Araruna FB, Leite JAC, Silveira DPB, de Oliveira TM, Cantanhede SPD, Firmo WDCA, Monteiro ODS, Maia JGS, da Franca Rodrigues KA, Coutinho DF. Molluscicidal and cercaricidal activities of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants: Implications for the control of schistosomiasis. Acta Trop 2022; 230:106393. [PMID: 35278368 DOI: 10.1016/j.actatropica.2022.106393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Schistosomiasis is one of the most important tropical diseases. A fundamental strategy to control its spread is the use of natural products against its vectors, which are snails of the genus Biomphalaria. The present study evaluated the chemical composition, the molluscicidal and cercaricidal effects, and the ecotoxicity of the essential oil from the aerial parts of Dysphania ambrosioides (L.) Mosyakin & Clemants (DAEO). The essential oil was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Molluscicidal and cercaricidal activities were determined by the immersion method. Environmental toxicity was assessed from bioassays using Artemia salina larvae and Danio rerio fish. DAEO presented a 0.8% yield. The GC-MS analysis revealed the predominance of hydrocarbon monoterpenes in the oil. A total of 32 constituents was identified, with α-terpinene (50.69%) being the major compound, followed by p-cymene (13.27%) and ascaridole (10.26%). DAEO was active against adult Biomphalaria glabrata snails and demonstrated lethal effect against Schistosoma mansoni cercariae, with LC50 values of 25.2 (22.7-27.8) and 62.4 (61.8-62.9) μg/mL, respectively. Regarding toxicity to non-target aquatic organisms, the oil showed LC50 values of 86.9 (84.7-87.6) and 18.6 μg/mL (15.5-22.8) for A. salina and D. rerio, respectively. DAEO proved to be a promising natural product for the control of schistosomiasis, acting on both the vectors and the etiological agent of the disease. However, the use of the oil is safer in transmission sites where there are no non-target organisms, as it has showed toxicity to D. rerio fish.
Collapse
Affiliation(s)
| | - Edilene Carvalho Gomes Ribeiro
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Maria Cristiane Aranha Brito
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | | | - Felipe Bastos Araruna
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - José Antonio Costa Leite
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | | | - Taiane Maria de Oliveira
- Laboratório de Doenças Infecciosas, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | | | | | - José Guilherme Soares Maia
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | | | - Denise Fernandes Coutinho
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
20
|
Zhou Q, Wang J, Zhu Z. Composition of Volatiles of the Essential Oil from the Leaves of Carpinus betulus. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Akermi S, Smaoui S, Elhadef K, Fourati M, Louhichi N, Chaari M, Chakchouk Mtibaa A, Baanannou A, Masmoudi S, Mellouli L. Cupressus sempervirens Essential Oil: Exploring the Antibacterial Multitarget Mechanisms, Chemcomputational Toxicity Prediction, and Safety Assessment in Zebrafish Embryos. Molecules 2022; 27:2630. [PMID: 35565980 PMCID: PMC9103706 DOI: 10.3390/molecules27092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.
Collapse
Affiliation(s)
- Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Nacim Louhichi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Aissette Baanannou
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| |
Collapse
|
22
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
23
|
Lu X, Du H, Liu Y, Wang Y, Li D, Wang L. Effect of Ultrasound-Assisted Solvent Enzymatic Extraction on Fatty Acid Profiles, Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Elaeagnus mollis Oil. Foods 2022; 11:359. [PMID: 35159511 PMCID: PMC8834463 DOI: 10.3390/foods11030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
Elaeagnus mollis oil extracted from the nuts of Elaeagnus mollis Diels can be used in food and pharmaceutical applications due to its excellent nutritional value. An ultrasound-assisted solvent enzymatic extraction (UASEE) method was used to extract oil from Elaeagnus mollis Diels with n-hexane solvent (1:11.6 g/mL) and 1.1% (w/w) mixed enzymes (neutral protease:hemicellulase:pectinase = 1:1:1, w/w/w). The physicochemical properties, fatty acid profile, bioactive compounds, antioxidant activity, morphology, and thermal stability of UASEE oil were investigated and compared with soxhlet extraction (SE) oil and cold pressing (CP) oil. The UASEE oil exhibited a higher content of unsaturated fatty acids (93.96 ± 0.28%), total tocopherols and tocotrienols (147.32 ± 2.19 mg/100 g), total phytosterols (261.78 ± 5.74 mg/100 g), squalene (96.75 ± 0.31 mg/100 g), total phenolic content (84.76 ± 2.37 mg GAE/kg), and antioxidant activity (12.52 ± 0.28 mg/mL) than SE and CP oil. The lower peroxide value and acid value in UASEE oil indicated its better quality and lower likelihood of rancidity. The oil obtained using UASEE had higher thermal stability as well, as indicated by thermogravimetric analysis. Scanning electron microscopy (SEM) showed that the UASEE process causes damage to cell walls, and the leakage of substances in the cells facilitates extraction in the following step. Thus, UASEE is a promising processing method for the extraction of Elaeagnus mollis oil.
Collapse
Affiliation(s)
- Xiaorui Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Hongmiao Du
- Beijing Products Quality Supervision and Inspection Institute, 9 Shunxing Road, Beijing 101300, China;
| | - Yuanyuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia;
| | - Dong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Lijun Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| |
Collapse
|
24
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
25
|
Freitas TS, Xavier JC, Pereira RLS, Rocha JE, Campina FF, de Araújo Neto JB, Silva MMC, Barbosa CRS, Marinho ES, Nogueira CES, Dos Santos HS, Coutinho HDM, Teixeira AMR. In vitro and in silico studies of chalcones derived from natural acetophenone inhibitors of NorA and MepA multidrug efflux pumps in Staphylococcus aureus. Microb Pathog 2021; 161:105286. [PMID: 34793877 DOI: 10.1016/j.micpath.2021.105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Bacterial resistance induced by efflux pumps is a frequent concern in clinical treatments involving multi-resistant bacteria. Staphylococcus aureus is a microorganism responsible for several types of infections and has several strains carrying efflux pumps, among them are the strain 1199B (NorA overexpresser), and the strain K2068 (MepA overexpresser). In this work, four chalcones derived from Croton anisodontus with modifications in the B ring in their structures were tested regarding their ability to inhibit NorA and MepA efflux pumps. The efflux pump inhibition mechanism was tested with the ethidium bromide substrate in the presence and absence of standard efflux pump inhibitors. The minimum inhibitory concentration values were also compared to those of strains that do not overexpress these efflux pumps. In order to gain some insights about the efflux pump mechanisms of these chalcones, two homology models were created (NorA and MepA) for a docking procedure. In addition, the ADME properties (absorption, distribution, metabolism and excretion) were also evaluated. The tested chalcones promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps. All four tested chalcones appear to bind to the binding sites of the efflux pump models in the same fashion as other chalcones with efflux pump inhibition capabilities. It was also verified that the chalcones 1-4 are well absorbed in the intestine, but with a decrease in their bioavailability, resulting in a low volume of distribution in the blood plasma, in addition to having a mild CNS activity. However, the chalcone 3 and 4 were not toxic due to metabolic activation. Whereas the chalcones 1 and 2 present a mutagenic risk, depending on the oral dose administered. The tested chalcones have not antibacterial activity; however, they are capable of inhibiting efflux pumps for the 1199B and K2068 strains. They promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps, as well as other associated mechanisms.
Collapse
Affiliation(s)
- Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Jayze C Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaína E Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Fábia F Campina
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - José B de Araújo Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Maria M C Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Cristina R S Barbosa
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Carlos E S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Hélcio S Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Henrique D M Coutinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Alexandre M R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
26
|
Evaluation of isoeugenol in inhibition of Staphylococcus aureus efflux pumps and their toxicity using Drosophila melanogaster model. Life Sci 2021; 285:119940. [PMID: 34508763 DOI: 10.1016/j.lfs.2021.119940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/20/2023]
Abstract
The Staphylococcus aureus bacteria is a pathogen considered opportunistic and that has been acquiring resistance to several classes of antibiotics, mainly due to the synthesis of efflux pumps, which are proteins that expel these drugs intracellularly, reducing their effectiveness. The objective of this study was to evaluate the ability of isoeugenol to inhibit S. aureus efflux pumps and to determine its toxicity against a eukaryotic model (Drosophila melanogaster). IS-58, K2068 and K4414 S. aureus strains were used in the study. Isoeugenol minimum inhibitory concentration (MIC) and antibiotic modulation were evaluated in efflux pump inhibitory tests as well as in ethidium bromide (EtBr) assays. Toxicity tests against D. melanogaster assessed mortality and negative geotaxis. Isoeugenol obtained a relevant MIC result and a synergism was observed when isoeugenol was associated with the antibiotics, mainly with ciprofloxacin. Isoeugenol was able to affect all three efflux pumps tested, especially in strain K4414. The mortality of D. melanogaster caused by isoeugenol administration started after 12 h of exposure, being volume dependent and having an LC50 of 81.69 μL/L. In the negative geotaxis test, a statistical difference was observed after 24h of exposure compared to the control, demonstrating that damage to the locomotor apparatus had occurred. Based on the results, isoeugenol is a putative efflux pump inhibitor, becoming an alternative in blocking these proteins, and demonstrated acute toxicity against D. melanogaster.
Collapse
|
27
|
Agreles MAA, Cavalcanti IDL, Cavalcanti IMF. The Role of Essential Oils in the Inhibition of Efflux Pumps and Reversion of Bacterial Resistance to Antimicrobials. Curr Microbiol 2021; 78:3609-3619. [PMID: 34432112 DOI: 10.1007/s00284-021-02635-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Due to the deaths from infections caused by multidrug-resistant microorganisms worldwide, the World Health Organization considers antibiotic resistance to be a critical global public health problem. Bacterial resistance mechanisms are diverse and can be acquired through the overexpression of transmembrane proteins that are called efflux pumps, which act by expelling drugs from the intracellular environment, thereby preventing their action and contributing to the severity of infections. Efflux pumps are one of the main mechanisms of bacterial resistance, and it is important to identify new molecules that are capable of inhibiting the action of efflux pumps and circumvent the problem of resistance linked to the expression of these transmembrane proteins. The plants are promising candidates for obtaining biologically active substances, such as essential oils, with antimicrobial activity and inhibitors of efflux pumps, which can help in the resensitization of bacterial strains resistant to antibiotics. Therefore, this review aims to present the recently reported inhibitory activity of essential oils against bacterial pathogens that produce efflux pumps.
Collapse
Affiliation(s)
- Maria Anndressa Alves Agreles
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Iago Dillion Lima Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, CEP: 55608-680, Brazil.
| |
Collapse
|
28
|
Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00306-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Chenopodium genus is a plant family widely spread worldwide that includes various plant species reputed to possess several medicinal virtues in folk medicines. Chenopodium ambrosioides L. is among the most used plants in traditional medicines worldwide. This review aimed to highlight ethnomedicinal uses, phytochemical status, and pharmacological properties of C. ambrosioides L.
Main body of the abstract
The analysis of relevant data highlights various ethnomedicinal uses against human and veterinary diseases in forty countries. Most indications consisted of gastrointestinal tract dysfunctioning troubles and worms parasitemia. Around 330 chemical compounds have been identified in different plant parts, especially in its essential oil fractions (59.84%). However, only a few compounds—mainly monoterpenes and glycosides—have been isolated and characterized. Experimental pharmacological studies validated a large scale of significant health benefits. It appeared that many monoterpenes are antioxidant, insecticidal, trypanocidal, analgesic, antifungal, anti-inflammatory, anti-arthritic, acaricidal, amoebicidal, anthelmintic, anticancer, antibacterial, antidiabetic, antidiarrheal, antifertility, antifungal, anti-leishmanial, antimalarial, antipyretic, antisickling, antischistosomal, antiulcer, anxiolytic, immunomodulatory, molluscicidal, and vasorelaxant agents.
Short conclusion
Thus, the Chenopodium ambrosioides species necessitates further chemical studies to isolate and characterize new bioactive secondary metabolites and pharmacological investigations to precise the mechanisms of action before clinical trials.
Collapse
|
29
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
30
|
Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus. Appl Environ Microbiol 2021; 87:e0015521. [PMID: 33990311 DOI: 10.1128/aem.00155-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus has developed resistance to antimicrobials since their first use. The S. aureus major facilitator superfamily (MFS) efflux pump Tet(K) contributes to resistance to tetracyclines. The efflux pump diminishes antibiotic accumulation, and biofilm hampers the diffusion of antibiotics. None of the currently known compounds have been approved as efflux pump inhibitors (EPIs) for clinical use. In the current study, we screened clinically approved drugs for possible Tet(K) efflux pump inhibition. By performing in silico docking followed by in vitro checkerboard assays, we identified five azoles (the fungal ergosterol synthesis inhibitors) showing putative EPI-like potential with a fractional inhibitory concentration index of ≤0.5, indicating synergism. The functionality of the azoles was confirmed using ethidium bromide (EtBr) accumulation and efflux inhibition assays. In time-kill kinetics, the combination treatment with butoconazole engendered a marked increase in the bactericidal capacity of tetracycline. When assessing the off-target effects of the azoles, we observed no disruption of bacterial membrane permeability and polarization. Finally, the combination of azoles with tetracycline led to a significant eradication of preformed mature biofilms. This study demonstrates that azoles can be repurposed as putative Tet(K) EPIs and to reduce biofilm formation at clinically relevant concentrations. IMPORTANCE Staphylococcus aureus uses efflux pumps to transport antibiotics out of the cell and thus increases the dosage at which it endures antibiotics. Also, efflux pumps play a role in biofilm formation by the excretion of extracellular matrix molecules. One way to combat these pathogens may be to reduce the activity of efflux pumps and thereby increase pathogen sensitivity to existing antibiotics. We describe the in silico-based screen of clinically approved drugs that identified antifungal azoles inhibiting Tet(K), a pump that belongs to the major facilitator superfamily, and showed that these compounds bind to and block the activity of the Tet(K) pump. Azoles enhanced the susceptibility of tetracycline against S. aureus and its methicillin-resistant strains. The combination of azoles with tetracycline led to a significant reduction in preformed biofilms. Repurposing approved drugs may help solve the classical toxicity issues related to efflux pump inhibitors.
Collapse
|
31
|
Evaluation of antibacterial activity and reversal of the NorA and MepA efflux pump of estragole against Staphylococcus aureus bacteria. Arch Microbiol 2021; 203:3551-3555. [PMID: 33942156 DOI: 10.1007/s00203-021-02347-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
The antibacterial activity of the monoterpene estragole was evaluated against two strains of bacteria with an efflux pump mechanism, which are Staphylococcus aureus 1199B and S. aureus K2068, which have a NorA and MepA pump, respectively. For that, the methodology proposed by CLSI with modifications was followed, and to evaluate the reversal of the efflux pump, subinhibitory concentrations (MIC/8) of estragole and standard pump inhibitors, CCCP and Chlorpromazine were used and it was verified whether they managed to modulate the action of Norfloxacin, Ciprofloxacin and Ethidium Bromide, an indicator of an efflux pump. It was observed that estragole positively modulated norfloxacin and ethidium bromide against the strain of S. aureus 1199B and that it also managed to reduce the MIC of ethidium bromide against the strain of S. aureus K2068. In the non-clinical acute toxicity tests with estragole, the animals treated with the dose of 625 mg/kg/v.o. showed no clinical signs of toxicity, according to the parameters evaluated. These results are promising, since it places estragole as a possible inhibitor of the efflux pump, thus managing to inhibit this mechanism of action in the strains tested.
Collapse
|
32
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
33
|
Evaluation of Antibacterial Activity of Essential Oils and Their Combination against Multidrug-Resistant Bacteria Isolated from Skin Ulcer. Int J Microbiol 2021; 2021:6680668. [PMID: 33854550 PMCID: PMC8019382 DOI: 10.1155/2021/6680668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background Emerging of multidrug-resistant bacteria can compromise the effectiveness of antibiotics used to treat skin infections. Those bacteria imposed public health problems and questioning medical care in the 21st century. In this circumstance, essential oils of medicinal plants origin are supreme sources of structural and functionally divergent compounds, which inhibited the growth of common wound colonizing MRSA and ESBL producing P. aeruginosa. The aim of this study was to evaluate the combined antibacterial activity of essential oils extracted from Rumex abyssinicus, Cucumis pustulatus, and Discopodium penninervium against multidrug-resistant (MDR) isolates of skin ulcers. Methods Essential oils (EOs) were extracted from aerial parts of R. abyssinicus, C. pustulatus, and D. penninervium with steam distillation. A mixture of each oil (1 : 1) was adsorbed to a disc and placed on Mueller Hinton Agar. Then, minimum zone of inhibition and bactericidal concentration of EOs was measured after incubeted for 18–24 hours at 37 °C. Their combined antibacterial effect was determined by the fractional inhibitory concentration index. Results The antibacterial activity of mixed oil varied in their doses and bacteria species, of which a mixture of essential oil of R. abyssinicus and D. penninervium had inhibition zone (32 mm); its MIC and MBC values range from 1-2 μl/ml against MRSA. It had an inhibition zone (36 mm), MIC value 4 μl/ml, and MBC (8 μl/ml) against ESBL producing P. aeruginosa, whereas combined effects of R. abyssinicus and C. pustulatus had MIC values ranging from 2–8 μl/ml for E. coli and K. pneumoniae and 2 μl/ml for MRSA. There was a strong synergistic effect between R. abyssinicus and D. penninervium and promising antibacterial effect more specifically on MRSA and P. aeruginosa. Conclusion. This in vitro study of the combined effect of EOs has significant antibacterial activity on wound colonizing bacteria and reduces delaying wound healing as that of modern drugs tested in parallel. Hence, further structural elucidation of active compounds helps us to properly design or synthesis of topical antibiotics for wound care.
Collapse
|
34
|
de Araújo ACJ, Freitas PR, Dos Santos Barbosa CR, Muniz DF, Ribeiro-Filho J, Tintino SR, Júnior JPS, Filho JMB, de Sousa GR, Coutinho HDM. Modulation of Drug Resistance by Limonene: Inhibition of Efflux Pumps in Staphylococcus aureus Strains RN-4220 and IS-58. Curr Drug Metab 2021; 22:110-113. [PMID: 33397229 DOI: 10.2174/1389200221999210104204718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
AIMS This study aimed to investigate the potential of limonene as an efflux pump (EP) inhibitor in Staphylococcus aureus strains, RN-4220 and IS-58, which carry EPs for erythromycin (MrsA) and tetracycline (TetK), respectively. BACKGROUND The evolution of bacterial resistance mechanisms over time has impaired the action of most classes of antibiotics. Staphylococcus aureus is a notable bacterium, with high pathogenic potential and demonstrated resistance to conventional antibiotics. Considering the importance of discovering novel compounds to combat antibiotic resistance, our group previously demonstrated the antibacterial properties of limonene, a compound present in the essential oils of several plant species. OBJECTIVE This study aimed to investigate the potential of limonene as an efflux pump (EP) inhibitor in Staphylococcus aureus strains RN-4220 and IS-58, which carry EPs for erythromycin (MrsA) and tetracycline (TetK), respectively. METHODS The minimum inhibitory concentrations (MIC) of limonene and other efflux pump inhibitors were determined through the broth microdilution method. A reduction in the MIC of ethidium bromide was used as a parameter of EP inhibition. RESULT While limonene was not shown to exhibit direct antibacterial effects against EP-carrying strains, in association with ethidium bromide and antibiotics, this compound demonstrated enhanced antibacterial activity, indicating the inhibition of the MrsA and TetK pumps. CONCLUSION In conclusion, this pioneering study demonstrated the effectiveness of limonene as an EP inhibitor in S. aureus strains, RN-4220 and IS-58. Nevertheless, further studies are required to characterize the molecular mechanisms associated with limonene-mediated EP inhibition.
Collapse
Affiliation(s)
- Ana C J de Araújo
- Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Priscilla R Freitas
- Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Débora F Muniz
- Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Jaime Ribeiro-Filho
- Goncalo Moniz Institute, Oswaldo Cruz Foundation, IGM-FIOCRUZ/BA, Salvador, BA, Brazil
| | - Saulo R Tintino
- Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - José P S Júnior
- Federal University of Paraiba - UFPB, Joao Pessoa, Paraiba, Brazil
| | - José M B Filho
- Federal University of Paraiba - UFPB, Joao Pessoa, Paraiba, Brazil
| | | | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| |
Collapse
|
35
|
Freitas PR, de Araújo ACJ, Barbosa CR, Muniz DF, Tintino SR, Ribeiro-Filho J, Siqueira Júnior JP, Filho JMB, de Sousa GR, Coutinho HDM. Inhibition of Efflux Pumps by Monoterpene (α-pinene) and Impact on Staphylococcus aureus Resistance to Tetracycline and Erythromycin. Curr Drug Metab 2021; 22:123-126. [PMID: 32748743 DOI: 10.2174/1389200221999200730212721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Infectious diseases have been responsible for an increasing number of deaths worldwide. Staphylococcus aureus has been recognized as one of the most notable causative agents of severe infections, while efflux pump (EP) expression is one of the main mechanisms associated with S. aureus resistance to antibiotics. OBJECTIVE This study aimed to investigate the potential of &#945;-pinene as an efflux pump inhibitor in species of S. aureus carrying the TetK and MrsA proteins. METHODS The minimum inhibitory concentrations (MIC) of &#945;-pinene and other efflux pump inhibitors were assessed using serial dilutions of each compound at an initial concentration above 1024 μg/mL. Solutions containing culture medium and bacterial inoculums were prepared in test tubes and subsequently transferred to 96-well microdilution plates. The modulation of ethidium bromide (EtBr) and antibiotics (tetracycline and erythromycin) was investigated through analysis of the modification in their MICs in the presence of a subinhibitory concentration of &#945;-pinene (MIC/8). Wells containing only culture medium and bacterial inoculums were used as negative control. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used as a positive control. RESULTS The MIC of ethidium bromide against S. aureus strains RN-4220 and IS-58 was reduced by association with α-pinene. This monoterpene potentiated the effect of tetracycline against the IS-58 strain but failed in modulating the antibacterial effect of erythromycin against RN-4220, suggesting a selective inhibitory effect on the TetK EP by &#945;- pinene. CONCLUSION In conclusion, α-pinene has promising effects against S.aureus strains, which should be useful in the combat of antibacterial resistance associated with EP expression. Nevertheless, further research is required to fully characterize its molecular mechanism of action as an EP inhibitor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José M B Filho
- Postgraduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | |
Collapse
|
36
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
37
|
Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, Ong-Abdullah J, Abushelaibi A, Lai KS, Lim SHE. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021; 26:628. [PMID: 33530290 PMCID: PMC7866131 DOI: 10.3390/molecules26030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
Collapse
Affiliation(s)
- Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia;
| | | | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| |
Collapse
|
38
|
de Menezes IA, Coutinho HM, Pinheiro P, Santiago GP, da Silva FF, de Araújo AJ, de Oliveira CT, Freitas P, Rocha J, de Araújo Neto J, da Silva MC, Tintino S, da Costa JM. Antibacterial activity and inhibition against Staphylococcus aureus NorA efflux pump by ferulic acid and its esterified derivatives. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.321130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Siqueira MMR, Freire PDTC, Cruz BG, de Freitas TS, Bandeira PN, Silva Dos Santos H, Nogueira CES, Teixeira AMR, Pereira RLS, Xavier JDC, Campina FF, Dos Santos Barbosa CR, Neto JBDA, da Silva MMC, Siqueira-Júnior JP, Douglas Melo Coutinho H. Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. Eur J Pharm Sci 2020; 158:105695. [PMID: 33383131 DOI: 10.1016/j.ejps.2020.105695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chalcones and their derivatives are substances of great interest for medicinal chemistry due to their antibacterial activities. As the bacterial resistance to clinically available antibiotics has become a worldwide public health problem, it is essential to search for compounds capable of reverting the bacterial resistance. As a possibility, the chalcone class could be an interesting answer to this problem. The chalcones (2E)-1-(4'-aminophenyl)-3-(phenyl)‑prop-2-en-1-one (APCHAL), and (2E)-1-(4'-aminophenyl)-3-(4-chlorophenyl)‑prop-2-en-1-one (ACLOPHENYL) were synthesized by the Claisen-Schmidt condensation and characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), and mass spectrometry (MS), In addition, microbiological tests were performed to investigate the antibacterial activity, modulatory potential, and efflux pump inhibition against Staphylococcus aureus (S. aureus) multi-resistant strains. Regarding the S. aureus Gram-positive model, the APCHAL presented synergism with gentamicin and antagonism with penicillin. APCHAL reduced the Minimum inhibitory concentration (MIC) of gentamicin by almost 70%. When comparing the effects of the antibiotic modifying activity of ACLOPHENYL and APCHAL, a loss of synergism is noted with gentamicin due to the addition of a chlorine to the substance structure. For Escherichia coli (E. coli) a total lack of effect, synergistic or antagonistic, was observed between ACLOPHENYL and the antibiotics. In the evaluation of inhibition of the efflux pump, both chalcones presented a synergistic effect with norfloxacin and ciprofloxacin against S. aureus, although the effect is much less pronounced with ACLOPHENYL. The effect of APCHAL is particularly notable against the K2068 (MepA overexpresser) strain, with synergistic effects with both ciprofloxacin and ethidium bromide. The docking results also show that both compounds bind to roughly the same region of the binding site of 1199B (NorA overexpresser), and that this region overlaps with the preferred binding region of norfloxacin. The APCHAL chalcone may contribute to the prevention or treatment of infectious diseases caused by multidrug-resistant S. aureus.
Collapse
Affiliation(s)
| | - Paulo de Tarso Cavalcante Freire
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paulo Nogueira Bandeira
- Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Science and Technology Centre - Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Carlos Emidío Sampaio Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | | | - Jayze da Cunha Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Efflux pumps as interventions to control infection caused by drug-resistance bacteria. Drug Discov Today 2020; 25:2307-2316. [PMID: 33011344 DOI: 10.1016/j.drudis.2020.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/06/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance has become a global concern for healthcare workers and physicians. Efflux pumps are one of the major mechanisms of resistance. Hence, we describe examples of natural efflux pump inhibitors used to combat antibiotic resistance.
Collapse
|
41
|
Scherf JR, Barbosa Dos Santos CR, Sampaio de Freitas T, Rocha JE, Macêdo NS, Mascarenhas Lima JN, Melo Coutinho HD, Bezerra da Cunha FA. Effect of terpinolene against the resistant Staphylococcus aureus strain, carrier of the efflux pump QacC and β-lactamase gene, and its toxicity in the Drosophila melanogaster model. Microb Pathog 2020; 149:104528. [PMID: 33002597 DOI: 10.1016/j.micpath.2020.104528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Efflux pumps and β-lactamases are mechanisms of bacterial resistance that exist in Staphylococcus aureus, where both mechanisms are expressed simultaneously in the SA K4100 strain, with its efflux pump being characterized as QacC (Quaternary Ammonium Compounds C). The search for inhibitors of these mechanisms has grown gradually, with research on isolated compounds, including terpenes, which have innumerable biological activities, being common. This study sought to evaluate the antibacterial activity of Terpinolene against the S. aureus K4100 strain, carrying a QacC efflux pump and β-lactamase, as well as to evaluate its toxicity in the Drosophila melanogaster arthropod model. Determination of the Minimum Inhibitory Concentration (MIC) was performed by broth microdilution. Efflux pump inhibition was evaluated by the MIC reduction of Oxacillin and Ethidium Bromide (EtBr). β-Lactamase inhibition was analyzed by the MIC reduction of Ampicillin with Sulbactam. Toxicity was verified by mortality parameters and locomotor assays in D. melanogaster. The results demonstrated that Terpinolene did not present a direct antibacterial activity (MIC ≥ 1024 μg/mL). However, a reduction in MIC was observed when Terpinolene was associated with Oxacillin (161.26-71.83 μg/mL) and EtBr (45.25-32 μg/mL), possibly by a β-lactamase and efflux pump inhibition, thus evidencing a modulatory activity. Terpinolene presented D. melanogaster mortality with an EC50 of 34.6 μL/L within 12 h of exposure. Additionally, Terpinolene presented damage to the locomotor system after the second hour of exposure, with the effect increasing in a concentration-dependent manner. In conclusion, new tests should be carried out to investigate the Terpinolene reinforcement of antibiotic activity and toxic activity mechanisms of action.
Collapse
Affiliation(s)
- Jackelyne Roberta Scherf
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Cristina Rodrigues Barbosa Dos Santos
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Thiago Sampaio de Freitas
- Laboratory of Simulations and Molecular Spectroscopy, Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Pos Graduate Program, Brazil.
| | - Nair Silva Macêdo
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Sciences Pos Graduate Program - PPGCB, Federal University of Pernambuco - UFPE, Recife, 50670-901, PE, Brazil.
| | - Jessyca Nayara Mascarenhas Lima
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Bioprospecting in the Semi-Arid and Alternative Methods (LABSEMA), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
42
|
Boren K, Crown A, Carlson R. Multidrug and Pan-Antibiotic Resistance—The Role of Antimicrobial and Synergistic Essential Oils: A Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial resistance to antibiotics continues to be a grave threat to human health. Because antibiotics are no longer a lucrative market for pharmaceutical companies, the development of new antibiotics has slowed to a crawl. The World Health Organization reported that the 8 new bacterial agents approved since July 2017 had limited clinical benefits. While a cohort of biopharmaceutical companies recently announced plans to develop 2-4 new antibiotics by 2030, we needn’t wait a decade to find innovative antibiotic candidates. Essential oils (EOs) have long been known as antibacterial agents with wide-ranging arsenals. Many are able to penetrate the bacterial membrane and may also be effective against bacterial defenses such as biofilms, efflux pumps, and quorum sensing. EOs have been documented to fight drug-resistant bacteria alone and/or combined with antibiotics. This review will summarize research showing the significant role of EOs as nonconventional regimens against the worldwide spread of antibiotic-resistant pathogens. The authors conducted a 4-year search of the US National Library of Medicine (PubMed) for relevant EO studies against methicillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Escherichia coli, EO combinations/synergy with antibiotics, against MDR fungal infections, showing the ability to permeate bacterial membranes, and against the bacterial defenses listed above. EOs are readily available and are a needed addition to the arsenal against resistant pathogens.
Collapse
|
43
|
Muniz DF, Dos Santos Barbosa CR, de Menezes IRA, de Sousa EO, Pereira RLS, Júnior JTC, Pereira PS, de Matos YMLS, da Costa RHS, de Morais Oliveira-Tintino CD, Coutinho HDM, Filho JMB, Ribeiro de Sousa G, Filho JR, Siqueira-Junior JP, Tintino SR. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem 2020; 337:127776. [PMID: 32777574 DOI: 10.1016/j.foodchem.2020.127776] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/04/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for a number of diseases and has demonstrated resistance to conventional antibiotics. This study aimed to evaluate the antibacterial activity of eugenol and its derivatives allylbenzene, 4-allylanisole, isoeugenol and 4-allyl-2,6-dimethoxyphenol against the S. aureus NorA efflux pump (EP) in association with norfloxacin and ethidium bromide. The antibacterial activity of the compounds was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). A reduction in the MIC of ethidium bromide (a substrate for several efflux pumps) or norfloxacin was used as a parameter of EP inhibition. Molecular modeling studies were used to predict the 3D structure and analyze the interaction of selected compounds with the binding pocket of the NorA efflux pump. Except for 4-allylanisole and allylbenzene, the compounds presented clinically effective antibacterial activity. When associated with norfloxacin against the SA 1199B strain, 4-allyl-2,6-dimethoxyphenol eugenol and isoeugenol caused significant reduction in the MIC of the antibiotic, demonstrating synergistic effects. Similar effects were observed when 4-allyl-2,6-dimethoxyphenol, allylbenzene and isoeugenol were associated with ethidium bromide. Together, these findings indicate a potential inhibition of the NorA pump by eugenol and its derivatives. This in vitro evidence was corroborated by docking results demonstrating favorable interactions between 4-allyl-2,6-dimetoxypheno and the NorA pump mediated by hydrogen bonds and hydrophobic interactions. In conclusion, eugenol derivatives have the potential to be used in antibacterial drug development in strains carrying the NorA efflux pump.
Collapse
Affiliation(s)
- Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - Erlânio Oliveira de Sousa
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Raimundo Luiz Silva Pereira
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | - Pedro Silvino Pereira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Yedda M L S de Matos
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | - Roger H S da Costa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry/CCBS/URCA, Brazil
| | | | | | - José Maria Barbosa Filho
- Laboratory of Phamaceutical Tecnology Federal, University of João Pessoa (UFPB), CCBS/URCA, Brazil
| | | | - Jaime Ribeiro Filho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Department of Biological Chemistry/CCBS/URCA, Brazil
| |
Collapse
|
44
|
AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 2020; 9:E480. [PMID: 32759771 PMCID: PMC7460449 DOI: 10.3390/antibiotics9080480] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
The unprecedented use of antibiotics that led to development of resistance affect human health worldwide. Prescription of antibiotics imprudently and irrationally in different diseases progressed with the acquisition and as such development of antibiotic resistant microbes that led to the resurgence of pathogenic strains harboring enhanced armors against existing therapeutics. Compromised the treatment regime of a broad range of antibiotics, rise in resistance has threatened human health and increased the treatment cost of diseases. Diverse on metabolic, genetic and physiological fronts, rapid progression of resistant microbes and the lack of a strategic management plan have led researchers to consider plant-derived substances (PDS) as alternative or in complementing antibiotics against the diseases. Considering the quantitative characteristics of plant constituents that attribute health beneficial effects, analytical procedures for their isolation, characterization and phytochemical testing for elucidating ethnopharmacological effects has being worked out for employment in the treatment of different diseases. With an immense potential to combat bacterial infections, PDSs such as polyphenols, alkaloids and tannins, present a great potential for use, either as antimicrobials or as antibiotic resistance modifiers. The present study focuses on the mechanisms by which PDSs help overcome the surge in resistance, approaches for screening different phytochemicals, methods employed in the identification of bioactive components and their testing and strategies that could be adopted for counteracting the lethal consequences of multidrug resistance.
Collapse
Affiliation(s)
- Hana Mohammed Al AlSheikh
- Department of Prosthetic Dental Sciences, College of Dentistry, Kind Saud University, Riyadh P.O. BOX 145111, Saudi Arabia;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah P.O. BOX 80200, Saudi Arabia;
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | | |
Collapse
|
45
|
Juma A, Lemoine P, Simpson ABJ, Murray J, O'Hagan BMG, Naughton PJ, Dooley JG, Banat IM. Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1477. [PMID: 32733412 PMCID: PMC7358407 DOI: 10.3389/fmicb.2020.01477] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.
Collapse
Affiliation(s)
- Abulaziz Juma
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick Lemoine
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Alistair B J Simpson
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Jason Murray
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Barry M G O'Hagan
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick J Naughton
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
46
|
The Efficacy of Processing Strategies on the Gastroprotective Potentiality of Chenopodium quinoa Seeds. ScientificWorldJournal 2020; 2020:6326452. [PMID: 32549800 PMCID: PMC7275209 DOI: 10.1155/2020/6326452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
Collapse
|
47
|
de Sousa Silveira Z, Macêdo NS, Sampaio dos Santos JF, Sampaio de Freitas T, Rodrigues dos Santos Barbosa C, Júnior DLDS, Muniz DF, Castro de Oliveira LC, Júnior JPS, da Cunha FAB, Melo Coutinho HD, Balbino VQ, Martins N. Evaluation of the Antibacterial Activity and Efflux Pump Reversal of Thymol and Carvacrol against Staphylococcus aureus and Their Toxicity in Drosophila melanogaster. Molecules 2020; 25:E2103. [PMID: 32365898 PMCID: PMC7249103 DOI: 10.3390/molecules25092103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
The antibacterial activity and efflux pump reversal of thymol and carvacrol were investigated against the Staphylococcus aureus IS-58 strain in this study, as well as their toxicity against Drosophila melanogaster. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while efflux pump inhibition was assessed by reduction of the antibiotic and ethidium bromide (EtBr) MICs. D. melanogaster toxicity was tested using the fumigation method. Both thymol and carvacrol presented antibacterial activities with MICs of 72 and 256 µg/mL, respectively. The association between thymol and tetracycline demonstrated synergism, while the association between carvacrol and tetracycline presented antagonism. The compound and EtBr combinations did not differ from controls. Thymol and carvacrol toxicity against D. melanogaster were evidenced with EC50 values of 17.96 and 16.97 µg/mL, respectively, with 48 h of exposure. In conclusion, the compounds presented promising antibacterial activity against the tested strain, although no efficacy was observed in terms of efflux pump inhibition.
Collapse
Affiliation(s)
- Zildene de Sousa Silveira
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Nair Silva Macêdo
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Joycy Francely Sampaio dos Santos
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Thiago Sampaio de Freitas
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Cristina Rodrigues dos Santos Barbosa
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Dárcio Luiz de Sousa Júnior
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Débora Feitosa Muniz
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Lígia Claudia Castro de Oliveira
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - José Pinto Siqueira Júnior
- Laboratory of Microorganism Genetics (LGM), Federal University of Paraiba-UFPB, João Pessoa 58051-900, PB, Brazil;
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (Z.d.S.S.); (N.S.M.); (J.F.S.d.S.); (D.L.d.S.J.); (L.C.C.d.O.); (F.A.B.d.C.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.); (D.F.M.)
| | - Valdir Queiroz Balbino
- Graduate Program in Biological Sciences-PPGCB, Federal University of Pernambuco-UFPE, Recife 50670-901, PE, Brazil;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
48
|
Cruz RMD, Zelli R, Benhsain S, Cruz RMD, Siqueira‐Júnior JP, Décout J, Mingeot‐Leclercq M, Mendonça‐Junior FJB. Synthesis and Evaluation of 2‐Aminothiophene Derivatives as
Staphylococcus aureus
Efflux Pump Inhibitors. ChemMedChem 2020; 15:716-725. [DOI: 10.1002/cmdc.201900688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rayssa M. D. Cruz
- Department of Biological Sciences State University of Paraiba Laboratory of Synthesis and Drug Delivery João Pessoa PB Brazil
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Renaud Zelli
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
| | - Sarah Benhsain
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Ryldene M. D. Cruz
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
| | - José P. Siqueira‐Júnior
- Department of Molecular Biology Federal University of Paraiba Laboratory of Microorganism Genetics João Pessoa/PB Brazil
| | - Jean‐Luc Décout
- Département de Pharmacochimie Moléculaire University Grenoble Alpes CNRS Grenoble France
| | - Marie‐Paule Mingeot‐Leclercq
- Department of Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Louvain Drug Research Institute Brussels Belgium
| | - Francisco J. B. Mendonça‐Junior
- Department of Biological Sciences State University of Paraiba Laboratory of Synthesis and Drug Delivery João Pessoa PB Brazil
- Department of Pharmaceutical Sciences Federal University of Paraiba Post-Graduation Program in Natural and Synthetic Bioactive Products João Pessoa PB Brazil
| |
Collapse
|
49
|
Ponte HAS, Lima MIDO, Lima EDO, Pereira FDO. Linalool modulates dermatophyte susceptibility to azole drugs. Med Mycol 2020; 58:272-274. [PMID: 31329906 DOI: 10.1093/mmy/myz041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
This study investigated the monoterpene linalool and its resistance modulating activity involving ergosterol biosynthesis inhibitors (ketoconazole, fluconazole, and itraconazole) in strains of Microsporum spp. and Trichophyton spp. The minimum inhibitory concentration (MIC) of test-drugs were determined by microdilution. The modulating effect of linalool was evaluated by determining the MIC of the antifungals in the presence of subinhibitory concentrations of linalool. We also investigated the association effect (checkerboard) of linalool together with ketoconazole and itraconazole. The fungi became more sensitive to ketoconazole and itraconazole in the presence of linalool. The linalool and azole drug associations presented synergism.
Collapse
Affiliation(s)
- Hellen Aparecida Silva Ponte
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Maria Islaine de Oliveira Lima
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Edeltrudes de Oliveira Lima
- Laboratory of Mycology, Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraıba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| |
Collapse
|
50
|
Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, Lim SHE, Lai KS. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci Rep 2020; 10:819. [PMID: 31964900 PMCID: PMC6972767 DOI: 10.1038/s41598-019-55601-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022] Open
Abstract
Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
Collapse
Affiliation(s)
- Shun-Kai Yang
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, 43400, Serdang, Selangor, Malaysia
| | - Riaz Akseer
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Maryam Sultan Alhosani
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Swee-Hua-Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates. .,Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, 43400, Serdang, Selangor, Malaysia.
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates.
| |
Collapse
|