1
|
Li K, Kidawara M, Chen Q, Munemasa S, Murata Y, Nakamura T, Nakamura Y. Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes. Int J Mol Sci 2024; 25:9038. [PMID: 39201725 PMCID: PMC11354654 DOI: 10.3390/ijms25169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Minori Kidawara
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
| | - Qiguang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Wu H, Nakamura T, Guo Y, Matsumoto R, Munemasa S, Murata Y, Nakamura Y. Cycloartenyl Ferulate Is the Predominant Compound in Brown Rice Conferring Cytoprotective Potential against Oxidative Stress-Induced Cytotoxicity. Int J Mol Sci 2023; 24:ijms24010822. [PMID: 36614263 PMCID: PMC9821627 DOI: 10.3390/ijms24010822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 ± 8.07 nmol/g) >> α-tocopherol (αT) (19.73 ± 2.28 nmol/g) > γ-tocotrienol (γT3) (18.24 ± 1.41 nmol/g) > α-tocotrienol (αT3) (16.02 ± 1.29 nmol/g) > γ-tocopherol (γT) (3.81 ± 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of αT, αT3, and γT3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 µM, which is lower than the minimal concentrations of αT and γT required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity.
Collapse
Affiliation(s)
- Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yingnan Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Riho Matsumoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- Correspondence:
| |
Collapse
|
3
|
Liu Y, Myojin T, Li K, Kurita A, Seto M, Motoyama A, Liu X, Satoh A, Munemasa S, Murata Y, Nakamura T, Nakamura Y. A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity. Int J Mol Sci 2022; 23:ijms23031762. [PMID: 35163684 PMCID: PMC8836260 DOI: 10.3390/ijms23031762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.
Collapse
Affiliation(s)
- Yujia Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Takumi Myojin
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Kexin Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayuki Kurita
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Masayuki Seto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayano Motoyama
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (K.L.); (X.L.)
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (T.M.); (A.K.); (M.S.); (A.M.); (S.M.); (Y.M.); (T.N.)
- Correspondence: ; Tel.: +81-86-251-8300; Fax: +81-86-251-8388
| |
Collapse
|
4
|
Gastroprotective effects and metabolomic profiling of Chasteberry fruits against indomethacin-induced gastric injury in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
El Badawy SA, Ogaly HA, Abd-Elsalam RM, Azouz AA. Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats. Food Funct 2021; 12:6001-6013. [PMID: 34037056 DOI: 10.1039/d1fo00645b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study investigated the gastroprotective activity of benzyl isothiocyanates (BITC) on indomethacin (IND)-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular, and molecular mechanisms. The rat model with gastric ulcers was established by a single oral dose of IND (30 mg per kg b.wt). BITC (0.75 and 1.5 mg kg-1) and esomeprazole (20 mg per kg b.wt) were orally administered for 3 weeks to rats before the induction of gastric injury. Compared with the IND group, BITC could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. BITC significantly preserved the antioxidants (glutathione GSH, superoxide dismutase SOD), nitric oxide (NO), and prostaglandin E2 (PGE2) contents, while decreasing the gastric mucosal malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) contents. Moreover, BITC remarkably upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NAD(P)H : quinone oxidoreductase (NQO1). In addition, BITC activates the expression of heat shock protein 70 (HSP-70) and downregulated the expression of nuclear factor-κB (NF-κB) and caspase-3 to promote gastric mucosal cell survival. To the best of our knowledge, this study is the first published report to implicate the suppression of inflammation, oxidative stress, and Nrf2 signaling pathway as a potential mechanism for the gastroprotective activity of BITC.
Collapse
Affiliation(s)
- Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. and Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa A Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
7
|
Liu X, Yang Q, Nakamura Y. Inhibition of Drug Resistance Mechanisms Improves the Benzyl Isothiocyanate–Induced Anti-Proliferation in Human Colorectal Cancer Cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00227-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Effect of benzyl isothiocyanate encapsulated biocompatible nanoemulsion prepared via ultrasonication on microbial strains and breast cancer cell line MDA MB 231. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kitakaze T, Yuan S, Inoue M, Yoshioka Y, Yamashita Y, Ashida H. 6-(Methylsulfinyl)hexyl isothiocyanate protects acetaldehyde-caused cytotoxicity through the induction of aldehyde dehydrogenase in hepatocytes. Arch Biochem Biophys 2020; 686:108329. [DOI: 10.1016/j.abb.2020.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
|
10
|
Nakamura T, Murata Y, Nakamura Y. Characterization of benzyl isothiocyanate extracted from mashed green papaya by distillation. Food Chem 2019; 299:125118. [DOI: 10.1016/j.foodchem.2019.125118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
11
|
Kitakaze T, Makiyama A, Samukawa Y, Jiang S, Yamashita Y, Ashida H. A physiological concentration of luteolin induces phase II drug-metabolizing enzymes through the ERK1/2 signaling pathway in HepG2 cells. Arch Biochem Biophys 2019; 663:151-159. [PMID: 30641047 DOI: 10.1016/j.abb.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The flavon luteolin has various health-promoting activities including cardiovascular protection, anti-inflammatory activity and anticancer activity. A serum concentration of about 100 nM luteolin is reached by dietary habit. However, little is known about the function of luteolin over its physiological concentration range. In this study, we investigated whether a physiological concentration of luteolin could activate nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated expression of phase II drug-metabolizing enzymes in human hepatoma HepG2 cells. Interestingly, less than 1 nM of luteolin could induce phase II drug-metabolizing enzymes, such as GSTs, HO-1, and NQO1. Both 1 and 100 nM luteolin increased expression and activity of ALDH2, which metabolized toxic acetaldehyde into nontoxic acetic acid. Luteolin increased nuclear accumulation of Nrf2 and enhanced the ARE-binding complex through increasing the stability of the Nrf2 protein. Luteolin increased phosphorylation of Nrf2 at Ser40, and MEK inhibitors (U0126 and PD98059) canceled luteolin-induced phosphorylation of Nrf2. Furthermore, luteolin increased modified Keap1. In conclusion, a physiological concentration of luteolin induces the expression of phase II drug-metabolizing enzymes by enhancement of Nrf2 nuclear accumulation through MEK1/2-ERK1/2-mediated phosphorylation of Nrf2, increasing Nrf2 stability and inducing a conformational change of Keap1.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Atsushi Makiyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yumi Samukawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Songyan Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
12
|
Acetaldehyde Induces Neurotoxicity In Vitro via Oxidative Stress- and Ca 2+ Imbalance-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2593742. [PMID: 30728884 PMCID: PMC6343137 DOI: 10.1155/2019/2593742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023]
Abstract
Excessive drinking can damage brain tissue and cause cognitive dysfunction. Studies have found that the early stage of neurodegenerative disease is closely related to heavy drinking. Acetaldehyde (ADE) is the main toxic metabolite of alcohol. However, the exact mechanisms of ADE-induced neurotoxicity are not fully clear. In this article, we studied the cytotoxic effect of ADE in HT22 cells and primary cultured cortical neuronal cells. We found that ADE exhibited cytotoxicities against HT22 cells and primary cultured cortical neuronal cells in dose-dependent manners. Furthermore, ADE induced apoptosis of HT22 cells by upregulating the expression of caspase family proapoptotic proteins. Moreover, ADE treatment could significantly increase the intracellular Ca2+ and reactive oxygen species (ROS) levels and activate endoplasmic reticulum stress (ERS) in HT22 cells. ADE upregulated ERS-related CHOP expression dose-dependently in primary cultured cortical neuronal cells. In addition, inhibition of ROS with antioxidant N-acetyl-L-cysteine (NAC) reduced the accumulation of ROS and reversed ADE-induced increase of ERS-related protein and apoptosis-related protein levels. Mitigation of ERS with ERS inhibitor 4-PBA obviously suppressed ADE-induced apoptosis and the expression of ERS-related proteins. Therefore, ADE induces neurotoxicity of HT22 cells via oxidative stress- and Ca2+ imbalance-mediated ERS.
Collapse
|
13
|
Liang Y, Sasaki I, Takeda Y, Zhu B, Munemasa S, Nakamura T, Murata Y, Nakamura Y. Benzyl isothiocyanate ameliorates lipid accumulation in 3T3-L1 preadipocytes during adipocyte differentiation. Biosci Biotechnol Biochem 2018; 82:2130-2139. [PMID: 30185113 DOI: 10.1080/09168451.2018.1514247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Benzyl isothiocyanate (BITC) is an organosulfur compound derived from cruciferous vegetables and papaya seeds. In this study, we investigated the effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes during adipocyte differentiation. The treatment of BITC during the differentiation-inducing stage significantly ameliorated the lipid accumulation, whereas it had no inhibitory effect during the differentiation-maintaining stage. BITC also significantly suppressed the mRNA expression of the adipocyte-specific markers, such as CCAAT/enhancer-binding protein α (C/EBPα), C/EBPβ, C/EBPδ and peroxisome proliferator-activated receptor γ. BITC significantly inhibited the phosphorylation of extracellular signal-regulated kinase phosphorylation, whereas it enhanced that of AMP-activated protein kinase. Furthermore, BITC significantly suppressed the intracellular 2-deoxyglucose uptake as well as glucose transporter 4 expression. These results suggest that inhibition of the adipocyte differentiation and glucose uptake may mainly contribute to the inhibitory effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes. Abbreviations: PPARγ: peroxisome proliferator-activated receptor γ; CEBP: CCAAT/enhancer-binding protein; GLUT4: glucose transporter 4; AMPK: AMP-activated protein kinase; ERK1/2: extracellular signal-regulated kinase 1/2; MAPK: a mitogen-activated protein kinase; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; FBS: fetal bovine serum; CS: calf serum; AITC: allyl ITC; IBMX: 3-isobutyl-1-methylxanthine; LDH: lactate dehydrogenase; KRH: Krebs-Ringer-Hepes-bicarbonate; 2-DG: 2-deoxy-d-glucose.
Collapse
Affiliation(s)
- Ying Liang
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan.,b School of Food Science and Technology , Dalian Polytechnic University , Dalian China
| | - Ikumi Sasaki
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yuki Takeda
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Beiwei Zhu
- b School of Food Science and Technology , Dalian Polytechnic University , Dalian China
| | - Shintaro Munemasa
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Toshiyuki Nakamura
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yoshiyuki Murata
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| | - Yoshimasa Nakamura
- a Graduate School of Environmental and Life Science , Okayama University , Okayama Japan
| |
Collapse
|
14
|
Tang Y, Naito S, Abe-Kanoh N, Ogawa S, Yamaguchi S, Zhu B, Murata Y, Nakamura Y. Benzyl isothiocyanate attenuates the hydrogen peroxide-induced interleukin-13 expression through glutathione S-transferase P induction in T lymphocytic leukemia cells. J Biochem Mol Toxicol 2018; 32:e22054. [DOI: 10.1002/jbt.22054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Yue Tang
- School of Food Science and Technology; Dalian Polytechnic University; Dalian 116034 China
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Sho Naito
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
- Department of Food Science, Graduate School of Biomedical Sciences; Tokushima University; Tokushima 770-8503 Japan
| | - Seiji Ogawa
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Shu Yamaguchi
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Beiwei Zhu
- School of Food Science and Technology; Dalian Polytechnic University; Dalian 116034 China
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science; Okayama University; Okayama 700-8530 Japan
| |
Collapse
|