1
|
Magurany KA, Chang X, Clewell R, Coecke S, Haugabrooks E, Marty S. A Pragmatic Framework for the Application of New Approach Methodologies in One Health Toxicological Risk Assessment. Toxicol Sci 2023; 192:kfad012. [PMID: 36782355 PMCID: PMC10109535 DOI: 10.1093/toxsci/kfad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Globally, industries and regulatory authorities are faced with an urgent need to assess the potential adverse effects of chemicals more efficiently by embracing new approach methodologies (NAMs). NAMs include cell and tissue methods (in vitro), structure-based/toxicokinetic models (in silico), methods that assess toxicant interactions with biological macromolecules (in chemico), and alternative models. Increasing knowledge on chemical toxicokinetics (what the body does with chemicals) and toxicodynamics (what the chemicals do with the body) obtained from in silico and in vitro systems continues to provide opportunities for modernizing chemical risk assessments. However, directly leveraging in vitro and in silico data for derivation of human health-based reference values has not received regulatory acceptance due to uncertainties in extrapolating NAM results to human populations, including metabolism, complex biological pathways, multiple exposures, interindividual susceptibility and vulnerable populations. The objective of this article is to provide a standardized pragmatic framework that applies integrated approaches with a focus on quantitative in vitro to in vivo extrapolation (QIVIVE) to extrapolate in vitro cellular exposures to human equivalent doses from which human reference values can be derived. The proposed framework intends to systematically account for the complexities in extrapolation and data interpretation to support sound human health safety decisions in diverse industrial sectors (food systems, cosmetics, industrial chemicals, pharmaceuticals etc.). Case studies of chemical entities, using new and existing data, are presented to demonstrate the utility of the proposed framework while highlighting potential sources of human population bias and uncertainty, and the importance of Good Method and Reporting Practices.
Collapse
Affiliation(s)
| | | | - Rebecca Clewell
- 21st Century Tox Consulting, Chapel Hill, North Carolina 27517, USA
| | - Sandra Coecke
- European Commission Joint Research Centre, Ispra, Italy
| | - Esther Haugabrooks
- Coca-Cola Company (formerly Physicians Committee for Responsible Medicine), Atlanta, Georgia 30313, USA
| | - Sue Marty
- The Dow Chemical Company, Midland, Michigan 48667, USA
| |
Collapse
|
2
|
Fragki S, Piersma AH, Westerhout J, Kienhuis A, Kramer NI, Zeilmaker MJ. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regul Toxicol Pharmacol 2022; 136:105267. [DOI: 10.1016/j.yrtph.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
|
3
|
M Pauzi NA, Cheema MS, Ismail A, Ghazali AR, Abdullah R. Safety assessment of natural products in Malaysia: current practices, challenges, and new strategies. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:169-179. [PMID: 34582637 DOI: 10.1515/reveh-2021-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The belief that natural products are inherently safe is a primary reason for consumers to choose traditional medicines and herbal supplements for health maintenance and disease prevention. Unfortunately, some natural products on the market have been found to contain toxic compounds, such as heavy metals and microbes, as well as banned ingredients such as aristolochic acids. It shows that the existing regulatory system is inadequate and highlights the importance of thorough safety evaluations. In Malaysia, the National Pharmaceutical Regulatory Agency is responsible for the regulatory control of medicinal products and cosmetics, including natural products. For registration purpose, the safety of natural products is primarily determined through the review of documents, including monographs, research articles and scientific reports. One of the main factors hampering safety evaluations of natural products is the lack of toxicological data from animal studies. However, international regulatory agencies such as the European Food Safety Authority and the United States Food and Drug Administration are beginning to accept data obtained using alternative strategies such as non-animal predictive toxicological tools. Our paper discusses the use of state-of-the-art techniques, including chemometrics, in silico modelling and omics technologies and their applications to the safety assessments of natural products.
Collapse
Affiliation(s)
- Nur Azra M Pauzi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Ministry of Health, Kompleks E, Pusat Pentadbiran Kerajaan Persekutuan, Putrajaya, Malaysia
| | - Manraj S Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Rohi Ghazali
- Biomedical Sciences Programmes, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Giera DS, Preisitsch M, Brevard H, Nemetz J. Quantitative Removal of Pyrrolizidine Alkaloids from Essential Oils by the Hydrodistillation Step in Their Manufacturing Process. PLANTA MEDICA 2022; 88:538-547. [PMID: 34293805 DOI: 10.1055/a-1534-6928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pyrrolizidine alkaloids are naturally occurring toxins produced by certain weeds that can, if accidentally co-harvested, contaminate plant-based food, feed, and herbal medicinal products. Focusing on herbal medicinal products, the presence of pyrrolizidine alkaloids is restricted by regulatory prescribed thresholds to assure patient safety. Among the multitude of different herbal active substances utilized in herbal medicinal products, the class of pharmaceutically effective essential oils is considered to exhibit a negligible contribution to pyrrolizidine alkaloid contamination. Within the present investigation, this hypothesis should be scientifically scrutinized. For this purpose, an experimental set-up was chosen that reproduces the typical manufacturing step of hydrodistillation. Essential oils of eucalyptus and lemon were selected exemplarily and spiked with 3 representative pyrrolizidine alkaloids (retrorsine, retrorsine-N-oxide, and lycopsamine), whereupon hydrodistillation was performed. Analysis of the resulting distillates by LC-MS/MS proved that artificially added pyrrolizidine alkaloids were removed completely. Moreover, quantitative pyrrolizidine alkaloid recovery in the aqueous phases was observed. Hence, it was experimentally confirmed that herbal medicinal products employing hydrodistilled essential oils of pharmaceutical quality are intrinsically free of pyrrolizidine alkaloids due to the particularities of their manufacturing process. Furthermore, it can be concluded from theoretical considerations that essential oils produced by cold pressing have a negligible risk of carrying pyrrolizidine alkaloid contamination. Our findings provide a strong indication that the requirement for analytical pyrrolizidine alkaloid testing of essential oils for pharmaceutical use should be fundamentally reconsidered.
Collapse
Affiliation(s)
- David S Giera
- G. Pohl-Boskamp GmbH & Co. KG, Hohenlockstedt, Germany
| | | | | | - Jörn Nemetz
- G. Pohl-Boskamp GmbH & Co. KG, Hohenlockstedt, Germany
| |
Collapse
|
5
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
6
|
Ren Z, Zhang H, Wang Z, Chen X, Yang L, Jiang H. Progress in Immunoassays of Toxic Alkaloids in Plant-Derived Medicines: A Review. Toxins (Basel) 2022; 14:toxins14030165. [PMID: 35324662 PMCID: PMC8948709 DOI: 10.3390/toxins14030165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plants are the cradle of the traditional medicine system, assuaging human or animal diseases, and promoting health for thousands of years. However, many plant-derived medicines contain toxic alkaloids of varying degrees of toxicity that pose a direct or indirect threat to human and animal health through accidental ingestion, misuse of plant materials, or through the food chain. Thus, rapid, easy, and sensitive methods are needed to effectively screen these toxic alkaloids to guarantee the safety of plant-derived medicines. Antibodies, due to their inherent specificity and high affinity, have been used as a variety of analytical tools and techniques. This review describes the antigen synthesis and antibody preparation of the common toxic alkaloids in plant-derived medicines and discusses the advances of antibody-based immunoassays in the screening and detection of toxic alkaloids in plants or other related matrices. Finally, the limitations and prospects of immunoassays for toxic alkaloids are discussed.
Collapse
|
7
|
Schrenk D, Fahrer J, Allemang A, Fu P, Lin G, Mahony C, Mulder PPJ, Peijnenburg A, Pfuhler S, Rietjens IMCM, Sachse B, Steinhoff B, These A, Troutman J, Wiesner J. Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment-A Workshop Report. PLANTA MEDICA 2022; 88:98-117. [PMID: 34715696 DOI: 10.1055/a-1646-3618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAs' pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Peter Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Procter & Gamble, Technical Centres Limited, Weybridge, Surrey, United Kingdom
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Benjamin Sachse
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | - Anja These
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | | |
Collapse
|
8
|
Wiesner J. Regulatory Perspectives of Pyrrolizidine Alkaloid Contamination in Herbal Medicinal Products. PLANTA MEDICA 2022; 88:118-124. [PMID: 34169489 DOI: 10.1055/a-1494-1363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The toxicity of plants containing certain pyrrolizidine alkaloids has long been recognized in grazing animals and humans. Genotoxicity and carcinogenicity data from in vitro and in vivo (animal) studies were published over the last few decades for some of the 1,2-unsaturated pyrrolizidine alkaloids, leading to regulatory action on herbal medicinal products with pyrrolizidine alkaloid-containing plants more than 30 years ago. In recent years, it has become evident that in addition to herbal medicinal products containing pyrrolizidine alkaloid-containing plants, these products may also contain pyrrolizidine alkaloids without actually including pyrrolizidine alkaloid-containing plants. This is explained by contamination by accessory herbs (weeds). The national competent authorities of the European member states and the European Medicines Agency, in this case, the Committee on Herbal Medicinal Products, reacted to these findings by setting limits for all herbal medicinal products. This review article will briefly discuss the data leading to the establishment of thresholds and the regulatory developments and consequences, as well as the current discussions and research in this area.
Collapse
|
9
|
The role of DMPK science in improving pharmaceutical research and development efficiency. Drug Discov Today 2021; 27:705-729. [PMID: 34774767 DOI: 10.1016/j.drudis.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The successful regulatory authority approval rate of drug candidates in the drug development pipeline is crucial for determining pharmaceutical research and development (R&D) efficiency. Regulatory authorities include the US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceutical and Food Safety Bureau Japan (PFSB), among others. Optimal drug metabolism and pharmacokinetics (DMPK) properties influence the progression of a drug candidate from the preclinical to the clinical phase. In this review, we provide a comprehensive assessment of essential concepts, methods, improvements, and challenges in DMPK science and its significance in drug development. This information provides insights into the association of DMPK science with pharmaceutical R&D efficiency.
Collapse
|
10
|
Zhu Q, Jia Y, Guo J, Meng X, Chong L, Xu L, Zhou L, Sun Z. Establishment of an in vitro method of rabbit embryo toxicity with toxicokinetics study. J Appl Toxicol 2021; 42:380-391. [PMID: 34322893 DOI: 10.1002/jat.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022]
Abstract
This report introduces a novel method, rabbit whole embryo culture (WEC) combined with toxicokinetics (TK), for toxicity testing. Rodent WEC has been extensively used for in vitro screening of developmental toxicity. To improve the reliability of in vitro data, it is important to consider TK and species specificity. To test the utility and effectiveness of this method, we investigated the toxic effect of thalidomide on rabbit embryos and its behavior in test systems both in vitro and in vivo under the same experimental condition. The data showed that thalidomide induced embryo malformations such as embryonic brain hypoplasia, short limb buds, and declined embryonic growth both in vitro and in vivo. The toxic effect increased with the increasing exposure of the embryo to thalidomide. In addition, we observed similar toxic effects and exposure-effect relationships in vivo and in vitro. Therefore, we preliminarily conclude that this new method can effectively predict and explain thalidomide toxicity. Furthermore, we investigated the behavior of test compounds in the WEC system for the first time, and this method is expected to be an important technique for in vitro toxicity study after extensive verification.
Collapse
Affiliation(s)
- Qiuyang Zhu
- School of Pharmacy, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Yuling Jia
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Jun Guo
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Xiang Meng
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Liming Chong
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Xu
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Zhou
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Zuyue Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Geburek I, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species: part II-identification and quantitative assessment of the metabolite profile of six structurally different pyrrolizidine alkaloids. Arch Toxicol 2020; 94:3759-3774. [PMID: 32880719 PMCID: PMC7603446 DOI: 10.1007/s00204-020-02853-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Pyrrolizidine alkaloids (PA) exert their toxic effects only after bioactivation. Although their toxicity has already been studied and metabolic pathways including important metabolites were described, the quantification of the latter revealed a large unknown portion of the metabolized PA. In this study, the qualitative and quantitative metabolite profiles of structurally different PAs in rat and human liver microsomes were investigated. Between five metabolites for europine and up to 48 metabolites for lasiocarpine were detected. Proposals for the chemical structure of each metabolite were derived based on fragmentation patterns using high-resolution mass spectrometry. The metabolite profiles of the diester PAs showed a relatively good agreement between both species. The metabolic reactions were summarized into three groups: dehydrogenation, oxygenation, and shortening of necic acid(s). While dehydrogenation of the necine base is considered as bioactivation, both other routes are considered as detoxification steps. The most abundant changes found for open chained diesters were dealkylations, while the major metabolic pathway for cyclic diesters was oxygenation especially at the nitrogen atom. In addition, all diester PAs formed several dehydrogenation products, via the insertion of a second double bond in the necine base, including the formation of glutathione conjugates. In rat liver microsomes, all investigated PAs formed dehydropyrrolizidine metabolites with the highest amount formed by lasiocarpine, whereas in human liver microsomes, these metabolites could only be detected for diesters. Our findings demonstrate that an extensive analysis of PA metabolism can provide the basis for a better understanding of PA toxicity and support future risk assessment.
Collapse
Affiliation(s)
- Ina Geburek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.,Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Anja These
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
12
|
Liu R, Li X, Huang N, Fan M, Sun R. Toxicity of traditional Chinese medicine herbal and mineral products. ADVANCES IN PHARMACOLOGY 2019; 87:301-346. [PMID: 32089237 DOI: 10.1016/bs.apha.2019.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditional Chinese medicine (TCM) has been used to treat numerous kinds of diseases for more than 2000 years in eastern Asian countries. A portion of the TCM herbal and mineral products are believed to be toxic according to modern standards, and are still widely prescribed in the clinic. However, some TCM products considered to be non-toxic or low-toxic have been reported to possess significant toxicological effects on different organs in both animal and human models. In this review, we define the term "toxic" in TCM, and then we summarize the advances in pharmacology and toxicology research of Toxic Traditional Chinese Medicine (TTCM), including Chinese aconite (Fu Zi), Arsenic Trioxide, Tripterygium wilfordii Hook f. (Thunder God Vine), herbal drugs derived from plants in the Aristolochiaceae Juss. family (Ma Dou Ling), and other TCM products. Finally, the compatibility art of TCM and modern pharmaceutical approaches to manage undesired toxicity of TTCM is discussed. Promoting pharmacology and toxicology studies of TTCM and non-toxic TCM is critical for the further development and safety of TCM in clinical practice.
Collapse
Affiliation(s)
- Runping Liu
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Nana Huang
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Mengyue Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Jinan, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China; Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|