1
|
Wu Z, Shi J, Zhang Y, Shi R, Guo Q, Zhang J, Lu B, Huang Z, Ji L. Uncovering the pharmacological mechanism and the main herbal medicine contributing to the efficacy of Xiaoyanlidan Tablet (XYLDT) in treating cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119163. [PMID: 39613007 DOI: 10.1016/j.jep.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyanlidan Tablet (XYLDT) is a Chinese patent medicine consisted of three traditional Chinese medicines (TCMs) including Andrographis Herba (AH), Linearstripe Rabdosia Herba (LRH) and Picrasmae Ramulus et Folium (PRF). In Chinese traditional medicine theory, XYLDT has the "heat-clearing, dampness-dispelling and gallbladder function promoting" properties, and was widely used in the clinic for decades to treat pain in the subcostal region or bitter taste in the mouth, which were induced by liver-gallbladder dampness-heat. Meanwhile, it was also used for the therapy of acute cholecystitis and cholangitis. AIM OF THE STUDY To explore the mechanism of XYLDT in alleviating the alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury (CLI), and to find out which TCM consisted in XYLDT contributed the most to the therapeutic efficacy of XYLDT. METHODS ANIT was orally given to mice to induce CLI in vivo. Each TCM in XYLDT alone, XYLDT-without one TCM or XYLDT was orally given to mice before or after ANIT administration. Serum biochemical indicators were measured by using commercial kits. Liver histopathology was observed. Clinical data analysis was used to predict molecules and signal pathways involved in the XYLDT-provided improvement on CLI, which was further verified by using RT-PCR and Western-blot assay. RESULTS The alleviation of XYLDT on ANIT-induced CLI was proved by the data of serum biochemical indicators and liver histological observation. Results from clinical data analysis indicated that XYLDT improved CLI via improving mitochondrial function, oxidative phosphorylation, oxidative stress. XYLDT reduced the ROS level, MDA content, and increased GSH content. Meanwhile XYLDT improved the level of Nrf2 into the nucleus and mRNA expression of Nqo1, Gclc, Gclm. Andrographis Herba was proved to be the most crucial for the XYLDT-provided therapeutic efficacy on CLI. Moreover, andrographolide and neoandrographolide, two main active compounds in Andrographis Herba, had the apparent anti-inflammatory ability in LPS-stimulated RAW264.7 cells. Andrographolide also promoted nuclear translocation activation of Nrf2 in antioxidant response elements (ARE)-luciferin transfected L-02 cells. CONCLUSION XYLDT alleviated the ANIT-induced CLI via improving oxidative stress and activated Nrf2-related signaling pathways. Andrographis Herba was important for the XYLDT-provided alleviation on CLI.
Collapse
Affiliation(s)
- Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruijia Shi
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhang M, Pan Y, Feng S, Chi C, Wu F, Ding CF. Rapid separation of bile acid isomers via ion mobility mass spectrometry by complexing with spiramycin. Anal Bioanal Chem 2024; 416:6563-6573. [PMID: 39373918 DOI: 10.1007/s00216-024-05553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Bile acid (BA) is one of the main active components of bile and has multiple isomers, the structure or content of its isomers often changes due to diseases and other health problems; thus, the accurate detection of BA isomers is very important. In this study, two groups of BA isomers of glycine-conjugated BAs and taurine-conjugated BAs were simultaneously separated and quantitatively analyzed by ion mobility mass spectrometry (IM-MS). Especially, baseline mobility separation between the isomers was achieved by the formation of binary complexes via simple interaction with spiramycin (SPM), for which a separation resolution (Rp-p) of 1.96 was reached. Moreover, BA isomers were quantitatively analyzed, and the limit of detection (LOD) of absolute quantification for TCDCA/TUDCA and GUDCA/GCDCA/GHDCA was 0.514 and 0.611 ng∙mL-1, respectively; the LODs for molar ratio ranges of relative quantification for TCDCA/TUDCA, GUDCA/GHDCA, and GCDCA/GHDCA were 1:18-30:1, 1:18-21:1, and 1:19-21:1, respectively. Additionally, BA isomers analyzed in pig bile powder and bear bile powder were measured, which were in good consistency with those labeled, revealing the differences in BA composition and content between the two powders. Finally, BA detection and recovery analyses were performed on serum samples, with a recovery rate of ≥73.69%, RSD of ≤6.8%, and SR (standard deviation of recoveries, the degree of difference between measured values and average recovery) of ≤1.27. Due to the simple, rapid, and lack of need for complex sample preparation and chromatographic separation, the proposed method can be an effective method for BA detection in practical samples.
Collapse
Affiliation(s)
- Manli Zhang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yao Pan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shugai Feng
- Department of Reproductive Center, 906 Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Ningbo, 315020, Zhejiang, China
| | - Chaoxian Chi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
3
|
Wu J, Gong L, Li Y, Qu J, Yang Y, Wu R, Fan G, Ding M, Xie K, Li F, Li X. Tao-Hong-Si-Wu-Tang improves thioacetamide-induced liver fibrosis by reversing ACSL4-mediated lipid accumulation and promoting mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118456. [PMID: 38878839 DOI: 10.1016/j.jep.2024.118456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a generic fibrous scarring event resulting from accumulation of extracellular matrix (ECM) proteins, easily progressing to end-stage liver diseases. Tao-Hong-Si-Wu-Tang (THSWT) is a traditional Chinese medicine formula applied in clinics to treat gynecological and chronic liver diseases. However, the role of THSWT on thioacetamide (TAA)-induced hepatic fibrosis and the specific mechanisms remains unclear. AIM OF THE STUDY To investigate the improving effects of THSWT on TAA-insulted hepatic fibrosis and the underlying mechanisms. MATERIALS AND METHODS UHPLC-MS/MS was performed to explore the chemical characterization of THSWT. Mice were orally administered with THSWT once daily for 6 weeks along with TAA challenge. Liver function was reflected through serum biomarkers and histopathological staining. RNA sequencing, non-targeted metabolomics and molecular biology experiments were applied to investigate the underlying mechanisms. RESULTS THSWT profoundly repaired lipid metabolism dysfunction and blocked collagen accumulation both in TAA-stimulated mice and in hepatocytes. Results of RNA sequencing and non-targeted metabolomics revealed that the anti-fibrotic effects of THSWT mostly relied on lipid metabolism repairment by increasing levels of acetyl-CoA, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine and lysophosphatidylethanolamine, and decreasing relative abundances of acyl-CoA, total cholesterol, diacylglycerol, triacylglycerol and phosphatidylinositol. Mechanically, long-chain acyl-CoA synthetases 4 (ACSL4) was a key profibrotic target both in human and mice by disrupting lipid oxidation and metabolism in hepatic mitochondria. THSWT effectively blocked ACSL4 and promoted mitophagy to reverse above outcomes, which was verified by mitophagy depletion. CONCLUSION THSWT may be a promising therapeutic option for treating hepatic fibrosis and its complications by modulating lipid metabolism and promoting mitophagy in livers.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liping Gong
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Setyoboedi B, Utomo MT, Prihaningtyas RA, Arief S. Effectiveness of oral methylprednisolone as adjuvant therapy for clinical improvement, biochemical markers, and inflammation in infants with cholestasis. Heliyon 2024; 10:e34110. [PMID: 39113947 PMCID: PMC11305196 DOI: 10.1016/j.heliyon.2024.e34110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Aims This study analyzed the effectiveness of methylprednisolone in improving jaundice, bilirubin levels, liver function tests, and inflammatory biomarkers in infants with cholestasis. Methods The randomized, actively controlled, parallel-group trial (ISRCTN45080388 registry) was conducted from November 2022 to May 2023 in Dr. Soetomo General Academic Hospital, Surabaya, Indonesia, on infants with cholestasis. The ethics committee of Dr. Soetomo General Academic Hospital, Surabaya approved the study protocol. Infants 14 days to 3 months old, with cholestasis followed by acholic stool, dark urine, and hepatomegaly were included in the trial. Participants were randomly assigned to methylprednisolone 2 mg/kg/day twice daily or to placebo twice daily for two weeks. Ursodeoxycholic acid (10 mg/kg) was administered to all patients thrice daily. Clinical examination and laboratory measurements (direct and total bilirubin, Aspartate aminotransferase (AST), Alanine transaminase (ALT), Gamma-glutamyl transferase (GGT), and inflammatory biomarker) were performed at baseline and after 2-week treatment. Measurement of inflammatory biomarkers (IL-2, IL-4, IL-6, IL-10, IFN-γ, TGF-β, and ANCA) was performed using enzyme-linked immunoassays. Data distribution was checked for normality. Analysis was carried out using SPSS ver. 21 with p significant <0.05. Results In total, 40 participants were randomized to methylprednisolone (n = 20; mean age 8.39 ± 3.11 weeks) and placebo (n = 18; 2 drop out; mean age 8.98 ± 2.80 weeks) groups. At baseline, the methylprednisolone treatment and placebo groups significantly differed in gender (p = 0.02) but not in clinical, laboratory examination, or inflammatory biomarker levels. The methylprednisolone group had direct bilirubin 8.36 ± 4.84 mg/dL; total bilirubin 10.40 (2.70-33.25) mg/dL; AST 187.05 (42.00-911.00) U/L; ALT 170.43 ± 134.43 U/L; IL-2 171.29 (73.70-378.57) ng/L; IL-4 119.57 ± 59.69 ng/L; IL-6 71.74 ± 29.83 ng/L; IL-10 138.15 ± 70.62 ng/L; IFN-γ 42.54 ± 12.17 ng/L; TGF-β 316.58 (163.68-606.16) ng/L; ANCA 1.70 (0.66-3.25) ng/L. After two weeks of treatment, direct bilirubin, total bilirubin, AST, IL-10, and IFN-γ levels were significantly lower in the methylprednisolone group (p < 0.05) than those in the placebo group. No serious adverse events were reported. Conclusion Methylprednisolone was efficacious in reducing 2-week bilirubin levels. These results support the hypothesis that the immunological process is involved in cholestasis. Further studies with larger sample sizes are needed to confirm the bile duct anti-inflammatory effect of methylprednisolone in cholestasis as an opportunity for new therapies to prevent the immunopathological process of cholestasis to biliary atresia.
Collapse
Affiliation(s)
- Bagus Setyoboedi
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine - UNIVERSITAS AIRLANGGA, Surabaya, Indonesia
| | - Martono Tri Utomo
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine - UNIVERSITAS AIRLANGGA, Surabaya, Indonesia
| | - Rendi Aji Prihaningtyas
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine - UNIVERSITAS AIRLANGGA, Surabaya, Indonesia
| | - Sjamsul Arief
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine - UNIVERSITAS AIRLANGGA, Surabaya, Indonesia
| |
Collapse
|
5
|
Xie XM, Feng S, Liu T, Feng J, Xu Y, Fan ZJ, Wang GY. Role of gut/liver metabolites and gut microbiota in liver fibrosis caused by cholestasis. Int Immunopharmacol 2024; 139:112747. [PMID: 39067396 DOI: 10.1016/j.intimp.2024.112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
AIM OF THE STUDY Cholestasis induces severe liver injury and subsequent liver fibrosis. However, a comprehensive understanding of the relationships between liver fibrosis and cholestasis-induced changes in metabolites in the gut and fibrotic liver tissue and in the gut microbiota is insufficient. METHODS Common bile duct ligation (BDL) was employed to establish a cholestatic liver fibrosis model in mice for 26 days. Fibrotic liver tissue and the gut contents were collected. Untargeted metabolomics was conducted for the determination of metabolites in the gut contents and liver tissues. Metagenomics was adopted to explore the gut microbiota. RESULTS The metabolites in the gut contents and liver tissues between normal and cholestatic liver fibrosis mice were highly distinct. Beta-alanine metabolism and glutathione metabolism were downregulated in the gut of the BDL group. Galactose metabolism, biosynthesis of unsaturated fatty acids, and ABC transporters were upregulated in the gut and downregulated in the liver of the BDL group. Arginine biosynthesis, taurine and hypotaurine metabolism, arginine and proline metabolism, and primary bile acid biosynthesis were downregulated in the gut and upregulated in the liver of the BDL group. Metagenomic analysis revealed that the alpha diversity of the microbiota in the BDL group decreased. The altered structure of the gut microbiota in the BDL group led to the hypofunction of important metabolic pathways (such as folate biosynthesis, histidine metabolism, thiamine metabolism, biotin metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis) and enzymes (such as NADH, DNA helicase, and DNA-directed DNA polymerase). Correlation analyses indicated that certain gut microbes were associated with gut and liver metabolites. CONCLUSIONS Untargeted metabolomics and metagenomics provided comprehensive information on gut and liver metabolism and gut microbiota in mice with cholestatic liver fibrosis. Therefore, significantly altered bacteria and metabolites may help provide some targets against cholestatic liver fibrosis in the future.
Collapse
Affiliation(s)
- Xing-Ming Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Shu Feng
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous, Hubei Province 445000, PR China
| | - Jun Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Yuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Zi-Jun Fan
- The First Clinical School of Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Guo-Ying Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
6
|
Bentley BH, Cecil AE, Lippert WC. Atypical Intrahepatic Cholestasis of Pregnancy: A Red Herring. ACG Case Rep J 2024; 11:e01339. [PMID: 38638198 PMCID: PMC11025705 DOI: 10.14309/crj.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy is an intrahepatic etiology of acute cholestasis commonly defined by pruritus and increased bile acids, liver transaminases, and, occasionally, bilirubin. Azathioprine is an immunosuppressive agent associated with various forms of hepatoxicity, ranging from transient rises in serum aminotransferase levels, acute cholestatic injury, and chronic hepatic injury. In this report, we present a 20-year-old pregnant woman who presented with cholestatic liver injury due to intrahepatic cholestasis of pregnancy with a clinical picture complicated by increased levels of azathioprine metabolites.
Collapse
Affiliation(s)
- Blake H. Bentley
- Department of Internal Medicine. Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexa E. Cecil
- Department of Internal Medicine. Wake Forest University School of Medicine, Winston-Salem, NC
| | - William C. Lippert
- Department of Internal Medicine. Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
7
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
8
|
Wang MQ, Zhang KH, Liu FL, Zhou R, Zeng Y, Chen AL, Yu Y, Xia Q, Zhu CC, Lin CZ. Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155124. [PMID: 38014837 DOI: 10.1016/j.phymed.2023.155124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cholestatic liver diseases (CLD) comprise a variety of disorders of bile formation, which causes chronic exposure to bile acid (BA) in the liver generally and results in hepatotoxicity and progressive hepatobiliary injury. Wedelolactone (7-methoxy-5, 11, 12-trihydroxy-coumestan, WED), the natural active compound derived from Ecliptae Herba, has been reported with valuable bioactivity for liver protection. Nevertheless, the effect of WED on cholestatic liver injury (CLI) remains unexplored. PURPOSE The present study aims to elucidate the protective effect of WED on Alpha-naphthylisothiocyanate (ANIT)-induced CLI mice, and to investigate its potential pharmacological mechanism. METHODS The anit-cholestatic and hepatoprotective effects of WED were evaluated in ANIT-induced CLI mice. Non-targeted metabolomics study combined with ingenuity pathway analysis (IPA) was used to explore the key mechanism of WED. The BA metabolic profile in enterohepatic circulation was analyzed to evaluate the effect of WED in regulating BA metabolism. Furthermore, molecular dynamics (MD) simulation and cellular thermal shift assay (CETSA) were used to simulate and verify the targeting activation of WED on the Farnesoid X receptor (FXR). The core role of FXR in WED promoting BA transportation, and alleviating BA accumulation-induced hepatotoxicity was further evaluated in WT and FXR knockout mice or hepatocytes. RESULTS WED dose-dependently alleviated ANIT-induced cholestasis and liver injury in mice, and simultaneously suppressed the signaling pathway of nuclear factor-kappa B/nuclear factor-erythroid 2-related factor 2 (NF-κB/NRF2) to relieve inflammation and oxidative stress. At the metabolite level, WED improved the metabolic disorder in CLI mice focusing on the metabolism of BA, arachidonic acid, and glycerophospholipid, that closely related to the process of BA regulation, inflammation, and oxidative damage. WED targeting activated FXR, which then transcribed its target genes, including the bile salt export pump (BSEP) and the BA transporter, and subsequently increased BA transportation to restore the damaged enterohepatic circulation of BA. Meanwhile, WED alleviated hepatic BA accumulation and protected the liver from BA-induced damage via NF-κB/NRF2 signaling pathway. Furthermore, FXR deficiency suppressed the protective effect of WED in vitro and in vivo. CONCLUSION WED regulated BA metabolism and alleviated hepatic damage in cholestasis. It protected the liver according to adjusted BA transportation and relieved BA accumulation-related hepatotoxicity via FXR-bile acid-NF-κB/NRF2 axis. Our study provides novel insights that WED might be a promising strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Mei-Qi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Hui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang-Le Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - A-Li Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quan Xia
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chen-Chen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chao-Zhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
10
|
Chen Z, Wei C, Yu Z, Yang K, Huang Z, Hu H, Wang ZG. An effective method for preventing cholestatic liver injury of Aucklandiae Radix and Vladimiriae Radix: Inflammation suppression and regulate the expression of bile acid receptors. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115330. [PMID: 35500801 DOI: 10.1016/j.jep.2022.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR) were used to treat gastrointestinal, liver and gallbladder diseases at practice. In most conditions, VR was used to be a substitute of AR or a local habit may attribute to the same main active ingredients Costunolide and Dehydrocostus lactone, which presented many similar pharmacological activities. However, other different lactone compounds in AR and VR also play a role in disease treatment, so the difference in therapeutic effects of AR and VR in related diseases needs to be further studied. AIMS OF THE STUDY Revealing the differences between the chemical compounds of the total lactone extracts of AR and VR (TLE of AR and VR) and the differences in the protective effects of cholestatic liver injury to ensure rational use of AR and VR. STUDY DESIGN AND METHODS The macroporous adsorption resin was used to purify and enrich the lactone compounds to obtain the total lactone extracts of AR and VR. HPLC-PDA was used to obtain the data to establish chemical fingerprint and chemometric analysis to compare similarities and differences between TLE of AR and VR. The pharmacodynamic experiment revealed how TLE of AR and VR to show protect effects on cholestatic liver injury. RESULTS Similarity analysis results showed TLE of AR and VR had a high similarity (>0.9). Nevertheless, difference analysis results showed 4 compounds, Costunolide, Dehydrocostus lactone, 3β-acetoxy-11β-guaia-4 (15), 10 (14)-diene-12,6α-olide and vladinol F may contribute to the differences between them. The pharmacodynamics experiments results showed the TLE of AR and VR affected the different liver cholate-associated transporters mRNA expression (TLE of AR up-regulated CYP7A1, TLE of VR down-regulated FXR and BSEP), the TLE of AR and VR had an effect to regulate biochemical indicators (AST, ALT, ALP, TBA) of liver function, and TLE of VR was better than TLE of AR in reducing the expression of inflammatory factors (IL-6 and IL-1β). CONCLUSION The liver protection of AR and VR have been confirmed, but the differences of material basis and mechanism of drug efficacy needed further study to guarantee formulation research and provide theoretical references for clinical rational applications of AR and VR.
Collapse
Affiliation(s)
- Ziqiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunlei Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zecheng Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhan-Guo Wang
- Collaborative Innovation Laboratory of Metabonomics, Standard Research and Extension Base& Collaborative Innovation Center of Qiang Medicine, School of Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
11
|
Bae UJ, Park BH, Cho MK, Bae EJ. Therapeutic Effect of Acer tegmentosum Maxim Twig Extract in Bile Duct Ligation-Induced Acute Cholestasis in Mice. J Med Food 2022; 25:652-659. [PMID: 35708629 DOI: 10.1089/jmf.2022.k.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cholestatic liver disease, or cholestasis, is a condition characterized by liver inflammation and fibrosis following a bile duct obstruction and an intrahepatic accumulation of bile acids. Inhibiting inflammation is a promising therapeutic strategy for cholestatic liver diseases. Acer tegmentosum Maxim extract (ATE) is best known for its anti-inflammatory and antioxidative properties. In this study, we investigated the effects of ATE on liver injury and fibrosis in mice with bile duct ligation (BDL)-induced cholestasis through analysis of gene expression, cytokines, and histological examination. Oral administration of ATE (20 or 50 mg/kg) for 14 days significantly attenuated hepatocellular necrosis compared to vehicle-treated BDL mice, which was accompanied by the reduced level of serum bile acids and bilirubin. We determined that ATE treatment reduced liver inflammation, oxidative stress, and fibrosis. These beneficial effects of ATE were concurrent with the decreased expression of genes involved in the NF-κB pathway, suggesting that the anti-inflammatory effect of ATE could be a possible mechanism against cholestasis-associated liver injury. Our findings substantiate ATE's role as an alternative therapeutic agent for cholestasis-induced liver injury and fibrosis.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Korea
| | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
12
|
Yang Y, Chen Y, Zhao Y, Ji F, Zhang L, Tang S, Zhang S, Hu Q, Li Z, Zhang F, Li Q, Li L. Human menstrual blood-derived stem cell transplantation suppresses liver injury in DDC-induced chronic cholestasis. Stem Cell Res Ther 2022; 13:57. [PMID: 35123555 PMCID: PMC8817575 DOI: 10.1186/s13287-022-02734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cholestatic liver injury can lead to serious symptoms and prognoses in the clinic. Currently, an effective medical treatment is not available for cholestatic liver injury. Human menstrual blood-derived stem cells (MenSCs) are considered as an emerging treatment in various diseases. This study aimed to explore the treatment effect of MenSCs in cholestatic liver injury. Methods The treatment effect of MenSCs on chronic cholestatic liver injury was verified in 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC)-induced C57/BL6 mice. Pathological, fibrosis area in the liver tissue and serum liver enzymes were tested. Proteomics and western blot were used to explore the related targets and molecular mechanisms. Adeno-associated virus (AAV) 9-infected mice were applied for verification. Results MenSCs markedly improved the survival rate of the DDC-treated mice (60% vs. 100%), and decreased the mouse serum aspartate aminotransferase (AST) (169.4 vs. 108.0 U/L, p < 0.001), alanine aminotransferase (ALT) (279.0 vs. 228.9 U/L, p < 0.01), alkaline phosphatase (ALP) (45.6 vs. 10.6 U/L, p < 0.0001), direct bilirubin (DBIL) (108.3 vs. 14.0 μmol/L, p < 0.0001) and total bilirubin (TBIL) (179.2 vs. 43.3 μmol/L, p < 0.0001) levels as well as intrahepatic cholestasis, bile duct dilation and fibrotic areas (16.12 vs. 6.57%, p < 0.05). The results further indicated that MenSCs repaired the DDC-induced liver tight junction (TJ) pathway and bile transporter (OATP2, BSEP and NTCP1) injury, thereby inhibiting COL1A1, α-SMA and TGF-β1 activation by upregulating liver β-catenin expression. Conclusions MenSC transplantation could be an effective treatment method for cholestatic liver injury in mice. MenSCs may exhibit therapeutic effects by regulating β-catenin expression.
Collapse
|
13
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Early histopathologic changes in primary biliary cholangitis: does 'minimal change' primary biliary cholangitis exist? A pathologist's view. Eur J Gastroenterol Hepatol 2021; 33:e7-e12. [PMID: 32804848 DOI: 10.1097/meg.0000000000001876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary biliary cholangitis (PBC), formerly known as primary biliary cirrhosis, is an autoimmune, slowly progressive, cholestatic liver disease characterized by nonsuppurative destructive cholangitis, and interlobular bile duct destruction. Necroinflammatory activities of the hepatic parenchyma and limiting plates of milder form along with late liver fibrosis may develop. Serum liver tests include elevated serum alkaline phosphatase along with a positive antimitochondrial antibody (AMA) in nearly 95% of patients. Liver biopsies are an important confirmatory and staging tool and are additionally very helpful when AMA is negative. More specifically, the earliest changes in liver biopsy suspicious for PBC can be detected, namely loss of the canals of Hering (CoH), as proposed by various authors recently. CoH loss has been described as an early feature of PBC. We focus on early histologic features of PBC, investigating through the literature the possible role of 'minimal change' supporting the clinical diagnosis of PBC, even in the absence of characteristic granulomatous duct destructive lesions.
Collapse
|
15
|
Sultana H, Komai M, Shirakawa H. The Role of Vitamin K in Cholestatic Liver Disease. Nutrients 2021; 13:nu13082515. [PMID: 34444675 PMCID: PMC8400302 DOI: 10.3390/nu13082515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K (VK) is a ligand of the pregnane X receptor (PXR), which plays a critical role in the detoxification of xenobiotics and metabolism of bile acids. VK1 may reduce the risk of death in patients with chronic liver failure. VK deficiency is associated with intrahepatic cholestasis, and is already being used as a drug for cholestasis-induced liver fibrosis in China. In Japan, to treat osteoporosis in patients with primary biliary cholangitis, VK2 formulations are prescribed, along with vitamin D3. Animal studies have revealed that after bile duct ligation-induced cholestasis, PXR knockout mice manifested more hepatic damage than wild-type mice. Ligand-mediated activation of PXR improves biochemical parameters. Rifampicin is a well-known human PXR ligand that has been used to treat intractable pruritus in severe cholestasis. In addition to its anti-cholestatic properties, PXR has anti-fibrotic and anti-inflammatory effects. However, because of the scarcity of animal studies, the mechanism of the effect of VK on cholestasis-related liver disease has not yet been revealed. Moreover, the application of VK in cholestasis-related diseases is controversial. Considering this background, the present review focuses on the effect of VK in cholestasis-related diseases, emphasizing its function as a modulator of PXR.
Collapse
Affiliation(s)
- Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
16
|
Abstract
Clinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells. During cholestasis bile acids accumulated in the liver, causing oxidative stress and mitochondrial injury in hepatocytes. The stressed hepatocytes respond by releasing inflammatory cytokines through activation of specific signaling pathways and transcription factors. The recruited neutrophils and other immune cells then cause parenchymal cell death. In addition, bile acids also stimulate the proliferation of cholangiocytes and stellate cells that are responsible for bile duct proliferation and liver fibrosis. This review explores the evidence for bile acid involvement in these phenomena. The role of bile acid receptors, TGR5, FXR and the sphingosine-1-phosphate receptor 2 and the inflammasome are also examined. We hope that better understanding of these pathologic effects will facilitate new strategies for treating cholestatic liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Hou L, Zhang Z, Yang L, Chang N, Zhao X, Zhou X, Yang L, Li L. NLRP3 inflammasome priming and activation in cholestatic liver injury via the sphingosine 1-phosphate/S1P receptor 2/Gα (12/13)/MAPK signaling pathway. J Mol Med (Berl) 2021; 99:273-288. [PMID: 33388881 DOI: 10.1007/s00109-020-02032-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
NLRP3 inflammasome-driven inflammation represents a key trigger for hepatic fibrogenesis during cholestatic liver injury. However, whether sphingosine 1-phosphate (S1P) plays a role in NLRP3 inflammasome priming and activation remains unknown. Here, we found that the expression of NLRP3 in macrophages and NLRP3 inflammasome activation were significantly elevated in the liver injured by bile duct ligation (BDL). In vitro, S1P promoted the NLRP3 inflammasome priming and activation via S1P receptor 2 (S1PR2) in bone marrow-derived monocyte/macrophages (BMMs). Focusing on BMMs, the gene silencing of Gα12 or Gα13 by specific siRNA suppressed NLRP3 inflammasome priming and pro-inflammatory cytokine (IL-1β and IL-18) secretion, whereas Gα(i/o) and Gαq were not involved in this process. The MAPK signaling pathways (P38, ERK, and JNK) mediated NLRP3 inflammasome priming and IL-1β and IL-18 secretion, whereas blockage of PI3K, ROCK, and Rho family had no such effect. Moreover, JTE-013 (S1PR2 inhibitor) treatment markedly reduced NLRP3 inflammasome priming and activation in BDL-injured liver. Collectively, S1P promotes NLRP3 inflammasome priming and pro-inflammatory cytokines (IL-1β and IL-18) secretion via the S1PR2/Gα(12/13)/MAPK pathway, which may represent an effective therapeutic strategy for liver disease. KEY MESSAGE: • Hepatic NLRP3 expression was significantly elevated in BMMs of BDL-injured mouse liver. • S1P promoted NLRP3 inflammasome priming and activation in BMMs, depending on the S1PR2/Gα(12/13)/MAPK pathway. • Blockade of S1PR2 by JTE-013 reduced NLRP3 inflammasome priming and activation inflammasome in vivo.
Collapse
Affiliation(s)
- Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Zhi Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China.
- , Beijing, China.
| |
Collapse
|
18
|
Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, Zhou MM, Gao ZJ, He YL. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases 2021; 9:308-320. [PMID: 33521099 PMCID: PMC7812903 DOI: 10.12998/wjcc.v9.i2.308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are classically known to play a vital role in the metabolism of lipids and in absorption. It is now well established that BAs act as signaling molecules, activating different receptors (such as farnesoid X receptor, vitamin D receptor, Takeda G-protein-coupled receptor 5, sphingosine-1-phosphate, muscarinic receptors, and big potassium channels) and participating in the regulation of energy homeostasis and lipid and glucose metabolism. In addition, increased BAs can impair cardiovascular function in liver cirrhosis. Approximately 50% of patients with cirrhosis develop cirrhotic cardiomyopathy. Exposure to high concentrations of hydrophobic BAs has been shown to be related to adverse effects with respect to vascular tension, endothelial function, arrhythmias, coronary atherosclerotic heart disease, and heart failure. The BAs in the serum BA pool have relevant through their hydrophobicity, and the lipophilic BAs are more harmful to the heart. Interestingly, ursodeoxycholic acid is a hydrophilic BA, and it is used as a therapeutic drug to reverse and protect the harmful cardiac effects caused by hydrophobic elevated BAs. In order to elucidate the mechanism of BAs and cardiovascular function, abundant experiments have been conducted in vitro and in vivo. The aim of this review was to explore the mechanism of BAs in the cardiovascular system.
Collapse
Affiliation(s)
- Rou Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Wen-Qi Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Meng-Jun Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chun-Hua Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Mi-Mi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhi-Jie Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Li He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|