1
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
2
|
Sanei-Dehkordi A, Tagizadeh AM, Bahadori MB, Nikkhah E, Pirmohammadi M, Rahimi S, Nazemiyeh H. Larvicidal potential of Trachyspermum ammi essential oil and Delphinium speciosum extract against malaria, dengue, and filariasis mosquito vectors. Sci Rep 2024; 14:20677. [PMID: 39237741 PMCID: PMC11377549 DOI: 10.1038/s41598-024-71829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Masoud Tagizadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Babak Bahadori
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elhameh Nikkhah
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Masoumeh Pirmohammadi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Rahimi
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sarkar D, Monzote L, Gille L, Chatterjee M. Natural endoperoxides as promising anti-leishmanials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155640. [PMID: 38714091 DOI: 10.1016/j.phymed.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana 10400, Cuba
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India.
| |
Collapse
|
4
|
Wang D, Chen L, Yang G, Xu Z, Lv L, Tang T, Wang Y. Biochemical and molecular-level effects of co-exposure to chlorpyrifos and lambda-cyhalothrin on the earthworm (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116374. [PMID: 38677072 DOI: 10.1016/j.ecoenv.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Liping Chen
- Huzhou Agricultural Science and Technology Development Center, Zhejiang Province 313000, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
5
|
Vengrytė M, Raudonė L. Phytochemical Profiling and Biological Activities of Rhododendron Subsect. Ledum: Discovering the Medicinal Potential of Labrador Tea Species in the Northern Hemisphere. PLANTS (BASEL, SWITZERLAND) 2024; 13:901. [PMID: 38592945 PMCID: PMC10975282 DOI: 10.3390/plants13060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rhododendron subsect. Ledum is a distinct taxonomic subdivision within the genus Rhododendron, comprising a group of evergreen shrubs and small trees. This review will comprehensively analyse the phytochemical profiles and biological properties of the Rhododendron subsect. Ledum species subsect. Ledum consists of eight plant species indigenous to temperate and subarctic regions of the Northern Hemisphere, collectively known as Labrador tea. Recent investigations have concentrated on the phytochemical constituents of these plants due to limited data, emphasizing their evergreen nature and potential industrial significance. This review summarizes their major phytochemical constituents, including flavonoids, phenolic acids, and terpenoids, and discusses their potential biological activities, such as antioxidant, anti-inflammatory, antimicrobial, antitumor, hypoglycemic, hepatoprotective, neuroprotective, and cardioprotective effects. Traditional uses of these plant species align with scientific findings, emphasizing the significance of these plants in traditional medicine. However, despite promising results, gaps exist in our understanding of specific compounds' therapeutic effects, necessitating further research for comprehensive validation. This review serves as a valuable resource for researchers, identifying current knowledge, uncertainties, and emerging trends in the study of the Rhododendron subsect. Ledum species.
Collapse
Affiliation(s)
- Martyna Vengrytė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Lina Raudonė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
6
|
Kukhtenko H, Bevz N, Konechnyi Y, Kukhtenko O, Jasicka-Misiak I. Spectrophotometric and Chromatographic Assessment of Total Polyphenol and Flavonoid Content in Rhododendron tomentosum Extracts and Their Antioxidant and Antimicrobial Activity. Molecules 2024; 29:1095. [PMID: 38474607 DOI: 10.3390/molecules29051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In the literature, the chemical composition of Rhododendron tomentosum is mainly represented by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum shoots using ethanol of various concentrations and purified water as an extractant. Extracts from Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and temperature to maximize the extraction of biologically active substances from the raw material. Using the method of high-performance thin-layer chromatography in a system with solvents ethyl acetate/formic acid/water (15:1:1), the following substances have been separated and identified in all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride, respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic substance content. Following the DPPH assay, regression analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.
Collapse
Affiliation(s)
- Halyna Kukhtenko
- Institute of Chemistry, University of Opole, 48 Oleska Str., 45-052 Opole, Poland
- Department of Cosmetology and Aromology, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Nataliia Bevz
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| | - Oleksandr Kukhtenko
- Department of Technology of Pharmaceutical Preparations, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | | |
Collapse
|
7
|
Séguin JC, Gagnon D, Bélanger S, Richard D, Fernandez X, Boudreau S, Voyer N. Chemical Composition and Antiplasmodial Activity of the Essential Oil of Rhododendron subarcticum Leaves from Nunavik, Québec, Canada. ACS OMEGA 2023; 8:16729-16737. [PMID: 37214733 PMCID: PMC10193425 DOI: 10.1021/acsomega.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/17/2023] [Indexed: 05/24/2023]
Abstract
Dwarf Labrador tea, Rhododendron subarcticum Harmaja, is a popular medicinal plant in use by First Nations of Northern Canada, but its phytochemistry has remained largely unexplored. We have isolated and characterized the essential oil from a population of this species harvested near the treeline in Nunavik, Québec. Analyses by gas chromatography-mass spectrometry (GC-MS) and gas chromatography/flame-ionization detection (GC/FID) led to the identification of 53 compounds; the main secondary metabolites were ascaridole (64.7% of the total FID area) and p-cymene (21.1%). Such a composition resembles a chemotype observed for R. tomentosum, a close relative found mainly in Europe and Asia, but has never been attributed to R. subarcticum. Growth inhibition assays against different strains of Plasmodium falciparum (3D7, Dd2), the parasite responsible for the most severe form of malaria, were conducted with either the R. subarcticum's essential oil or the isolated ascaridole. Our results show that the essential oil's biological activity can be attributed to ascaridole as its IC50 is more than twice that of ascaridole [ascaridole's IC50 values are 147.3 nM (3D7) and 104.9 nM (Dd2)].
Collapse
Affiliation(s)
- Jean-Christophe Séguin
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
| | - Dominic Gagnon
- Centre
de recherche du CHU de Québec, Université
Laval, 2705 boulevard
Laurier, G1V 4G2 Québec, Québec, Canada
| | - Sarah Bélanger
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
| | - Dave Richard
- Département
de microbiologie-infectiologie et d’immunologie, Centre Hospitalier de l’Université Laval, 2705 boulevard Laurier, G1V 4G2 Québec, Québec, Canada
- Centre
de recherche du CHU de Québec, Université
Laval, 2705 boulevard
Laurier, G1V 4G2 Québec, Québec, Canada
| | - Xavier Fernandez
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| | - Stéphane Boudreau
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
- Département
de biologie, Université Laval, 1045 av. De la Médecine, G1V 0A6 Québec, Québec, Canada
| | - Normand Voyer
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
| |
Collapse
|
8
|
De Flaviis R, Santarelli V, Sacchetti G, Mastrocola D. Response of heritage and modern wheat varieties to altitude induced stresses by synthesis of volatile compounds. A multivariate statistical analysis. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Yeguerman CA, Urrutia RI, Jesser EN, Massiris M, Delrieux CA, Murray AP, González JOW. Essential oils loaded on polymeric nanoparticles: bioefficacy against economic and medical insect pests and risk evaluation on terrestrial and aquatic non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71412-71426. [PMID: 35597828 DOI: 10.1007/s11356-022-20848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper introduces the lethal, sublethal, and ecotoxic effects of peppermint and palmarosa essential oils (EOs) and their polymeric nanoparticles (PNs). The physicochemical analyses indicated that peppermint PNs were polydisperse (PDI > 0.4) with sizes of 381 nm and loading efficiency (LE) of 70.3%, whereas palmarosa PNs were monodisperse (PDI < 0.25) with sizes of 191 nm and LE of 89.7%. EOs and their PNs were evaluated on the adults of rice weevil (Sitophilus oryzae L.) and cigarette beetle (Lasioderma serricorne F.) and the larvae of Culex pipiens pipiens Say. On S. oryzae and L. serricorne, PNs increased EOs' lethal activity, extended repellent effects for 84 h, and also modified behavioral variables during 24 h. Moreover, EOs and PNs generated toxic effects against C. pipiens pipiens. On the other hand, peppermint and palmarosa EOs and their PNs were not toxic to terrestrial non-target organisms, larvae of mealworm (Tenebrio molitor L.), and nymphs of orange-spotted cockroach (Blaptica dubia S.). In addition, PNs were slightly toxic to aquatic non-target organisms, such as brine shrimp (Artemia salina L.). Therefore, these results show that PNs are a novel and eco-friendly formulation to control insect pests.
Collapse
Affiliation(s)
- Cristhian A Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Rodrigo I Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Emiliano N Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina
| | - Manlio Massiris
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Claudio A Delrieux
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Ana P Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Jorge O Werdin González
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina.
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Ahmadi E, Khajehali J, Jonckheere W, Van Leeuwen T. Biochemical and insecticidal effects of plant essential oils on insecticide resistant and susceptible populations of Musca domestica L. point to a potential cross-resistance risk. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105115. [PMID: 35715054 DOI: 10.1016/j.pestbp.2022.105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Essential oils (EOs) can provide important alternatives to chemical insecticides in the control of pests. In this study, 12 EOs of native plant species from Iran were evaluated for their adulticidal activity against the house fly. In addition, we examined the insecticidal activity of Zataria multiflora and Rosmarinus officinalis EOs on adult female house flies from pyrethroid and organophosphate resistant and susceptible populations, using both fumigant and topical bioassays. The involvement of detoxification enzymes in susceptibility was investigated with synergism experiments in vivo, while the inhibitory effects of R. officinalis and Zataria multiflora EOs on the activities of cytochrome P450-dependent monooxygenases (P450s), carboxylesterases (CarEs) and glutathione S-transferases (GSTs) were determined by enzymatic inhibition assays in vitro. The EOs of Z. multiflora, Mentha pulegium, R. officinalis and Thymus vulgaris were the most effective against adults in contact topical assays, while oils extracted from Eucalyptus cinerea, Z. multiflora, Citrus sinensis, R. officinalis, Pinus eldarica and Lavandula angustifolia where the most effective in fumigant assays. Rosmarinus officinalis and Z. multiflora EOs were selected for further investigation and showed higher toxicity against a susceptible population, compared to two insecticide-resistant populations. Correlation analysis suggested cross-resistance between these EOs and pyrethroids in the resistant populations. The toxicity of both EOs on the resistant populations was synergized by three detoxification enzyme inhibitors. Further, in vitro inhibition studies showed that R. officinalis and Z. multiflora EOs more effectively inhibited the activities of the detoxification enzymes from flies of the susceptible population compared to those of the pyrethroid resistant populations. Synergistic and enzymatic assays further revealed that increased activities of P450s, GSTs, and CarEs are possibly involved in the cross-resistance between EOs and pyrethroids. Investigating the molecular mechanisms of P450s, GSTs, and CarEs in the resistance to EOs should be subject to further studies.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Liu Z, Li QX, Song B. Pesticidal Activity and Mode of Action of Monoterpenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4556-4571. [PMID: 35380824 DOI: 10.1021/acs.jafc.2c00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic pesticides are often associated with issues such as pest resistance, persistent residue, nontarget toxicity, and environmental issues. Therefore, the research and development of novel, safe, and effective pesticides has become a focus in pesticide discovery. Monoterpenes are secondary plant metabolites that commonly have multiple action targets and have been used in aromatherapy, alternative medicine, and food industries. Some are highly potent and stereoselective. They can potentially be botanical pesticides and serve as lead candidates for the design and synthesis of new monoterpenoid pesticides for agricultural applications. This article reviews publications and patents found in SciFinder Scholar between 2000 and May 2021 on monoterpenes and mainly focuses on pesticidal activities of frequently studied monoterpenes and their modes of action. The presented information and our views are hopefully useful for the development of monoterpenes as biopesticides and monoterpenoid pesticides.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| |
Collapse
|
12
|
He Y, Sang S, Tang H, Ou C. In vitro
mechanism of antibacterial activity of eucalyptus essential oil against specific spoilage organisms in aquatic products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidan He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Shangyuan Sang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| | - Haiqing Tang
- Department of Food Science Zhejiang Pharmaceutical Colleges Ningbo China
| | - Changrong Ou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| |
Collapse
|
13
|
Ferraz CA, Pastorinho MR, Palmeira-de-Oliveira A, Sousa ACA. Ecotoxicity of plant extracts and essential oils: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118319. [PMID: 34656680 DOI: 10.1016/j.envpol.2021.118319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Plant-based products such as essential oils and other extracts have been used for centuries due to their beneficial properties. Currently, their use is widely disseminated through a variety of industries and new applications are continuously emerging. For these reasons, they are produced industrially in large quantities and consequently they have the potential to reach the environment. However, the potential effects that these products have on the ecosystems' health are mostly unknown. In recent years, the scientific community started to focus on the possible toxic effects of essential oils and plant extracts towards non-target organisms. As a result, an increasing body of knowledge has emerged. This review describes the current state of the art on the toxic effects that essential oils and plant extracts have towards organisms from different trophic levels, including producers, primary consumers, and secondary consumers. The majority of the studies (76.5%) focuses on the aquatic environment, particularly in aquatic invertebrates (45.1%) with only 23.5% of the studies focusing on the potential toxicity of plant-derived products on terrestrial ecosystems. While some essential oils and extracts have been described to have no toxic effects to the selected organisms or the toxic effects were only observable at high concentrations, others were reported to be toxic at concentrations below the limit set by international regulations, some of them at very low concentrations. In fact, L(E)C50 values as low as 0.0336 mg.L-1, 0.0005 mg.L-1 and 0.0053 mg.L-1 were described for microalgae, crustaceans and fish, respectively. Generally, essential oils exhibit higher toxicity than extracts. However, when the extracts are obtained from plants that are known to produce toxic metabolites, the extracts can be more toxic than essential oils. Overall, and despite being generally considered "eco-friendly" products and safer than they synthetic counterparts, some essential oils and plant extracts are toxic towards non-target organisms. Given the increasing interest from industry on these plant-based products further research using international standardized protocols is mandatory.
Collapse
Affiliation(s)
- Celso Afonso Ferraz
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506, Covilhã, Portugal
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, Covilhã, 6200-284, Portugal
| | - Ana C A Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, School of Sciences and Technology, University of Évora, 7002-554, Évora, Portugal.
| |
Collapse
|
14
|
Zeni V, Benelli G, Campolo O, Giunti G, Palmeri V, Maggi F, Rizzo R, Lo Verde G, Lucchi A, Canale A. Toxics or Lures? Biological and Behavioral Effects of Plant Essential Oils on Tephritidae Fruit Flies. Molecules 2021; 26:5898. [PMID: 34641444 PMCID: PMC8511996 DOI: 10.3390/molecules26195898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The family Tephritidae (Diptera) includes species that are highly invasive and harmful to crops. Due to globalization, international trade, and human displacement, their spread is continuously increasing. Unfortunately, the control of tephritid flies is still closely linked to the use of synthetic insecticides, which are responsible for detrimental effects on the environment and human health. Recently, research is looking for alternative and more eco-friendly tools to be adopted in Integrated Pest Management (IPM) programs. In this regard, essential oils (EOs) and their main compounds represent a promising alternative to chemical insecticides. EOs are made up of phytoconstituents formed from the secondary metabolism of many plants and can act as attractants or toxics, depending on the dose. Because of this unique characteristic, EOs and their main constituents are promising tools that can be used both in Sterile Insect Technique (SIT) programs and in the "lure and kill" technique, exploiting the attractiveness of the product in the former case and its toxicity in the latter. In this article, current knowledge on the biological and behavioral effects of EOs and their main constituents on tephritid fruit flies is reviewed, mainly focusing on species belonging to the Anastrepha, Bactrocera, Ceratitis, and Zeugodacus genera. The mechanisms of action of EOs, their real-world applications, and challenges related to their use in IPM are critically discussed.
Collapse
Affiliation(s)
- Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.L.); (A.C.)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.L.); (A.C.)
| | - Orlando Campolo
- Department of Agriculture, University “Mediterranea” of Reggio Calabria, Loc. Feo Di Vito, 89122 Reggio Calabria, Italy; (O.C.); (G.G.); (V.P.)
| | - Giulia Giunti
- Department of Agriculture, University “Mediterranea” of Reggio Calabria, Loc. Feo Di Vito, 89122 Reggio Calabria, Italy; (O.C.); (G.G.); (V.P.)
| | - Vincenzo Palmeri
- Department of Agriculture, University “Mediterranea” of Reggio Calabria, Loc. Feo Di Vito, 89122 Reggio Calabria, Italy; (O.C.); (G.G.); (V.P.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant’Agostino, 62032 Camerino, Italy;
| | - Roberto Rizzo
- CREA Research Centre for Plant Protection and Certification, S.S. 113-km 245.500, 90011 Bagheria, Italy;
| | - Gabriella Lo Verde
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy;
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.L.); (A.C.)
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.L.); (A.C.)
| |
Collapse
|
15
|
Natural Products Targeting the Mitochondria in Cancers. Molecules 2020; 26:molecules26010092. [PMID: 33379233 PMCID: PMC7795732 DOI: 10.3390/molecules26010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.
Collapse
|