1
|
Sajan AL, Pazheparambil Jerom J, Nair BR, Sajitha DDK, Soman R, Jalal A, Harikumaran Nair R. Alleviating effect of whey protein supplementation on oxidative stress in hypothyroidism. Food Funct 2024; 15:11158-11168. [PMID: 39446129 DOI: 10.1039/d4fo03186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hypothyroidism is one of the most prevalent thyroid pathologies, which causes oxidative stress by disrupting antioxidant mechanisms. In mammals, the thyroid glands regulate metabolism, development, and growth. Dysfunction of the thyroid gland can result in hypothyroidism, hyperthyroidism, thyroiditis, and thyroid cancer. Whey protein is a widely consumed protein supplement containing abundant sulphur-containing amino acids and bioactive peptides. Here, we analysed the effect of whey protein on oxidative stress in hypothyroidism. In vivo studies were conducted in two phases for 30 and 90 days, respectively. Hypothyroidism was induced in Wistar albino rats by administering 0.05% propylthiouracil (PTU) through drinking water. Five hypothyroid groups and the normal control group were maintained in the first 30 day phase of the study. Among these, one group served as the induced control group, three groups received whey protein at different concentrations (100, 300, and 500 mg per kg body weight), and the last group received L-thyroxine (2 μg per 100 g body weight) as a positive medication. The activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, were analysed, and the levels of total antioxidants, glutathione, and malondialdehyde were determined. Ca2+ ATPase and Na+/K+ ATPase activities were detected by estimating the inorganic phosphate content. Histopathological analysis was carried out on the thyroid and liver tissues of all groups. Antioxidant activity was notably increased for higher doses of whey protein compared to that in the diseased control group (p < 0.05). From this initial study, the dose that achieved the desired therapeutic effect was 500 mg kg-1, which was considered for the next 90 day phase of the study. The 90 day phase of the study was conducted with five groups: normal, whey protein-supplemented, hypothyroid, whey protein-supplemented hypothyroid, and levothyroxine-supplemented hypothyroid. All the PTU-treated groups showed degenerative alterations in thyroid histology. Whey protein supplementation causes a considerable decrease in MDA levels with an increase in the major antioxidant enzyme and ATPase activities, with p < 0.05. As a nutritional supplement, whey protein, at a 500 mg kg-1 dose, effectively boosts antioxidant activity without causing any toxicological concerns in long-term use.
Collapse
Affiliation(s)
- Ann Liya Sajan
- School of Biosciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | | | | | | | - Reshma Soman
- School of Biosciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | - Ajmal Jalal
- School of Biosciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | | |
Collapse
|
2
|
Matsuda K, Nagano N, Nakazaki K, Katayama D, Tokunaga W, Okuda K, Shimizu S, Aoki R, Fuwa K, Shirai K, Fujioka K, Morioka I. Amelioration of Insulin Resistance by Whey Protein in a High-Fat Diet-Induced Pediatric Obesity Male Mouse Model. Nutrients 2024; 16:1622. [PMID: 38892554 PMCID: PMC11174045 DOI: 10.3390/nu16111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study examined whey protein's impact on insulin resistance in a high-fat diet-induced pediatric obesity mouse model. Pregnant mice were fed high-fat diets, and male pups continued this diet until 8 weeks old, then were split into high-fat, whey, and casein diet groups. At 12 weeks old, their body weight, fasting blood glucose (FBG), blood insulin level (IRI), homeostatic model assessment for insulin resistance (HOMA-IR), liver lipid metabolism gene expression, and liver metabolites were compared. The whey group showed significantly lower body weight than the casein group at 12 weeks old (p = 0.034). FBG was lower in the whey group compared to the high-fat diet group (p < 0.01) and casein group (p = 0.058); IRI and HOMA-IR were reduced in the whey group compared to the casein group (p = 0.02, p < 0.01, p < 0.01, respectively). The levels of peroxisome proliferator-activated receptor α and hormone-sensitive lipase were upregulated in the whey group compared to the casein group (p < 0.01, p = 0.03). Metabolomic analysis revealed that the levels of taurine and glycine, both known for their anti-inflammatory and antioxidant properties, were upregulated in the whey group in the liver tissue (p < 0.01, p < 0.01). The intake of whey protein was found to improve insulin resistance in a high-fat diet-induced pediatric obesity mouse model.
Collapse
Affiliation(s)
- Kengo Matsuda
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Kimitaka Nakazaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Daichi Katayama
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Wataru Tokunaga
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Koh Okuda
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Shoichi Shimizu
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Ryoji Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Kazumasa Fuwa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| | - Keisuke Shirai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.S.); (K.F.)
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.S.); (K.F.)
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 173-8610, Japan; (K.M.); (K.N.); (D.K.); (W.T.); (K.O.); (S.S.); (R.A.); (K.F.); (I.M.)
| |
Collapse
|
3
|
Zhao H, Zhao S, Zhu Q, Chen J, Quan Z, Yue X, Cao X. Label-free-based proteomic analysis reveals differential whey proteins of porcine milk during lactation. Food Chem X 2024; 21:101112. [PMID: 38268845 PMCID: PMC10805765 DOI: 10.1016/j.fochx.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, label-free proteomic technology was applied to analyze and compare the whey proteomes of porcine colostrum and mature milk. In total, 2993 and 2906 whey proteins were detected in porcine colostrum and mature milk, respectively. A total of 2745 common proteins were identified in the two milk samples, and 280 proteins were found to be significantly differentially expressed whey proteins in porcine milk. Gene Ontology analysis demonstrated that the differentially expressed whey proteins were primarily enriched in lipid homeostasis, oxidoreductase activity, and the collagen trimer. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phagosome and endocytosis were the crucial pathways. This study provides systematic and in-depth insight into the compositions and functional properties of whey proteins in porcine milk during different periods of lactation, which may be beneficial for the development of porcine whey proteins in the future.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling 112600, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Hassan HM, Abdeen AM, Abdelrahman IY, Abdo W, Mohammed SS, Abdeen A, Abdelkader A, Olga R, Fericean L, Ibrahim SF, Ghamry HI, Elgendy FS, Sorour SM, Eldeeb AA, Ahmed O, Rashed F, Bikheet MM. Radioprotective potential of whey protein against gamma irradiation-induced lingual damage. Front Pharmacol 2023; 14:1293230. [PMID: 38155907 PMCID: PMC10753789 DOI: 10.3389/fphar.2023.1293230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction: Ionizing radiation (IR) is effectively used in the treatment of oral malignancies; however, it might also significantly harm the surrounding tissues. Whey protein isolate (WP) is a protein derived from milk that exhibits a wide range of bioactivities. Therefore, the present research aimed to delineate the mitigating impact of WP against gamma irradiation-induced lingual damage. Methods: Rats were randomized into 5 groups: Control (saline, orally, 14 days), WP (WP; 0.5 g/kg b. w., orally, 14 days), IR (saline, orally, 14 days, exposed to 6 and 3 Gy on days 4 and 6, respectively), WP+IR (WP was given orally for 14 days before and after IR exposure; exposed to 6 and 3 Gy on days 4 and 6, respectively), and IR+WP (WP, orally, started 24 h after 1st IR exposure till the end of the experiment) groups. Samples were collected at two-time intervals (on the 7th and 14th days). Results and Discussion: Oxidative stress was stimulated upon IR exposure in tongue, indicated by boosted malondialdehyde (MDA) level, along with a decrease in the total antioxidant capacity (TAC) level, superoxide dismutase (SOD), and catalase (CAT) activities. Additionally, IR exposure depicted an increase of serum IgE, inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, along with overexpression mRNA levels of nuclear factor kappa-B transcription factor/p65 (NF-κB/p65), and down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase (HO-1) mRNA levels in tongue tissue. Moreover, IR triggered alterations in lingual histological architecture. The antioxidant and anti-inflammatory properties of WP mitigated oxidative damage, inflammation, and desquamation that were brought on following IR exposure. The protective administration of WP markedly decreases IR-induced lingual harm compared to the mitigation protocol. Our findings recommend WP supplements to the diets of cancer patients undergoing IR that might aid radioprotective effects.
Collapse
Affiliation(s)
- Hanaa M. Hassan
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Asmaa M. Abdeen
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, Egypt
| | - Ibrahim Y. Abdelrahman
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Saher S. Mohammed
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences, Timișoara, Romania
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Farouk S. Elgendy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Abeer A. Eldeeb
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Fatema Rashed
- Department of Basic Medical and Dental Science, Faculty of Dentistry, Zarqaa University, Zarqaa, Jordan
| | - Maha M. Bikheet
- Dairy Science Department, Faculty of Agriculture, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Balta V, Đikić D, Landeka Jurčević I, Odeh D, Oršolić N, Ferara N, Dilber D, Dragičević P, Dragović-Uzelac V. The Effect of a High-Protein Diet Supplemented with Blackthorn Flower Extract on Polyphenol Bioavailability and Antioxidant Status in the Organs of C57BL/6 Mice. Nutrients 2023; 15:4066. [PMID: 37764849 PMCID: PMC10535945 DOI: 10.3390/nu15184066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The health benefits of polyphenols are based on their bioavailability, which is why a significant portion of research focuses on factors that affect their bioavailability. Previous studies suggest that the intake of polyphenols along with macronutrients in food represents one of the key factors influencing the bioavailability of polyphenols and, consequently, their biological activity in the organism. Since polyphenols in the human diet are mainly consumed in food together with macronutrients, this study investigated the in vivo absorption, metabolism, and distribution of polyphenolic compounds from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a protein-enriched diet in the organs (small intestine, liver, kidney) of C57BL/6 mice. The bioaccumulation of polyphenol molecules, biologically available maximum concentrations of individual groups of polyphenol molecules, and their effect on the oxidative/antioxidative status of organs were also examined. The results of this study indicate increased bioabsorption and bioavailability of flavan-3-ols (EC, EGCG) and reduced absorption kinetics of certain polyphenols from the groups of flavonols, flavones, and phenolic acids in the organs of C57BL/6 mice after intragastric administration of the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins. Furthermore, subchronic intake of polyphenols from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins induces the synthesis of total glutathione (tGSH) in the liver and superoxide dismutase (SOD) in the liver and small intestine. The results of this study suggest potential applications in the development of functional foods aimed at achieving the optimal health status of the organism and the possibility of reducing the risk of oxidative stress-related disease.
Collapse
Affiliation(s)
- Vedran Balta
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Domagoj Đikić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Irena Landeka Jurčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| | - Dyana Odeh
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nada Oršolić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nikola Ferara
- Department of Dermatovenereology, University Hospital Centre Sestre Milosrdnice, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Dario Dilber
- Magdalena Clinic for Cardiovascular Diseases, Ljudevita Gaja 2, 49217 Krapinske Toplice, Croatia;
| | - Petar Dragičević
- University Hospital Centre Zagreb, 12 Kišpatićeva St, 10000 Zagreb, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| |
Collapse
|
6
|
Bidô RDCDA, Pereira DE, Alves MDC, Dutra LMG, Costa ACDS, Viera VB, Araújo WJD, Leite EL, Oliveira CJBD, Alves AF, Freitas JCR, Martins ACS, Cirino JA, Soares JKB. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. J Psychiatr Res 2023; 164:98-117. [PMID: 37331263 DOI: 10.1016/j.jpsychires.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The objective was to evaluate the effects of the consumption of a mix of baru almond and goat whey on memory performance and anxiety parameters related to the intestinal health of rats treated during aging. The animals were divided into three groups and treated by gavage for 10 weeks (n = 10/each group): Control (CT) - distilled water; Baru almond (BA) - 2000 mg of baru/kg of body weight; and Baru + Whey (BW) - 2000 mg of baru + 2000 mg of goat milk whey/kg of body weight. Anxiety behavior, memory, brain fatty acid profile and fecal microbiota were measured. BA and BW realized less grooming, spent more time in the central area of the open field and the open arms, and realized more head dipping in the elevated plus maze. A higher rate of exploration of the new object in the short and long-term memory was observed in BA and BW. There was an increase in the deposition of MUFAs and PUFAs and oleic acid in the brain of BA and BW. Regarding spatial memory, BA and BW performed better, with an emphasis on BW. There was a beneficial modulation of the fecal microbiota with a reduction of the pathogenic genus Clostridia_UFC-014 in BA and BW and an increase in the abundance of metabolic pathways of interest in the brain-gut axis. Thus, consumption of the mix is efficient in beneficially altering the intestinal microbiota, improving memory and anxiolytic-like behavior in rats during aging.
Collapse
Affiliation(s)
- Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil.
| | - Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Wydemberg José de Araújo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, PB, Brazil
| | | | - Janaína André Cirino
- National Institute of Technology in Bonding and Coating Materials, University City, Recife, PE, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
7
|
Effects of ethanol pre-treated whey protein isolates on the physical stability and protein-lipid co-oxidation in oil-in-water emulsions. Food Chem 2022; 385:132733. [PMID: 35318178 DOI: 10.1016/j.foodchem.2022.132733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
The changes of physical stability and protein-lipid co-oxidation of oil-in-water (O/W) emulsions which stabilized by whey protein isolates (WPI) and ethanol pre-treated WPI (EWPI) under different homogenization methods were investigated. Compared with WPI, EWPI could obviously enhance the O/W emulsion's stability due to smaller particle size and higher level of adsorbed proteins. Moreover, protein-lipid co-oxidation was observed in both WPI and EWPI stabilized O/W emulsions and controlled by the characteristics of the adsorbed proteins. EWPI protect themselves from attacked of lipid oxidation products more effectively than WPI, showing lower N'-formyl-l-kynurenine or carbonyl contents and degree of aggregation, as well as higher fluorescence intensity. Furthermore, high-pressure homogenization induced higher levels of adsorbed proteins in O/W emulsions than ultrasound homogenization, resulting in a higher degree of protein oxidation and lower degree of lipid oxidation. Therefore, EWPI can be applied as an efficient emulsifier in emulsion foods with higher physical and oxidative stabilities.
Collapse
|
8
|
Biotechnological and Technical Challenges Related to Cultured Meat Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The constant growth of the population has pushed researchers to find novel protein sources. A possible solution to this problem has been found in cellular agriculture, specifically in the production of cultured meat. In the following review, the key steps for the production of in vitro meat are identified, as well as the most important challenges. The main biological and technical approaches are taken into account and discussed, such as the choice of animal, animal-free alternatives to fetal bovine serum (FBS), cell biomaterial interactions, and the implementation of scalable and sustainable biofabrication and culturing systems. In the light of the findings, as promising as cultured meat production is, most of the discussed challenges are in an initial stage. Hence, research must overcome these challenges to ensure efficient large-scale production.
Collapse
|
9
|
Feng Y, Yuan D, Kong B, Sun F, Wang M, Wang H, Liu Q. Structural changes and exposed amino acids of ethanol-modified whey proteins isolates promote its antioxidant potential. Curr Res Food Sci 2022; 5:1386-1394. [PMID: 36110385 PMCID: PMC9468495 DOI: 10.1016/j.crfs.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Whey protein isolates (WPI) were treated with different ethanol level (20, 40, 60, and 80%, v/v) to promote structural unfolding and subsequent aggregation. In general, protein aggregation gradually increased with increasing ethanol level in a dose-dependent manner, which was implied by notably increased turbidity and gradually decreased solubility. The formation of aggregates, which were confirmed by the results of circular dichroism spectrum and total sulfhydryl content, were promoted mainly through disulfide bonds and intra-molecular hydrogen bonds. Moreover, ethanol treated WPI (E-WPI) had significantly enhanced antioxidant activities over native WPI, which was mainly attribute to the higher contents of specific amino acids (such as hydrophobic amino acids, aromatic amino acids, and sulfur-containing amino acids), and E-WPI prepared with moderate ethanol concentration (40% in our present study) exhibited the highest antioxidant activities. These results reveal that antioxidant activities of WPI can be increased by ethanol treatment and are possibly achieved through molecular unfolding of native WPI. Ethanol treatment caused unfolding and aggregation of whey protein isolate (WPI). Aggregation enhanced with increasing ethanol concentration (EC). Medium EC (40%, v/v) rendered the highest antioxidant activities of WPI.
Collapse
Affiliation(s)
- Yangyang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Meijuan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Corresponding author.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang, 150028, China
- Corresponding author. College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
10
|
Zhang J, Chen L, Zhang L, Chen Q, Tan F, Zhao X. Effect of Lactobacillus fermentum HFY03 on the Antifatigue and Antioxidation Ability of Running Exhausted Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8013681. [PMID: 34621465 PMCID: PMC8492249 DOI: 10.1155/2021/8013681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Yak yogurt is mainly produced in Qinghai-Tibet Plateau. It is a kind of naturally fermented dairy product. It contains abundant microorganisms. Lactobacillus fermentum (LF) HFY03 is a lactic acid bacteria derived from it. Our main research content is to study the influence of LF-HFY03 on the antifatigue and antioxidation ability of running exhausted mice. We gave different doses of LF-HFY03 to mice by gavage for 4 weeks. We selected vitamin C as the positive control group, mainly to study the relationship between antioxidant capacity and fatigue resistance and LF-HFY03 in mice with running exhaustion. The results showed that LF-HFY03 and vitamin C could significantly improve the running time of mice. And with the increase in LF-HFY03 concentration, the exhaustion time of mice was also extended. LF-HFY03 can reduce the content of urea nitrogen and lactic acid and also can increase the content of free fatty acids and liver glycogen. The levels of alanine aminotransferase, serum creatine kinase, and aspartate aminotransferase in mice decreased gradually as the antioxidant peptide level of walnut albumin increased. LF-HFY03 can reduce malondialdehyde (MDA) levels in a quantification-dependent manner and can also increase catalase (CAT) and superoxide dismutase (SOD) levels. LF-HFY03 can also increase the expressions of CAT mRNA, Cu/Zn-SOD, and Mn-SOD in the liver of mice. At the same time, LF-HFY03 can also increase the expression of protein of threonine transporter 1 (AST1)/alanine/cysteine/serine, mRNA, nNOS, and eNOS. At the same time, the solution could reduce the expression of TNF-α, syncytin-1, and inducible nitric oxide synthase (iNOS). The results showed that LF-HFY03 has a high development and application prospect as an antifatigue probiotic nutritional supplement.
Collapse
Affiliation(s)
- Junxiao Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| | - Ling Chen
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, 610500 Sichuan, China
| | - Lingyan Zhang
- School of Continuing Education, Chongqing University of Education, Chongqing 400067, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela 838, Philippines
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- School of Teacher Development, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
11
|
Kara M, Öztaş E, Boran T, Karaman EF, Veskoukis AS, Tsatsakis AM. Ameliorative Effects of the Sesquiterpenoid Valerenic Acid on Oxidative Stress Induced in HepG2 Cells after Exposure to the Fungicide Benomyl. Antioxidants (Basel) 2021; 10:antiox10050746. [PMID: 34066673 PMCID: PMC8151918 DOI: 10.3390/antiox10050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 04/13/2023] Open
Abstract
Valerenic acid (VA) is a sesquiterpenoid and a phytoconstituent of the plant valerian used for sleeping disorders and anxiety. The frequency of using herbal components as therapeutic nutritional agents has increased lately. Their ability to improve redox homeostasis makes them a valuable approach against harmful xenobiotics. The purpose of this study was to evaluate the putative beneficial role of VA against the redox-perturbating role of the fungicide benomyl in HepG2 human liver cells in terms of oxidative stress in the cellular environment and in endoplasmic reticulum (ER). Benomyl increased cell total oxidant status and reactive oxygen species production and decreased total antioxidant status. The expression of genes coding for antioxidant molecules, namely, heme oxygenase-1, alpha glutathione s-transferase, NF-ĸB, and liver fatty acid binding protein, were decreased due to benomyl. VA ameliorated these effects. Benomyl also increased ER-stress-related molecules such as endoplasmic reticulum to nucleus signaling 1 protein, glucose-regulated protein 78, and caspase-12 levels, and VA acted also as a preventive agent. These results indicate that VA exerts ameliorative effects after benomyl-induced oxidative stress. VA, a widely used nutritional supplement, is a compound with potent antioxidant properties, which are valuable for the protection of cells against xenobiotic-induced oxidative damage.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Correspondence:
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Aristidis S. Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Argonafton 1, 42132 Trikala, Greece;
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|