1
|
Lee H, Park J, Ortiz DM, Park K. Estrogen receptor/androgen receptor transcriptional activation of benzophenone derivatives and integrated approaches to testing and assessment (IATA) for estrogenic effects. Toxicol In Vitro 2024; 100:105914. [PMID: 39094913 DOI: 10.1016/j.tiv.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Estrogen receptor (ER) and androgen receptor (AR) transactivation assays for the benzophenone compounds (BPs) were performed using hERα-HeLa-9903 cells for ER and MMTV/22Rv1_GR-KO cells for AR. Results showed that some BPs, such as BP-1, BP-2, 4OH-BP, 4DHB, and 4-MBP, showed agonistic activity on ER with a higher RPCmax than 1 nM 17-β estradiol. The other BPs (BP, BP-3, BP-6, BP-7, and BP-8) showed low RPCmax in accordance with the OECD Test guideline (TG) 455 criteria, with BP-4 as the only ER-negative. However, the potency of the BPs was at least 1000 times less than the reference chemical, 17-β-estradiol. None of the BPs exhibited agonistic activity on AR except BP-2 which showed a small increase in activity. For further evaluation of the estrogenic effect of BPs based on the integrated approaches to testing and assessment (IATA) approach, existing data on ER binding, steroidogenesis, MCF-7 cell proliferation, and in vivo uterotrophic assays were collected and evaluated. There seemed to be a close association between the in vitro data on BPs, especially ER transcriptional activity, and the in vivo results of increased uterine weight. This case study implied that integrated approaches using in vitro data can be a useful tool for the prediction of in vivo data for estrogenic effects, without the need for additional animal toxicity tests.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Darlene M Ortiz
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea.
| |
Collapse
|
2
|
Jacobs MN, Hoffmann S, Hollnagel HM, Kern P, Kolle SN, Natsch A, Landsiedel R. Avoiding a reproducibility crisis in regulatory toxicology-on the fundamental role of ring trials. Arch Toxicol 2024; 98:2047-2063. [PMID: 38689008 PMCID: PMC11169035 DOI: 10.1007/s00204-024-03736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
The ongoing transition from chemical hazard and risk assessment based on animal studies to assessment relying mostly on non-animal data, requires a multitude of novel experimental methods, and this means that guidance on the validation and standardisation of test methods intended for international applicability and acceptance, needs to be updated. These so-called new approach methodologies (NAMs) must be applicable to the chemical regulatory domain and provide reliable data which are relevant to hazard and risk assessment. Confidence in and use of NAMs will depend on their reliability and relevance, and both are thoroughly assessed by validation. Validation is, however, a time- and resource-demanding process. As updates on validation guidance are conducted, the valuable components must be kept: Reliable data are and will remain fundamental. In 2016, the scientific community was made aware of the general crisis in scientific reproducibility-validated methods must not fall into this. In this commentary, we emphasize the central importance of ring trials in the validation of experimental methods. Ring trials are sometimes considered to be a major hold-up with little value added to the validation. Here, we clarify that ring trials are indispensable to demonstrate the robustness and reproducibility of a new method. Further, that methods do fail in method transfer and ring trials due to different stumbling blocks, but these provide learnings to ensure the robustness of new methods. At the same time, we identify what it would take to perform ring trials more efficiently, and how ring trials fit into the much-needed update to the guidance on the validation of NAMs.
Collapse
Affiliation(s)
- Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, OX11 0RQ, UK
| | | | | | - Petra Kern
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| | - Susanne N Kolle
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
- Free University of Berlin, Biology, Chemistry and Pharmacy, Pharmacology and Toxicology, Berlin, Germany.
| |
Collapse
|
3
|
Garoche C, Grimaldi M, Michelin E, Boulahtouf A, Marconi A, Brion F, Balaguer P, Aït-Aïssa S. Interlaboratory prevalidation of a new in vitro transcriptional activation assay for the screening of (anti-)androgenic activity of chemicals using the UALH-hAR cell line. Toxicol In Vitro 2023; 88:105554. [PMID: 36641061 DOI: 10.1016/j.tiv.2023.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
We report an interlaboratory evaluation of a recently developed androgen receptor (AR) transactivation assay using the UALH-hAR reporter cell line that stably expresses the luciferase gene under the transcriptional control of androgen receptor elements (AREs) with no glucocorticoid receptor (GR) crosstalk. Herein, a two-step prevalidation study involving three laboratories was conducted to assess performance criteria of the method such as transferability as well as robustness, sensitivity, and specificity. The first step consisted in the validation of the transfer of the cell line to participant laboratories through the testing of three reference chemicals: the AR agonist dihydrotestosterone, the AR antagonist hydroxyflutamide and the glucocorticoid dexamethasone. Secondly, a blinded study was conducted by screening a selection of ten chemicals, including four AR agonists, five AR antagonists, and one non-active chemical. All test compounds yielded the same activity profiles in all laboratories. The logEC50 (agonist assay) or logIC50 (antagonist assay) were in the same range, with intra-laboratory coefficients of variation (CVs) of 0.1-3.4% and interlaboratory CVs of 1-4%, indicating very good within- and between-laboratory reproducibility. Our results were consistent with literature and regulatory data (OECD TG458). Overall, this interlaboratory study demonstrated that the UALH-hAR assay is transferable, produces reliable, accurate and specific (anti)androgenic activity of chemicals, and can be considered for further regulatory validation.
Collapse
Affiliation(s)
- Clémentine Garoche
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie des Substances et Milieux, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, 34290 Montpellier, France
| | | | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, 34290 Montpellier, France
| | | | - François Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie des Substances et Milieux, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, 34290 Montpellier, France.
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie des Substances et Milieux, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
4
|
Jung DW, Jeong DH, Lee HS. Azole pesticide products and their hepatic metabolites cause endocrine disrupting potential by suppressing the homo-dimerization of human estrogen receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120894. [PMID: 36549450 DOI: 10.1016/j.envpol.2022.120894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
We selected azole pesticides products that are managed by setting maximum residue limits (MRLs) in the Republic of Korea and describe the estrogen receptor (ER) α-related negative effect to endocrine system using in vitro Organization for Economic Cooperation and Development performance-based test guideline. No azoles were found to be an ERα agonist. Conversely, three azoles (bitertanol, cafenstrole, and tebufenpyrad) were determined to be ERα antagonists. In addition, the ERα antagonistic activities of bitertanol, cafenstrole, and tebufenpyrad were not significantly perturbed in the existence of phase I (hydroxylation, dealkylation, oxidation or reduction) and phase II (conjugation). Regarding the mechanism underlying their ERα-mediated endocrine disrupting potentials, ERα proteins cannot be translocated to the nucleus by suppressing the dimerization of ERα in the cytoplasm by bitertanol, cafenstrole, and tebufenpyrad. These data indicated that azole pesticide products show the capability to interfere the ERα-related human endocrine system. Furthermore, we identified the mechanism of ERα-mediated endocrine disrupting by azole insecticide products through this study.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Da-Hyun Jeong
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Milcamps A, Liska R, Langezaal I, Casey W, Dent M, Odum J. Reliability of the AR-CALUX® in Vitro method used to detect chemicals with (anti)androgen activity: results of an international ring trial. Toxicol Sci 2021; 184:170-182. [PMID: 34165557 PMCID: PMC8557474 DOI: 10.1093/toxsci/kfab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AR-CALUX® in vitro method is a reporter gene-based transactivation method where endocrine active chemicals with androgenic or anti-androgenic potential can be detected. Its primary purpose is for screening chemicals for further prioritization and providing mechanistic (endocrine mode of action) information, as defined by the Organisation of Economic Cooperation and Development (OECD) conceptual framework for the testing and assessment of endocrine-disrupting chemicals. This article describes the conduct and results of an international ring trial with 3 EU-NETVAL laboratories and the test method developer. It was organized by EURL ECVAM to validate the method by testing 46 chemicals. A very good reproducibility within and between laboratories was concluded (94.7–100% and 100% concordance of classification) with low within and between laboratory variability (less than 2.5% CV on EC50 values). Moreover, the variability is within the range of other validated, mechanistically similar methods. In comparison to the AR-reference list compiled by ICCVAM, an almost 100% concordance of classifications was obtained. This method allows the detection of the agonist and antagonist properties of a chemical. A specificity control test was developed during the validation study and added to the antagonist assay rendering the assay more specific. A comparison is made with the mechanistically similar methods AR-EcoScreen™ and 22Rv1/MMTV GR-KO TA. The AR-CALUX® method was approved for inclusion in the recently updated OECD test guideline TG458 which incorporates all 3 methods.
Collapse
Affiliation(s)
- Anne Milcamps
- Joint Research Centre, European Commission, Ispra, Italy
| | - Roman Liska
- Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Matthew Dent
- Unilever, Safety and Environmental Assurance Centre, Bedford, UK
| | - Jenny Odum
- Independent consultant, Macclesfield, UK
| |
Collapse
|