1
|
Chang CH, Yen PL, Pan MH, Liao VHC. The food-borne carcinogenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) disrupts circadian rhythms and ameliorated by pterostilbene (PSB) in Caenorhabditis elegans. Arch Toxicol 2024; 98:4131-4141. [PMID: 39254834 DOI: 10.1007/s00204-024-03857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The food-borne 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a potential human carcinogen abundant in cooked meat. While circadian rhythms are crucial biological oscillations, the negative impact of PhIP on circadian systems and the potential of mitigation remain underexplored. We investigated the effects of PhIP on circadian rhythms and the mitigating effects of the phytochemical antioxidant pterostilbene (PSB) in Caenorhabditis elegans. We show that exposure to 10 μM PhIP disrupts the 24-h circadian rhythms of C. elegans, an effect mitigated by co-exposure to 100 μM PSB. In addition, PhIP-induced circadian disruption can be linked to defective oxidative stress resistance, which is associated with the DAF-16/FOXO pathway and is modulated by PSB. Molecular docking suggested that PhIP and PSB bind similarly to DAF-16. Moreover, 10 μM PhIP abolished the rhythmic expression of the core clock gene prdx-2, which is restored by 100 μM PSB. Findings from this study provide novel insight of how food-borne contaminant like PhIP may contribute to the disruption of circadian rhythms and suggest potential for PSB to mitigate these effects in higher organisms.
Collapse
Affiliation(s)
- Chun-Han Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 106, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 404, Taiwan.
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Zhao M, Liu Z, Sun Y, Shi H, Yun Y, Zhao M, Xia G, Shen X. Novel hydrocolloids synthesized by polyphenols grafted onto chitosan: A promising coating to inhibit PhIP formation during pan-frying of golden pompano fillets. Food Chem 2024; 447:139029. [PMID: 38513480 DOI: 10.1016/j.foodchem.2024.139029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.
Collapse
Affiliation(s)
- Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yonghuan Yun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
3
|
Gao Y, Yang L, Yao Q, Wang J, Zheng N. Butyrate improves recovery from experimental necrotizing enterocolitis by metabolite hesperetin through potential inhibition the PI3K-Akt pathway. Biomed Pharmacother 2024; 176:116876. [PMID: 38850657 DOI: 10.1016/j.biopha.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is one of the most common and serious intestinal illnesses in newborns and seriously affects their long-term prognosis and survival. Butyrate is a short-chain fatty acid that can relieve intestinal inflammation, but its mechanism of action is unclear. Results from an in vivo neonatal rat model has shown that butyrate caused an improved recovery from NEC. These protective effects were associated with the metabolite of hesperetin, as determined by metabolomics and molecular biological analysis. Furthermore, transcriptomics combined with inhibitor assays were used to investigate the mechanism of action of hesperetin in an in vitro NEC model (IEC-6 cells exposed to LPS) to further investigate the mechanism by which butyrate attenuates NEC. The transcriptomics analysis showed that the PI3K-Akt signaling pathway was involved in the anti-NEC effect of hesperitin. Subsequently, the results using an inhibitor of PI3K (LY294002) indicated that the suppression could be explained by the hesperetin-induced expression of tight junction (TJ) proteins by potentially blocking the PI3K-Akt signaling pathway. In summary, the present study demonstrated that butyrate could improve recovery from NEC with a hesperetin metabolite, causing potential inhibition of the phosphorylation of the PI3K-Akt signaling pathway, resulting in the increased expression of TJ proteins. These findings reveal a potential new therapeutic pathway for the treatment of NEC.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liting Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Chen T, Chen J, Bao SC, Zhang JX, Wei HL, Zhou XY, Hu X, Liang Y, Li JT, Yan SG. Mechanism of Xiaojianzhong decoction in alleviating aspirin-induced gastric mucosal injury revealed by transcriptomics and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116910. [PMID: 37453623 DOI: 10.1016/j.jep.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aspirin, as a first-line drug for the treatment of cardiovascular diseases, currently has high clinical usage. However, reports of aspirin-induced gastric mucosal injury are increasing. Xiaojianzhong decoction (XJZD), a classic traditional Chinese medicine formula, has been shown to alleviate gastric mucosal injury, although its potential mechanism of action requires further study. AIM OF THE STUDY This study aimed to explore the effect and mechanism of XJZD in preventing aspirin-induced gastric mucosal injury. MATERIALS AND METHODS Aspirin was used to induce damage in the morning, while XJZD was applied as an intervention in the afternoon. The compounds in the XJZD were analyzed by means of both high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry. The overall condition of the aspirin-related gastric mucosal injury was evaluated. The expressions of inflammatory factors and tight-junction-related proteins and apoptosis were observed via immunohistochemistry and immunofluorescence. The expression levels of the apoptosis-related proteins were detected using Western blot. Transcriptomics was used to perform the integrative analysis of gastric tissues, which was then validated. Molecular dynamics was used to explore the interaction of key compounds within the XJZD with relevant targets. Finally, non-targeted metabolomics was used to observe any metabolic changes and construct a network between the differentially expressed genes and the differential metabolites to elucidate their potential relationship. RESULTS XJZD can alleviate inflammation response, maintain the gastric mucosal barrier's integrity, reduce apoptosis and necroptosis levels, and promote the proliferation and repair of gastric mucosal tissues. Its mechanism of action may be related to the regulation of TNF-α signaling. Furthermore, molecular docking showed that the cinnamaldehyde within XJZD played an important role in its effects. In addition, XJZD can correct metabolic disorders, mainly regulating amino acid metabolism pathways. Moreover, six differential genes (Cyp1a2, Cyp1a1, Pla2g4c, etc.) were determined to alleviate both gastric mucosal injury and inflammation by regulating arachidonic acid metabolism, Tryptophan metabolism, etc. CONCLUSIONS: This study is the first to report that XJZD can inhibit necroptosis and gastric mucosal injury induced by aspirin, thereby revealing the complex mechanism of XJZD in relation to alleviating gastric mucosal injury from multiple levels and perspectives.
Collapse
Affiliation(s)
- Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Sheng-Chuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Jia-Xiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Hai-Liang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, PR China
| | - Xiao-Yan Zhou
- Department of Gastroenterology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi Province, China
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, 712000, PR China
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu tea, Xianyang, 712000, PR China
| | - Jing-Tao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, PR China.
| | - Shu-Guang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| |
Collapse
|
5
|
Zhao Q, Guo W, Luo H, Wang H, Yu T, Liu B, Si Q, Ren N. Dissecting the roles of conductive materials in attenuating antibiotic resistance genes: Evolution of physiological features and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129411. [PMID: 35780739 DOI: 10.1016/j.jhazmat.2022.129411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Supplying conductive materials (CMs) into anaerobic bioreactors is considered as a promising technology for antibiotic wastewater treatment. However, whether and how CMs influence antibiotic resistance genes (ARGs) spread remains poorly known. Here, we investigated the effects of three CMs, i.e., magnetite, activated carbon (AC), and zero valent iron (ZVI), on ARGs dissemination during treating sulfamethoxazole wastewater, by dissecting the shifts of physiological features and microbial community. With the addition of magnetite, AC, and ZVI, the SMX removal was improved from 49.05 to 71.56-92.27 %, while the absolute abundance of ARGs reducing by 26.48 %, 61.95 %, 48.45 %, respectively. The reduced mobile genetic elements and antibiotic resistant bacteria suggested the inhibition of horizontal and vertical transfer of ARGs. The physiological features, including oxidative stress response, quorum sensing, and secretion system may regulate horizontal transfer of ARGs. The addition of all CMs relieved oxidative stress compared with no CMs, but ZVI may cause additional free radicals that needs to be concerned. Further, ZVI and AC also interfered with cell communication and secretion system. This research deepens the insights about the underlying mechanisms of CMs in regulating ARGs, and is expected to propose practical ways for mitigating ARGs proliferation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan 430062, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Deng P, Xue C, He Z, Wang Z, Qin F, Oz E, Chen J, El Sheikha AF, Proestos C, Oz F, Zeng M. Synergistic Inhibitory Effects of Selected Amino Acids on the Formation of 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) in both Benzaldehyde- and Phenylacetaldehyde-Creatinine Model Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10858-10871. [PMID: 36007151 DOI: 10.1021/acs.jafc.2c03122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although various inhibitors have been employed to react with phenylacetaldehyde to form adducts and thus interrupt the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), high concentrations of PhIP remain in the final system. It remains unknown whether other critical aldehyde or ketone intermediates are involved in the generation of PhIP, and scavenging these reactive carbonyls simultaneously may achieve higher inhibitory efficiency of PhIP. In this study, reactive carbonyls in a glucose/creatinine/phenylalanine model system were first identified by gas chromatography-mass spectrometry (GC-MS), and then the single and synergistic effects of nonprecursor amino acids (cysteine, methionine, proline, histidine, arginine, and leucine) on scavenging reactive carbonyls were investigated to find out promising combination partners. The obtained results showed that the concentrations of benzaldehyde and phenylacetaldehyde in the glucose/creatinine/phenylalanine model system reached 0.49 ± 0.01 and 6.22 ± 0.21 μg/mL, respectively. Heating these carbonyl compounds in the presence of creatinine resulted in the quantity of PhIP produced increasing linearly with the added quantity of benzaldehyde (r = 0.9733, P = 0.0002) and phenylacetaldehyde (r = 0.9746, P = 0.0002), indicating that both compounds are key intermediates for PhIP generation. Among the investigated amino acids, histidine produced the maximum inhibition of PhIP formation (78-99%) in the benzaldehyde/creatinine model system, and proline produced the maximum inhibition of PhIP formation (13-97%) in the phenylacetaldehyde/creatinine model system, where both compounds decreased PhIP formation in a dose-dependent manner. Histidine in combination with proline enhanced the inhibitory effect against PhIP formation at a low addition level, where the highest inhibitory efficiency was obtained using a 1:3 mass ratio of histidine to proline (2 mg/mL in total), reducing PhIP formation by 96%. These findings suggest that histidine-proline combinations can scavenge benzaldehyde and phenylacetaldehyde simultaneously, enhancing the suppression of PhIP formation.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Aly Farag El Sheikha
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, Ontario K1N 6N5, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Egypt
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Sun D, Yang N, Zhang Q, Wang Z, Luo G, Pang J. The discovery of combined toxicity effects and mechanisms of hexaconazole and arsenic to mice based on untargeted metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112859. [PMID: 34624535 DOI: 10.1016/j.ecoenv.2021.112859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The high detected frequencies of hexaconazole (Hex) and arsenic (As) increased the probabilities of their co-existence in agricultural products. However, the combined toxicity effect and mechanism of action for these two pollutants were still unclear. In this study, an untargeted metabolomics method with ultra high performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) was developed to monitor the changes of endogenous metabolites and metabolism pathways in mice liver. Our study revealed that significant differences in metabolomics profiles were observed after Hex, As, and Hex+As exposure for 90 d. Hex exposure altered 54 metabolites and 11 pathways significantly which were mainly lipid-related. For As exposure, 63 metabolites and 9 pathways were affected most of which were amino acid-related. Hex+As induced 93 metabolites changes with 34% was lipids and lipid-like molecules and 22% was organic acids and derivatives. Hex+As exposure shared the pathways that altered by Hex and As indicated that the interaction of Hex and As might be independent action. The results of this study could provide an important insight for understanding the mechanism of combined toxicity for Hex and As and be helpful for evaluating their health risk to human.
Collapse
Affiliation(s)
- Dali Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Na Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zelan Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guofei Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Key Laboratory of Critical Technology for Degradation of Pesticide Residues in Agro-products in Guizhou Ecological Environment, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
8
|
Li X, Dong L, Yu H, Zhang Y, Wang S. Bioinformatic Analysis Identified Hub Genes Associated with Heterocyclic Amines Induced Cytotoxicity of Peripheral Blood Mononuclear Cells. Genes (Basel) 2021; 12:genes12121888. [PMID: 34946837 PMCID: PMC8700875 DOI: 10.3390/genes12121888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Heterocyclic amines (HCAs) are a set of food contaminants that may exert a cytotoxic effect on human peripheral blood mononuclear cells (PBMC). However, the genetic mechanism underlying the cytotoxicity of HCAs on PBMC has not been investigated. In the study, bioinformatic analysis on gene dataset GSE19078 was performed. The results of weighted correlation network analysis and linear models for microarray and RNA-seq data analysis showed that four gene modules were relevant to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) exposure while one gene module was correlated with 2-amino-3-methyl-3H-imidazo[4,5f]quinoline (IQ) exposure. Gene functional analysis showed that the five modules were annotated mainly with mRNA transcriptional regulation, mitochondrial function, RNA catabolic process, protein targeting, and immune function. Five genes, MIER1, NDUFA4, MLL3, CD53 and CSF3 were recognized as the feature genes for each hub gene network of the corresponding gene module, and the expression of feature genes was observed with a significant difference between the PhIP/IQ samples and the other samples. Our results provide novel genes and promising mechanisms for exploration on the genetic mechanism of HCAs on PBMC.
Collapse
Affiliation(s)
- Xinyang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.D.); (Y.Z.)
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.D.); (Y.Z.)
| | - Huaning Yu
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China;
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.D.); (Y.Z.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (L.D.); (Y.Z.)
- Correspondence: ; Tel.: +86-22-85358445
| |
Collapse
|