1
|
Liao Y, Gao Y, Chen Q, Pan M, Tsunoda M, Liu F, Zhang Y, Hu W, Li LS, Yang H, Song Y. Enantioselective toxicity effect and mechanisms of bifenthrin enantiomers on normal human hepatocytes. Food Chem Toxicol 2024; 192:114952. [PMID: 39182637 DOI: 10.1016/j.fct.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In recent decades, the toxicity of chiral pesticides to non-target organisms has attracted increasing attention. Cellular metabolic disorders are essential sensitive molecular initiating event for toxicological effects. BF is a typical chiral pesticide, and the liver is the main organ for BF accumulation. This study aimed to investigate the potential molecular mechanism of BF enantiomers' different toxic effects on L02 by a non-targeted metabolomic approach. Results revealed that the BF enantiomers exhibited different metabolic responses. In total, 51 and 36 differential metabolites were perturbed by 1S-cis-BF and 1R-cis-BF at the value of variable importance, respectively. When L02 were exposed to 1R-cis-BF, the significantly disturbed metabolic pathways were nicotinate and nicotinamide metabolism and pyrimidine metabolism. By comparison, more significantly perturbed metabolic pathways were received when the L02 were exposed to 1S-cis-BF, including glycine, serine and threonine metabolism, nicotinate and nicotinamide metabolism, arginine and proline metabolism, cysteine and methionine metabolism, glycerolipid metabolism, histidine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism and arginine biosynthesis. The results offer a new perspective in understanding the role of selective cytotoxicity of BF enantiomers, and help to evaluate the risk to human health at the enantiomeric level.
Collapse
Affiliation(s)
- Yiyi Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China; Hainan Cancer Hospital, Haikou, 570312, Hainan, China
| | - Yuhang Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China; 63650 Military Hospital of PLA, Luoyang, 471000, Henan, China
| | - Qigeng Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Mingyu Pan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fuping Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Haimei Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
2
|
Rao SW, Liu CJ, Liang D, Duan YY, Chen ZH, Li JJ, Pang HQ, Zhang FX, Shi W. Multi-omics and chemical profiling approaches to understand the material foundation and pharmacological mechanism of sophorae tonkinensis radix et rhizome-induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118224. [PMID: 38642623 DOI: 10.1016/j.jep.2024.118224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Han-Qing Pang
- Institute of Translational Medicine, Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Song S, Qiu R, Huang Y, Zhou Z, Yan J, Ou Q, Wei D, He J, Liang Y, Du X, Yao W, Lu T. Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. Toxicol Res (Camb) 2024; 13:tfae123. [PMID: 39119266 PMCID: PMC11303830 DOI: 10.1093/toxres/tfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR. Methods In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo. Results The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity. Conclusions This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yan Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Donghui Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jingxuan He
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yi Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Xingyue Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
4
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Zhang H, Sun Y, Zou Y, Chen C, Wang S. Stigmasterol and gastrodin, two major components of banxia-baizhu-tianma decoction, alleviated the excessive phlegm-dampness hypertension by reducing lipid accumulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117193. [PMID: 37726069 DOI: 10.1016/j.jep.2023.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia baizhu tianma decoction (BBTD) originated from the Qing Dynasty Chinese medicine book "Medical Xinwu", which has a clinical application history of more than 300 years. It's a classic prescription for expelling phlegm, extinguishing wind, strengthening the spleen (traditional Chinese medicine, ie, TCM, refers to the spleen channel) and dissipating excessive fluid based on TCM theory. BBTD is particularly effective in the treatment of excessive phlegm-dampness hypertension. However, the precise pharmacological effect of each herb of BBTD on hypertension treatment is not yet fully understood. AIM OF THE STUDY To investigate the pharmacological effects of each herb in BBTD on hypertension treatment and to explore the mechanisms behind them. MATERIALS AND METHODS A high-fat-diet fed animal model was developed to evaluate the efficacy of different groups of drugs in BBTD for the treatment of hypertension. Untargeted metabolism was used to detect the metabolic changes after modeling and drug intervention. Then, Stigmasterol (STI) and gastrodin (GAS), major components of Pinellia Ternate Makino and Gastrodia elata Blume, were selected for treatment on HepG2 cell steatosis model. Real-time quantitative polymerase chain reaction and Western blotting were used to detect changes of corresponding gene and protein after drug intervention to explore the exam anti-hyperlipidemia mechanism of STI and GAS combination. RESULTS The weight gain, elevated blood pressure and increased blood lipids induced by high-fat-diet were significantly decreased (p < 0.05) after each prescription medicine intervention in a dose-dependent manner. In addition, 28 differential metabolites (DMs) were detected after modeling and were regulated to normal at varying degrees after each drug group treatment. In addition, eight of the 28 DMs were significantly different from the model group after the full prescription drug intervention, primarily related to four metabolic pathways, while only two metabolites were significantly different from the model group after the unprincipled drug intervention, related to one metabolic pathway. In HepG2 hyperlipidemia cell model, STI, GAS and their combination significantly decreased TC, TG levels and lipid accumulation (p < 0.05), and decreased sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1) and their protein expressions (p < 0.05), increased adenosine monophosphate-activated protein kinase (AMPK) and it's protein expression (p < 0.05). The two drugs work better in combination than alone. CONCLUSION BBTD has been shown to be effective in reducing lipid accumulation in a high-fat rat model, as well as in restoring the model-induced abnormal metabolites to normal levels in a dose-dependent manner. Pinellia ternata Makino and Gastrodia elata Blume, the main components of BBTD, may regulate lipid metabolism through fatty acid biosynthesis, arginine and proline metabolism. Their main active agents, STI and GAS, effectively reduce lipid accumulation and lipid content in cells and regulate the expression levels of genes and proteins associated with lipid metabolism. These results suggest that BBTD may regulate lipid metabolism via AMPK/SREBP-1c pathway.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311121, China.
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
7
|
Wang J, Jia Z, Pan W, Hu J. Crotonis Fructus-induced gut microbiota and serum metabolic disorders in rats. Appl Microbiol Biotechnol 2023; 107:6949-6962. [PMID: 37713114 DOI: 10.1007/s00253-023-12763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Crotonis Fructus (CF), a poisonous traditional laxative, has been used to treat constipation, edema, ascites, and inflammation for more than 2000 years. However, CF possesses toxicity and its toxic mechanism is still unclear. Thus, this research explored the deleterious impacts and underlying mechanisms of CF by evaluating alterations in gut microbiota composition and metabolites. High-throughput sequencing was employed on the 16S rDNA gene to explore the intestinal flora. The untargeted metabolomics method was utilized for evaluating serum metabolomics analysis. The results showed that CF could induce obvious hepatic and gastrointestinal damage by histopathologic morphology of the liver, stomach, duodenum, and colon. According to 16S rDNA sequencing, CF can cause gut microbiota disturbance in rats, and the abundance of opportunistic pathogens such as Clostridia_UCG_014_unclassified increased significantly, while the levels of beneficial bacterial Lactobacillus remarkably declined after CF treatment. Additionally, metabolomics analysis demonstrated that CF may induce toxicity by disrupting the glycerophospholipid metabolism pathway and metabolites such as phosphatidylcholine and phosphatidylethanolamine. Moreover, a correlation study revealed the link between intestinal flora, serum metabolites, and toxicity-related biochemical markers. The results provide a new idea for the research and clinical application of toxic traditional medicine. KEY POINTS: • Crotonis Fructus could affect the gut flora and serum metabolic disruption in SD rats. • Crotonis Fructus could promote the proliferation of harmful bacteria and inhibit beneficial bacteria. • Glycerophospholipid metabolism was disturbed by Crotonis Fructus.
Collapse
Affiliation(s)
- Jiali Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zefei Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wen Pan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditonal Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Huang H, Zhao Y, Huang C, Lv N, Zhao J, Sun S, Guo C, Zhao D, Chen X, Zhang Y. Unraveling a Combined Inactivation Mechanism of Cytochrome P450s by Genipin, the Major Reactive Aglycone Derived from Gardeniae Fructus. Chem Res Toxicol 2023; 36:1483-1494. [PMID: 37622730 DOI: 10.1021/acs.chemrestox.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Genipin (GP) is the reactive aglycone of geniposide, the main component of traditional Chinese medicine Gardeniae Fructus (GF). The covalent binding of GP to cellular proteins is suspected to be responsible for GF-induced hepatotoxicity and inhibits drug-metabolizing enzyme activity, although the mechanisms remain to be clarified. In this study, the mechanisms of GP-induced human hepatic P450 inactivation were systemically investigated. Results showed that GP inhibited all tested P450 isoforms via distinct mechanisms. CYP2C19 was directly and irreversibly inactivated without time dependency. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 T (testosterone as substrate) showed time-dependent and mixed-type inactivation, while CYP2B6, CYP2C8, and CYP3A4 M (midazolam as substrate) showed time-dependent and irreversible inactivation. For CYP3A4 inactivation, the kinact/KI values in the presence or absence of NADPH were 0.26 or 0.16 min-1 mM-1 for the M site and 0.62 or 0.27 min-1 mM-1 for the T site. Ketoconazole and glutathione (GSH) both attenuated CYP3A4 inactivation, suggesting an active site occupation- and reactive metabolite-mediated inactivation mechanism. Moreover, the in vitro and in vivo formation of a P450-dependent GP-S-GSH conjugate indicated the involvement of metabolic activation and thiol residues binding in GP-induced enzyme inactivation. Lastly, molecular docking analysis simulated potential binding sites and modes of GP association with CYP2C19 and CYP3A4. We propose that direct covalent binding and metabolic activation mediate GP-induced P450 inactivation and alert readers to potential risk factors for GP-related clinical drug-drug interactions.
Collapse
Affiliation(s)
- Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yulin Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Zhao
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Di Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
He R, Gao S, Yao H, Zhao Z, Tong J, Zhang H. Mechanism of Metabolic Response to Hepatectomy by Integrated Analysis of Gut Microbiota, Metabolomics, and Proteomics. Microbiol Spectr 2023; 11:e0206722. [PMID: 37036349 PMCID: PMC10269556 DOI: 10.1128/spectrum.02067-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Hepatectomy is a common clinical procedure for the treatment of many liver diseases, and the successful recovery of a patient's liver metabolism and function after surgery is crucial for a good prognosis. The objective of this study was to elucidate the metabolic response to hepatectomy using high-throughput sequencing analysis of 16S rRNA gene, metabolomics, and proteomics data. Fecal and serum samples from beagle dogs were collected on day 0 (LH0), day 7 (LH7), and day 28 (LH28) after laparoscopic partial hepatectomy. Liver tissue samples were taken on LH0 and LH7. Dysbiosis in the fecal microbiota was explored, and host-microbiome interactions based on global metabolic and protein profiles and inflammatory processes were determined. Results showed that the relative abundance of Allobaculum and Turicibacter was decreased and that of Escherichia-Shigella was increased after hepatectomy (P < 0.05); the phenylalanine, tyrosine, and tryptophan biosynthetic pathway, along with the phenylalanine and aminoacyl-tRNA biosynthetic pathway, was significantly associated with liver injury. The serum metabolites l-phenylalanine and l-arginine were useful as biomarkers, and the fecal metabolite l-threonine was a signature target monitor for liver recovery. The proteomics profile revealed 412 significantly different proteins and further highlighted two key signaling pathways (mitogen-activated protein kinase [MAPK] and peroxisome proliferator-activated receptor [PPAR]) involved in the response to liver injury. We systematically explored the metabolic mechanism of liver injury and recovery, providing new insights into effective ways to promote recovery after hepatectomy and improve liver function and long-term survival. These fundamental studies on hepatectomy will provide the basis for future advances in treatment and recovery from common liver diseases. IMPORTANCE As the largest parenchymal organ, the liver is a target for bacterial and viral infections, nonalcoholic fatty liver disease (NAFLD), cirrhosis, cancer, and many other diseases, constituting a serious worldwide problem. The treatment for many of these diseases involves hepatectomy. Here, we show that aberrant inflammatory processes after hepatectomy of the liver as reflected in the association between liver metabolism and gut microbiota create a grave risk. This study investigated the mechanisms of gut microbiota and host metabolism involved in liver injury and recovery after hepatectomy, using proteomics to reveal the mechanisms of postoperative liver injury and a comprehensive multi-omics approach to identify changes in metabolism after hepatectomy.
Collapse
Affiliation(s)
- Ruoxuan He
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Shuang Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Zixuan Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Quintás G, Castell JV, Moreno-Torres M. The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Front Pharmacol 2023; 14:1155271. [PMID: 37214440 PMCID: PMC10196061 DOI: 10.3389/fphar.2023.1155271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research.
Collapse
Affiliation(s)
- Guillermo Quintás
- Metabolomics and Bioanalysis, Health and Biomedicine, Leitat Technological Center, Barcelona, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - José V. Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Moreno-Torres
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Rao SW, Duan YY, Zhao DS, Liu CJ, Xu SH, Liang D, Zhang FX, Shi W. Integrative Analysis of Transcriptomic and Metabolomic Data for Identification of Pathways Related to Matrine-Induced Hepatotoxicity. Chem Res Toxicol 2022; 35:2271-2284. [PMID: 36440846 DOI: 10.1021/acs.chemrestox.2c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrine (MT) is a major bioactive compound extracted from Sophorae tonkinensis. However, the clinical application of MT is relatively restricted due to its potentially toxic effects, especially hepatotoxicity. Although MT-induced liver injury has been reported, little is known about the underlying molecular mechanisms. In this study, transcriptomics and metabolomics were applied to investigate the hepatotoxicity of MT in mice. The results indicated that liver injury occurred when the administration of MT (30 or 60 mg/kg, i.g) lasted for 2 weeks, including dramatically increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), etc. The metabolomic results revealed that steroid biosynthesis, purine metabolism, glutathione metabolism, and pyruvate metabolism were involved in the occurrence and development of MT-induced hepatotoxicity. Further, the transcriptomic data indicated that the downregulation of NSDHL with CYP51, FDFT1, and DHCR7, involved in steroid biosynthesis, resulted in a lower level of cholic acid. Besides, Gstps and Nat8f1 were related to the disorder of glutathione metabolism, and HMGCS1 could be treated as the marker gene of the development of MT-induced hepatotoxicity. In addition, other metabolites, such as taurine, flavin mononucleotide (FMN), and inosine monophosphate (IMP), also made a contribution to the boosting of MT-induced hepatotoxicity. In this work, our results provide clues for the mechanism investigation of MT-induced hepatotoxicity, and several biomarkers (metabolites and genes) closely related to the liver injury caused by MT are also provided. Meanwhile, new insights into the understanding of the development of MT-induced hepatotoxicity or other monomer-induced hepatotoxicity were also provided.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shao-Hua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
12
|
Xu JJ, Xu F, Wang W, Wang PP, Xian J, Han X, Shang MY, Liu GX, Wang X, Cai SQ. Paeoniae Radix Rubra can enhance fatty acid β-oxidation and alleviate gut microbiota disorder in α-naphthyl isothiocyanate induced cholestatic model rats. Front Pharmacol 2022; 13:1002922. [DOI: 10.3389/fphar.2022.1002922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is the most destructive pathological manifestation of liver disease and available treatments are very limited. Paeoniae Radix Rubra (PRR) is an important traditional Chinese drug used to treat cholestasis. This study combined targeted metabonomics, PCR array analysis, and 16S rRNA sequencing analysis to further clarify the mechanisms of PRR in the treatment of cholestasis. PRR conspicuously reversed the elevation of fatty acids (FFA 14:0 and other 14 fatty acids) and the decrease of organic acids (pyruvic acid and citric acid) in a cholestatic model induced by α-naphthyl isothiocyanate (ANIT). Eight elevated amino acids (L-proline, etc.) and five elevated secondary bile acids (taurohyodeoxycholic acid, etc.) in model rats were also reduced by PRR. Pathway analysis revealed that PRR significantly alleviated eight pathways (β-alanine metabolism). Furthermore, we found that PRR significantly reversed the decrease of Cpt1a, Hadha, Ppara, and Slc25a20 (four genes relevant to fatty acid β-oxidation) mRNAs caused by ANIT, and PRR conspicuously decreased nine acylcarnitines (the forms of fatty acids into mitochondria for β-oxidation) that increased in model rats. These results indicate that PRR could enhance fatty acid β-oxidation, which may be the way for PRR to reduce the levels of 15 fatty acids in the serum of model rats. 16S rRNA sequencing analysis revealed that PRR alleviated gut microbiota disorders in model rats, including upregulating four genera (Coprococcus, Lactobacillus, etc.) and downregulating four genera (Bacteroides, Escherichia, etc.). As the relative abundance of these eight genera was significantly correlated with the levels of the five secondary bile acids (deoxycholic acid, taurolithocholic acid, etc.) reduced by PRR, and Bacteroides and Escherichia were reported to promote the production of secondary bile acid, we inferred that the downregulation of PRR on five secondary bile acids in model rats was inseparable from gut microbiota. Thus, the gut microbiota also might be a potential pharmacological target for the anticholestatic activity of PRR. In conclusion, we consider that the mechanisms of PRR in treating cholestasis include enhancing fatty acid β-oxidation and alleviating gut microbiota disorders.
Collapse
|
13
|
Xiong L, Wang L, Zhang T, Ye X, Huang F, Huang Q, Huang X, Wu J, Zeng J. UHPLC/MS-Based Serum Metabolomics Reveals the Mechanism of Radiation-Induced Thrombocytopenia in Mice. Int J Mol Sci 2022; 23:ijms23147978. [PMID: 35887324 PMCID: PMC9319504 DOI: 10.3390/ijms23147978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced thrombocytopenia is a common and life-threatening side effect of ionizing radiation (IR) therapy. However, the underlying pathological mechanisms remain unclear. In the present study, irradiation was demonstrated to significantly reduce platelet levels, inhibit megakaryocyte differentiation, and promote the apoptosis of bone marrow (BM) cells. A metabolomics approach and a UHPLC-QTOF MS system were subsequently employed for the comprehensive analysis of serum metabolic profiles of normal and irradiated mice. A total of 66 metabolites were significantly altered, of which 56 were up-regulated and 10 were down-regulated in irradiated mice compared to normal mice on day 11 after irradiation. Pathway analysis revealed that disorders in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, inositol phosphate metabolism, and tryptophan metabolism were involved in radiation-induced thrombocytopenia. In addition, three important differential metabolites, namely L-tryptophan, LysoPC (17:0), and D-sphinganine, which were up-regulated in irradiated mice, significantly induced the apoptosis of K562 cells. L-tryptophan inhibited megakaryocyte differentiation of K562 cells. Finally, serum metabolomics was performed on day 30 (i.e., when the platelet levels in irradiated mice recovered to normal levels). The contents of L-tryptophan, LysoPC (17:0), and D-sphinganine in normal and irradiated mice did not significantly differ on day 30 after irradiation. In conclusion, radiation can cause metabolic disorders, which are highly correlated with the apoptosis of hematopoietic cells and inhibition of megakaryocyte differentiation, ultimately resulting in thrombocytopenia. Further, the metabolites, L-tryptophan, LysoPC (17:0), and D-sphinganine can serve as biomarkers for radiation-induced thrombocytopenia.
Collapse
Affiliation(s)
- Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
| | - Ting Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
| | - Xinyuan Ye
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
- Correspondence: (J.W.); (J.Z.); Tel./Fax: +86-830-316-2291 (J.Z.)
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.X.); (L.W.); (T.Z.); (X.Y.); (F.H.); (Q.H.); (X.H.)
- Correspondence: (J.W.); (J.Z.); Tel./Fax: +86-830-316-2291 (J.Z.)
| |
Collapse
|
14
|
Li P, Zhang L, Guo Z, Kang Q, Chen C, Liu X, Ma Q, Zhang J, Hu Y, Wang T. Epimedium koreanum Nakai-Induced Liver Injury-A Mechanistic Study Using Untargeted Metabolomics. Front Pharmacol 2022; 13:934057. [PMID: 35910368 PMCID: PMC9326364 DOI: 10.3389/fphar.2022.934057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epimedii Folium is widely used worldwide as an herbal supplement, and the risk of its induced liver damage has emerged in recent years. Our preliminary study has found that, among several Epimedii Folium species specified in the Chinese Pharmacopoeia, Epimedium koreanum Nakai has a more severe propensity for hepatotoxicity. However, the mechanism of hepatotoxicity of Epimedium koreanum Nakai is still unclear. In this study, untargeted metabolomics was performed to analyze the serum and liver tissue to explore the mechanism of hepatotoxicity of Epimedium koreanum Nakai. The results of experiments in vivo showed that, after 28 days of exposure to Epimedium koreanum Nakai ethanol extract (EEE), the liver weight, levels of AST, ALP, TBIL, etc. in serum of rats in the EEE group were significantly increased, as well as severe cytoplasmic vacuolation appeared in the liver tissue, which suggested that EEE has significant hepatotoxicity. Subsequently, the results of metabolomics revealed significant changes in the metabolic profile in the liver and serum of rats after EEE exposure, in which metabolites in serum such as flavin mononucleotide, phenylacetylglycine, glutathione, l-tryptophan, and sphingomyelin were able to accurately identify liver injury caused by EEE and could be used as serum markers to reflect EEE-induced liver injury. The KEGG pathway enrichment analysis revealed that EEE caused extensive effects on rats' metabolic pathways. Some of the most affected pathways included glutathione metabolism, glutamate metabolism pathway, primary bile acid biosynthesis pathway, and sphingolipid metabolism pathway, which were all directed to the biological process of ferroptosis. Then, the main markers related to ferroptosis in the liver were examined, and the results demonstrated that the content of malondialdehyde was significantly increased, the activity of superoxide dismutase was significantly reduced, the ferroptosis inhibitory proteins GPX4 and System xc - were significantly downregulated, and the ferroptosis-promoting protein ACSL4 was significantly up-regulated. Judging from these results, we concluded that the mechanism of hepatotoxicity of Epimedium koreanum Nakai was probably related to the induction of ferroptosis in hepatocytes.
Collapse
Affiliation(s)
| | - Lin Zhang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | | - Ting Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Zhang Y, Fang YC, Cui LX, Jiang YT, Luo YS, Zhang W, Yu DX, Wen J, Zhou TT. Zhi-Zi-Chi Decoction Reverses Depressive Behaviors in CUMS Rats by Reducing Oxidative Stress Injury Via Regulating GSH/GSSG Pathway. Front Pharmacol 2022; 13:887890. [PMID: 35462900 PMCID: PMC9021728 DOI: 10.3389/fphar.2022.887890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is one of the main diseases that lead to disability and loss of ability to work. As a traditional Chinese medicine, Zhi-zi-chi decoction is utilized to regulate and improve depression. However, the research on the antidepressant mechanism and efficacy material basis of Zhi-zi-chi decoction has not been reported yet. Our previous research has found that Zhi-Zi-chi decoction can reduce glutamate-induced oxidative stress damage to PC 12 cells, which can exert a neuroprotective effect, and the antidepressant effect of Zhi-Zi-chi decoction was verified in CUMS rat models. In this study, the animal model of depression was established by chronic unpredictable mild stimulation combined with feeding alone. The brain metabolic profile of depressed rats was analyzed by the method of metabolomics based on ultra-performance liquid chromatography-quadrupole/time-of-flight mass. 26 differential metabolites and six metabolic pathways related to the antidepressant of Zhi-zi-chi decoction were screened and analyzed. The targeted metabolism of the glutathione metabolic pathway was analyzed. At the same time, the levels of reactive oxygen species, superoxide dismutase, glutathione reductase, glutathione peroxidase in the brain of depressed rats were measured. Combined with our previous study, the antioxidant effect of the glutathione pathway in the antidepressant effect of Zhi-zi-chi decoction was verified from the cellular and animal levels respectively. These results indicated that Zhi-zi-chi decoction exerted a potential antidepressive effect associated with reversing the imbalance of glutathione and oxidative stress in the brain of depressed rats.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Chengdu Institute for Drug Control, Chengdu, China
| | - Yi-Chao Fang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Li-Xun Cui
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yue-Tong Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu-Sha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - De-Xun Yu
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| | - Ting-Ting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| |
Collapse
|
16
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|
17
|
A Combination Extract of Gardeniae Fructus and Perillae Folium Exerts Anti-Inflammatory Effects on LPS-Activated RAW 264.7 Mouse Macrophages via an ER Stress-Induced CHOP Pathway. Processes (Basel) 2021. [DOI: 10.3390/pr9091632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study is to investigate the effects of a combination extract of Gardeniae Fructus and Perillae Folium (GP) on inflammatory reactions in lipopolysaccharide (LPS)-activated mouse macrophages RAW 264.7 cells. Multiplex cytokine assay, Fluo-4 calcium assay, Flow cytometry assay for phospho-P38 MAPK, and quantitative PCR were carried out. GP significantly reduced LPS-induced productions of macrophage inflammatory protein (MIP)-1α and monokine induced by gamma interferon (MIG) and release of intracellular calcium in LPS-activated RAW 264.7 cells. GP also significantly inhibited P38 MAPK phosphorylation and mRNA levels of Chop, Camk2a, Stat1, Stat3, Jak2, Fas, Nos2, and Ptgs2 in LPS-activated RAW 264.7 cells. Taken together, this study represents that GP exerts anti-inflammatory effects on LPS-activated RAW 264.7 cells via ER stress-induced CHOP pathway.
Collapse
|
18
|
Luo Y, Zhang X, Zhang W, Yang Q, You W, Wen J, Zhou T. Compatibility with Semen Sojae Praeparatum attenuates hepatotoxicity of Gardeniae Fructus by regulating the microbiota, promoting butyrate production and activating antioxidant response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153656. [PMID: 34332844 DOI: 10.1016/j.phymed.2021.153656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Herb-induced liver injury is a leading cause of drug-induced liver injury in China and its incidence is also increasing worldwide. Gardeniae Fructus (ZZ) has aroused wide concern for hepatotoxicity in recent decades. But when ZZ is administered in combination with Semen Sojae Praeparatum (DDC) to compose a herbal pair Zhizichi Decoction (ZZCD), lower hepatotoxicity is observed. The mechanism involved in the attenuated effect remains to be investigated. HYPOTHESIS/PURPOSE Our previous studies showed that DDC benefited host metabolism by regulating the gut microbiota and it reduced the exposure of major toxic components of ZZ. The present study was aimed to investigate how DDC attenuated hepatotoxicity of ZZ from the perspective of gut microbiota. METHODS Rats received ZZ and ZZCD treatment of different dosages and antibiotic treatment was applied to explore the involvement of gut microbiota. Biochemical assays and histopathological analysis were conducted to evaluate liver injury. Gut microbiota in caecal contents was profiled by 16S rRNA sequencing. Short-chain fatty acids (SCFAs) in caecal contents were measured by gas chromatography mass spectrometry (GCMS). To verify the protective effect of butyrate, it was administered with genipin, the major hepatotoxic metabolite of ZZ, to rats and HepG2 cells. Plasma lipopolysaccharide (LPS) level and colon tissue section were used to evaluate gut permeability. Expression level of Nuclear factor erythroid-derived 2-like 2 (Nrf2) was detected by immunohistochemistry in vitro and by western blot in vivo. RESULTS Our study showed that ZZCD displayed lower hepatotoxicity than ZZ at the same dosage. ZZ induced gut dysbiosis, significantly reducing Lactobacillus and Enterococcus levels and increasing the Parasutterella level. In combination with DDC, these alterations were reversed and beneficial genus including Akkermansia and Prevotella were significantly increased. Besides, butyrate production was diminished by ZZ but was restored when in combination with DDC. Butyrate showed detoxification on genipin-induced liver injury by promoting colon integrity and promoting Nrf2 activation. Besides, it protected genipin-induced hepatocyte damage by promoting Nrf2 activation. CONCLUSION DDC attenuates ZZ-induced liver injury by regulating the microbiota, promoting butyrate production and activating antioxidant response.
Collapse
Affiliation(s)
- Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Qiliang Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei You
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|