1
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
2
|
Xie Y, Fang Y, Liu Y, Ji B, Sakurai R, Wang Y, Li H, Zhang L, Wu L, Guo T, Quan Y, Rehan VK. Electroacupuncture may protect pulmonary dysplasia in offspring with perinatal nicotine exposure by altering maternal gut microbiota and metabolites. Front Microbiol 2025; 15:1465673. [PMID: 39850138 PMCID: PMC11754296 DOI: 10.3389/fmicb.2024.1465673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Background Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring. Objective Our previous studies demonstrated that electroacupuncture (EA) ameliorated PNE-induced impairment in offspring lung development. To further our study, we aimed to determine whether the protective effect of EA is associated with the modulation of changes in maternal gut microbiota and SCFAs. Methods We observed changes in maternal gut microbiota and serum SCFA levels in both mother and offspring after EA treatment using a PNE rat model. Furthermore, using broad-spectrum antibiotics, we established a pseudo-germ-free PNE rat model to explore whether EA can protect offspring's pulmonary function and lung morphology in the presence of depleted maternal gut microbiota. Results Our study revealed that EA increased the community richness (Sobs index) of perinatal nicotine-exposed maternal gut microbiota and the abundance of beneficial bacteria (RF39, Clostridia, Oscillospirales, etc.). This was accompanied by an upregulated serum levels of acetate, butyrate, and total SCFAs in both mother and offspring rats, as well as stimulated expression of SCFA receptors (GPR41 and GPR43) in the lung tissue of offspring rats. However, the beneficial effects of EA on offspring pulmonary function (FVC, PEF, PIF, and Cdyn) and lung morphology (alveolar number and MLI) were lost after maternal gut microbiota depletion. Conclusion These findings suggest that EA may exert its therapeutic effects on PNE-induced lung phenotype by altering maternal gut microbiota. The likely mechanism involves the associated improvement in serum SCFA levels in both mother and offspring, as well as the upregulation of SCFA receptors in the lung tissue of offspring.
Collapse
Affiliation(s)
- Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Fang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Reiko Sakurai
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yifei Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hewen Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Quan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Virender K. Rehan
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
3
|
Qin X, Zhang M, Chen S, Tang Y, Cui J, Ding G. Short-chain fatty acids in fetal development and metabolism. Trends Mol Med 2024:S1471-4914(24)00329-0. [PMID: 39694776 DOI: 10.1016/j.molmed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Short-chain fatty acids (SCFAs), primarily derived from gut microbiota, play a role in regulating fetal development; however, the mechanism remains unclear. Fetal SCFAs levels depends on maternal SCFAs transported via the placenta. Metabolic stress, particularly from diabetes and obesity, can disrupt maternal SCFAs levels, impairing fetal metabolic reprogramming. Dysregulated SCFAs may negatively impact the development of the fetal cardiovascular, nervous, and immune systems, potentially contributing to adverse outcomes in adulthood. This review focuses on recent advances regarding the role of maternal SCFAs in shaping the metabolic profile of offspring, especially in the context of various maternal metabolic disorders. Given that SCFAs may influence fetal development through the placenta-embryo axis, targeted SCFAs supplementation could be a promising strategy against developmental diseases associated with intrauterine risk factors.
Collapse
Affiliation(s)
- Xueyun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Mo Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Shiting Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
4
|
Wang L, Wang Z, Wang Z, Zheng J. Integrated aerobic-anaerobic digestion of highly solids-loaded corn stover and swine manure under dynamic aeration: Temperature rise, physicochemical characteristics, and methane production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121864. [PMID: 39018837 DOI: 10.1016/j.jenvman.2024.121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This research aimed to design an integrated aerobic-anaerobic reactor with dynamic aeration that was automatically regulated based on real-time oxygen concentration and investigate the aerobic pretreatment and subsequent dry co-anaerobic digestion (co-AD) characteristics of highly solids-loaded corn stover and swine manure in terms of temperature rise, physiochemical characteristics, and methane production. The high-temperature feedstocks from the aerobic pretreatment phase rapidly entered the AD phase without transportation and effectively improved the start-up and methane production of the co-AD. Oxygen concentration range, aeration rate, and pretreatment time affected the cumulative aeration time, temperature rise, and organic matter removal interactively during aerobic pretreatment, and a low aeration rate was relatively preferable. Although the lignocellulose removal increased with the increase in pretreatment duration, the maximal lignin elimination efficiency only reached 1.30%. The inoculum injection in the transition phase from aerobic pretreatment to co-AD and the leachate reflux during co-AD were also critical for producing methane steadily apart from aerobic pretreatment. The cold air weakened the temperature rise of aerobic pretreatment, and the low-temperature leachate reduced the methane production in the co-AD process. An oxygen concentration range of 13%-17%, aeration rate of 0.10 m3/(min·m3), pretreatment time of 84 h, inoculum loading of 40%, leachate refluxing thrice per day, and double-layer inoculation were optimum for improving the integrated aerobic-anaerobic digestion system's ability to resist low temperatures and achieving high methane production. The maximal cumulative and volatile solids (VS) methane yields of corn stover and swine manure reached 444.58 L and 266.30 L/kg VS.
Collapse
Affiliation(s)
- Lili Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zicong Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongjiang Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingke Zheng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Chen B, Zeng G, Sun L, Jiang C. When smoke meets gut: deciphering the interactions between tobacco smoking and gut microbiota in disease development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:854-864. [PMID: 38265598 DOI: 10.1007/s11427-023-2446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/09/2023] [Indexed: 01/25/2024]
Abstract
Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.
Collapse
Affiliation(s)
- Bo Chen
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangyi Zeng
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China.
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. How Brain Infarction Links With the Microbiota-Gut-Brain Axis: Hints From Studies Focusing on the Risk Factors for Ischemic Stroke. Front Neurosci 2022; 16:877937. [PMID: 35685776 PMCID: PMC9170980 DOI: 10.3389/fnins.2022.877937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Ischemic stroke (IS) is among the top prevalent neurologic disorders globally today. Risk factors such as hypertension, diabetes, and aging, contribute to the development of IS, and patients with these risk factors face heavier therapeutic burden and worse prognosis. Microbiota–gut–brain axis describes the crosstalk between the gut flora, intestine, and center nervous system, which conduct homeostatic effects through the bacterial metabolites, the regulation of immune activity, also the contact with enteric nerve ends and vagus nerve. Nowadays, more studies have paid attention to the important roles that microbiota–gut–brain axis played in the risk factors of IS. In the current article, we will review the recent works focusing on the bi-directional impacts of gut dysbiosis and the pathogenic process of IS-related risk factors, for the purpose to summarize some novel findings in this area, and try to understand how probiotics could limit the development of IS via different strategies.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|