1
|
Aspera-Werz RH, Chen G, Schilonka L, Bouakaz I, Bronne C, Cobraiville E, Nolens G, Nussler A. Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering. J Funct Biomater 2024; 15:355. [PMID: 39728155 PMCID: PMC11727752 DOI: 10.3390/jfb15120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue. This study aimed to compare the influences of particle size and sintering temperature on the mechanical properties and biocompatibility of calcium phosphate (CaP) gyroid scaffolds. CaP gyroid scaffolds were fabricated by 3D printing using powders with the same chemical composition but different particle sizes and sintering temperatures. The physicochemical characterization of the scaffolds was performed using X-ray diffractometry, scanning electron microscopy, and microtomography analyses. The immortalized human mesenchymal stem cell line SCP-1 (osteoblast-like cells) and osteoclast-like cells (THP-1 cells) were seeded on the scaffolds as mono- or co-cultures. Bone cell attachment, number of live cells, and functionality were assessed at different time points over a period of 21 days. Improvements in mechanical properties were observed for scaffolds fabricated with narrow-particle-size-distribution powder. The physicochemical analysis showed that the microstructure varied with sintering temperature and that narrow particle size distribution resulted in smaller micropores and a smoother surface. Viable osteoblast- and osteoclast-like cells were observed for all scaffolds tested, but scaffolds produced with a smaller particle size distribution showed less attachment of osteoblast-like cells. Interestingly, low attachment of osteoclast-like cells was observed for all scaffolds regardless of surface roughness. Although bone cell adhesion was lower in scaffolds made with powder containing smaller particle sizes, the long-term function of osteoblast-like and osteoclast-like cells was superior in scaffolds with improved mechanical properties.
Collapse
Affiliation(s)
- Romina Haydeé Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Guanqiao Chen
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Lea Schilonka
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Islam Bouakaz
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Catherine Bronne
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | | | - Grégory Nolens
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Andreas Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| |
Collapse
|
2
|
Yoon TH, Choi JH, Lim JR, Chang HH, Chun YM. Heated Tobacco Products Have Detrimental Effects on Rotator Cuff Healing, Similar to Conventional Cigarettes. J Bone Joint Surg Am 2024; 106:869-878. [PMID: 38507504 DOI: 10.2106/jbjs.23.00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Cigarette smoking impairs rotator cuff healing, but no study, to our knowledge, has focused on the association between heated tobacco products and rotator cuff tears. METHODS This study retrospectively investigated 1,133 patients who underwent arthroscopic repair of symptomatic rotator cuff tears between March 2011 and April 2021. Patients were grouped on the basis of their smoking patterns as nonsmokers, cigarette smokers, and heated tobacco smokers. Propensity score matching was used to reduce selection bias, and 45 subjects were selected from each group via 1:1:1 matching. Functional scores and active range of motion were compared among the 3 groups preoperatively and at a 2-year follow-up. Postoperative magnetic resonance imaging was performed 6 months after the surgical procedure to assess structural integrity. RESULTS Except for sex, similar baseline characteristics were achieved after propensity score matching. There were no differences in the clinical scores or range of motion between the matched groups either preoperatively or at the 2-year follow-up. However, the retear rate for the matched nonsmoker group was significantly lower (8.9%) than those for the matched cigarette smoker group (31.1%) and the heated tobacco smoker group (28.9%) (p = 0.022). Multivariable logistic regression analysis revealed that the retear rates were 3.403 times higher for the cigarette smoker group and 3.397 times higher for the heated tobacco smoker group than that for the nonsmoker group. CONCLUSIONS Heated tobacco users, like conventional cigarette smokers, have worse clinical outcomes with respect to rotator cuff healing than nonsmokers. Regardless of the type of cigarette, abstinence from smoking is necessary for patients undergoing rotator cuff repair surgery. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Tae-Hwan Yoon
- Arthroscopy and Joint Research Institute, Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
3
|
Cordery S, Thompson K, Stevenson M, Simms L, Chapman F, Grandolfo E, Malt L, Weaver S, Fearon IM, Nahde T. The Product Science of Electrically Heated Tobacco Products: An Updated Narrative Review of the Scientific Literature. Cureus 2024; 16:e61223. [PMID: 38939262 PMCID: PMC11209752 DOI: 10.7759/cureus.61223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Heated tobacco products represent a novel category of tobacco products in which a tobacco consumable is heated to a temperature that releases nicotine from the tobacco leaf but not to a temperature sufficient to cause combustion. Heated tobacco products may therefore have the potential to be a less harmful alternative for adult smokers who would otherwise continue to smoke cigarettes, as their use should result in exposure to substantially fewer and lower levels of toxicants. This update represents a two-year extension to our previous narrative review, which covered peer-reviewed journal articles published up to August 31, 2021. The scientific evidence published between 2021 and 2023 continues to indicate that aerosols produced from heated tobacco products contain fewer and substantially lower levels of harmful and potentially harmful constituents and that these observed reductions consistently translate to reduced biological effects in both in vitro and in vivo toxicological studies. Biomarker and clinical data from studies in which product use is controlled within a clinical setting continue to suggest changes in levels of biomarkers of exposure, biomarkers of potential harm, and clinical endpoints indicating the potential for reduced harm with switching to exclusive use of heated tobacco products in adult smokers. Overall, the available peer-reviewed scientific evidence continues to indicate that heated tobacco products offer promise as a potentially less harmful alternative to cigarettes, and as such, the conclusions of our original narrative review remain valid.
Collapse
Affiliation(s)
- Sarah Cordery
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Keith Thompson
- Independent Scientific Consultant, Elucid8 Holdings Ltd., Coleraine, GBR
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Fiona Chapman
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Erika Grandolfo
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Layla Malt
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Sarah Weaver
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Ian M Fearon
- Scientific Research, whatIF? Consulting Ltd., Harwell, GBR
| | - Thomas Nahde
- Group Science and Regulatory Affairs, Imperial Brands Reemtsma, Hamburg, DEU
| |
Collapse
|
4
|
Zhang H, Shi B, Yuan C, Huang C, Huang T, Liao Z, Zhu W, Zhong W, Xu H, Ji J, Cai F, Chen Y, Sun P, Zeng X, Yang Z, Wang J, Shu B, Liang Q, Shi Q, Xu C, Tang D, Wang Y. Correlation between the non-use of cooking oil fume extractors and bone mineral density in population aged 45 years and older in China: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 14:1280429. [PMID: 38239978 PMCID: PMC10794737 DOI: 10.3389/fendo.2023.1280429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/09/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The correlation between the non-use of cooking oil fumes (COFs) extractors and bone mineral density (BMD) have not been clarified. Consequently, this study attempted to explore the impact of non-use COFs extractors on BMD in population aged 45 years and older based on a cross-sectional study. Methods This study was a cross-sectional study within the framework of an ongoing prospective population-based cohort study in China. The multivariate linear regression models were used to evaluate the correlation between the non-use of fume extractors in family cooking and total lumbar spine (LS), femoral neck (FN), total hip BMD and levels of bone metabolism markers. Results A total of 3433 participants were included in the final analyses, of which 2607 (75.93%) participants used fume extractors. The results of models indicated that there were significant correlations of the non-use of fume extractors on total LS BMD (β = -0.024, 95% CI, -0.036, -0.012, p < 0.001), PINP (β = 4.363, 95% CI, 2.371, 6.356, p < 0.001) and ALP (β = 4.555, 95% CI, 2.593, 6.517, p < 0.001) levels. Conclusions This study verified that the use of fume extractors is an efficacious measure to prevent LS bone loss. For the sake of public bone health, people should install a fume extractor in the kitchen and use it routinely when cooking.
Collapse
Affiliation(s)
- Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binhao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingrui Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhangyu Liao
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Wenhao Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhong
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Hongbin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangxun Ji
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feihong Cai
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xianhui Zeng
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Zhiwu Yang
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chuanglong Xu
- Ningxia Hospital of Traditional Chinese Medicine and Chinese Medicine Research Institute, Yinchuan, China
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|