1
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
2
|
Liang Y, Li Z, Zhang J, Li T, Lv C. Comparison of the Glucocorticoid Receptor Binding and Agonist Activities of Typical Glucocorticoids: Insights into Their Endocrine Disrupting Effects. Chem Biodivers 2024; 21:e202301525. [PMID: 38129310 DOI: 10.1002/cbdv.202301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Over the past decades, the synthetic glucocorticoids (GCs) have been widely used in clinical practice and animal husbandry. Given the health hazard of these toxic residues in food, it is necessary to explore the detailed interaction mechanisms of typical GCs and their main target glucocorticoid receptor (GR). Hence, this work compared the GR binding and agonist activities of typical GCs. Fluorescence polarization assay showed that these GCs were potent ligands of GR. Their GR binding affinities were in the order of methylprednisolone>betamethasone≈prednisolone>dexamethasone, with IC50 values of 1.67, 2.94, 2.95, and 5.58 nM. Additionally, the limits of detection of dexamethasone, betamethasone, prednisolone, and methylprednisolone were 0.32, 0.14, 0.19, and 0.09 μg/kg in fluorescence polarization assay. Reporter gene assay showed that these GCs induced GR transactivation in a dose-dependent manner, confirming their GR agonist activities. Among which, dexamethasone at the concentration of 100 nM produced a maximal induction of more than 11-fold over the blank control. Molecular docking and molecular dynamics simulations suggested that hydrogen-bonding and hydrophobic interactions played an important role in stabilizing the GC-GR-LBD complexes. In summary, this work might help to understand the GR-mediated endocrine disrupting effects of typical GCs.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| |
Collapse
|
3
|
Caserta S, Stagno F, Gangemi S, Allegra A. Highlights on the Effects of Non-Coding RNAs in the Osteonecrosis of the Jaw. Int J Mol Sci 2024; 25:1598. [PMID: 38338876 PMCID: PMC10855359 DOI: 10.3390/ijms25031598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteonecrosis of the jaw is the progressive loss and destruction of bone affecting the maxilla or mandible in patients treated with antiresorptive and antiangiogenic agents without receiving prior radiation therapy. The pathogenesis involves the inflammatory pathway of receptor activator of nuclear factor NF-kB ligand and the macrophage colony-stimulating factor, essential for osteoclast precursors survival and proliferation and acting through its receptor c-Fms. Evidence has shown the role of non-coding RNAs in the pathogenesis of osteonecrosis of the jaw and this finding might be useful in diagnosis since these small RNAs could be considered as biomarkers of apoptotic activity in bone. Interestingly, it has been proved that miR-29 and miR-31-5p, acting on specific targets such as CALCR and RhoA, promote programmed-cell death and consequently the necrosis of bone tissue. Specific long non-coding RNAs, instead, have been detected both at reduced levels in patients with multiple myeloma and osteonecrosis, and associated with suppression of osteoblast differentiation, with consequences in the progression of mandible lesions. Among non-coding genic material, circular RNAs have the capability to modify the expression of specific mRNAs responsible for the inhibition of bisphosphonates activity on osteoclastogenesis.
Collapse
Affiliation(s)
- Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Fabio Stagno
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
4
|
Yu Z, Zhang W, Wang Y, Gao M, Zhang M, Yao D, Qiao C, Cui X, Jia R. Extracellular Vesicles Derived from Human Umbilical Cord MSC Improve Vascular Endothelial Function in In Vitro and In Vivo Models of Preeclampsia through Activating Arginine Metabolism. Mol Pharm 2023; 20:6429-6440. [PMID: 37903292 PMCID: PMC10699303 DOI: 10.1021/acs.molpharmaceut.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Endothelial cell damage is an important feature of preeclampsia (PE). Human umbilical mesenchymal stem-cell-derived extracellular vesicles (HUMSCs-derived EVs) have been shown to have therapeutic effects on a variety of diseases and tissue damage. However, the therapeutic effect of HUMSCs-derived EVs on endothelial injury in PE remains unclear. This study explored the possible mechanism of HUMSCs-derived EVs in the treatment of endothelial cell injury. Tumor necrosis factor α- and lipopolysaccharide-induced endothelial dysfunction models were used to evaluate the therapeutic effect of HUMSCs-derived EVs on endothelial injury. We further constructed PE mouse models to explore the function of HUMSCs-derived EVs in vivo. The changes of metabolites in endothelial cells after HUMSCs-derived EVs treatment were analyzed by metabolomics analysis and further validated by cell experiments. HUMSCs-derived EVs treatment can alleviate endothelial cell injury in PE, involving cell proliferation, migration, angiogenesis, and anti-inflammatory. Importantly, administration of HUMSCs-derived EVs improves hypertension and proteinuria in PE mice, alleviates kidney damage, and promotes vascularization in the placenta. Furthermore, metabolomics analysis found that the arginine metabolic pathway is activated after HUMSCs-derived EVs treatment. We also observed increased arginine level, nitric oxide content, and nitric oxide synthase activity, and further experiments proved that activating the arginine metabolic pathway could alleviate endothelial dysfunction. Our results reveal that HUMSCs-derived EVs could ameliorate PE endothelial dysfunction by activating the arginine metabolic pathway and may serve as a therapeutic method for treating PE.
Collapse
Affiliation(s)
- Zhaoer Yu
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Wei Zhang
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Yixiao Wang
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Mingming Gao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Min Zhang
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Dan Yao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Chengping Qiao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Xianwei Cui
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Ruizhe Jia
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| |
Collapse
|