1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Promoter Methylation Changes in KRT17: A Novel Epigenetic Marker for Wool Production in Angora Rabbit. Int J Mol Sci 2022; 23:ijms23116077. [PMID: 35682756 PMCID: PMC9181683 DOI: 10.3390/ijms23116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Wool production is an important economic trait of Angora rabbits. Exploring molecular markers related to wool production is one of the essentials of Angora rabbits’ breeding. KRT17 (Keratin 17) is an important gene of hair follicle development, which must be explored for genetic/epigenetic variation to assess its effect on wool production. Based on the effective wool production data of 217 Angora rabbits, the high and low yield groups were screened with 1.5 standard deviations of the population mean. The full-length sequence of KRT17 was obtained by rapid amplification of cDNA ends technology, and the polymorphism was analyzed in the promoter, exon, and intron regions by direct sequencing. KRT17, SP1 over-expression plasmids, and siRNA were constructed and transfected into dermal papilla cells. The mRNA expressions of relevant genes were analyzed by RT-qPCR. The methylation level of the KRT17 promoter was determined by Bisulfite Sequencing PCR. Dual-luciferase system, site-directed mutagenesis, and electrophoretic mobility shift assays were used to analyze the binding relationship between SP1 and the promoter of KRT17. The structure map of KRT17 was drawn, and no SNPs were found in the promoter, exon, and intron, indicating a relatively conserved structure of KRT17. Expression of KRT17 was significantly higher in cutaneous tissues than in other tissues and was significantly upregulated in the high-yield group compared to the low-yield group (p < 0.05). Furthermore, the overall high methylation levels of KRT17 CpG I and CpG III showed significant association with low wool yield; the methylation levels of 5 CpG locus (CpG I site 4 and CpG III site 2−5) were significantly different between the high and low yield groups (p < 0.05). The methylation levels of 3 CpG locus (CpG I site 4 and CpG III site 4, 14) showed a significant correlation with KRT17 expression (p < 0.05). Overall, CpG III site 4 significantly affects wool production and KRT17 expressions (p < 0.05). This site promotes SP1 binding to the KRT17 promoter region (CGCTACGCCC) to positively regulate the KRT17 expression. KRT17 CpG III site 4 can be used as candidate epigenetic markers for the breeding of high wool-producing Angora rabbits.
Collapse
|
3
|
Ammari AA, ALghadi MG, ALhimaidi AR, Amran RA. The role of passage numbers of donor cells in the development of Arabian Oryx – Cow interspecific somatic cell nuclear transfer embryos. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The cloning between different animals known as interspecific somatic cell nuclear transfer (iSCNT) was carried out for endangered species. The iSCNT has been characterized by a poor success rate due to several factors that influence the formation of the SCNT in various cytoplasms. The cell cycle of the transferred somatic cell, the passage number of the cultured somatic cell, the mitochondria oocytes, and their capabilities are among these factors. This study investigates the role of the passage number of the Arabian Oryx somatic cell culture when transplanted to an enucleated domestic cow oocyte and embryo development in vitro. The fibroblast somatic cell of the Arabian Oryx was cultured for several passage lanes (3–13). The optimal passage cell number was found to be 10–13 Oryx cell lines that progressed to various cell stages up to the blastula stage. There was some variation between the different passage numbers of the oryx cell line. The 3–9 cell line did not show a good developmental stage. These could be attributed to several factors that control the iSCNT as stated by several investigators. More investigation is needed to clarify the role of factors that affect the success rate for the iSCNT.
Collapse
Affiliation(s)
- Aiman A. Ammari
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Muath G. ALghadi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ahmad R. ALhimaidi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ramzi A. Amran
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Yuan HJ, Han X, Wang GL, Wu JS, He N, Zhang J, Kong QQ, Gong S, Luo MJ, Tan JH. Glucocorticoid Exposure of Preimplantation Embryos Increases Offspring Anxiety-Like Behavior by Upregulating miR-211-5p via Trpm1 Demethylation. Front Cell Dev Biol 2022; 10:874374. [PMID: 35433692 PMCID: PMC9011152 DOI: 10.3389/fcell.2022.874374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Most studies on mechanisms by which prenatal stress affects offspring behavior were conducted during late pregnancy using in vivo models; studies on the effect of preimplantation stress are rare. In vivo models do not allow accurate specification of the roles of different hormones and cells within the complicated living organism, and cannot verify whether hormones act directly on embryos or indirectly to alter progeny behavior. Furthermore, the number of anxiety-related miRNAs identified are limited. This study showed that both mouse embryculture with corticosterone (ECC) and maternal preimplantation restraint stress (PIRS) increased anxiety-like behavior (ALB) while decreasing hippocampal expression of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) in offspring. ECC/PIRS downregulated GR and BDNF expression by increasing miR-211-5p expression via promoter demethylation of its host gene Trpm1, and this epigenetic cell fate determination was exclusively perpetuated during development into mature hippocampus. Transfection with miR-211-5p mimic/inhibitor in cultured hippocampal cell lines confirmed that miR-211-5p downregulated Gr and Bdnf. Intrahippocampal injection of miR-211-5p agomir/antagomir validated that miR-211-5p dose-dependently increased ALB while decreasing hippocampal GR/BDNF expression. In conclusion, preimplantation exposure to glucocorticoids increased ALB by upregulating miR-211-5p via Trpm1 demethylation, and miR-211-5p may be used as therapeutic targets and biomarkers for anxiety-related diseases.
Collapse
|
5
|
Malpotra S, Goel P, Shyam S, Singh MK, Palta P. Global DNA methylation profiles of buffalo (Bubalus bubalis) preimplantation embryos produced by handmade cloning and in vitro fertilization. Sci Rep 2022; 12:5161. [PMID: 35338228 PMCID: PMC8956680 DOI: 10.1038/s41598-022-09207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Somatic cell nuclear transfer technique (SCNT) has proved to be an outstanding method of multiplication of elite animals but accompanied with low efficiency and live birth rate of cloned animals. Epigenetic alterations of DNA has been one of the culprits behind this issue. Cloned embryos are found to deviate slightly from regular pattern of demethylation and re-methylation at the time of nuclear reprogramming and embryonic development when compared with embryos produced by in vitro fertilization (IVF). Thus, the present study was aimed at evaluating global DNA methylation profiles of cloned embryos at 2-cell, 8-cell and blastocyst stages and compare it with corresponding stages of embryos produced by IVF by using MeDIP-Sequencing on Illumina-based platform. We found out that cloned embryos exhibited significantly different DNA methylation pattern as compared to IVF embryos with respect to distribution of differentially methylated regions in different components of genome, CpG islands distribution and methylation status, gene ontological profiles and pathways affected throughout the developmental stages. The data generated from MeDIP-Seq was validated at blastocyst stage cloned and IVF embryos by bisulfite-sequencing PCR on five randomly selected gene regions.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India.
| | - Pallavi Goel
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Songyukta Shyam
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| |
Collapse
|
6
|
Malpotra S, Singh MK, Palta P. MeDIP-sequencing for profiling global DNA methylation in buffalo embryos produced by in vitro fertilization. Anim Biotechnol 2021:1-17. [PMID: 34612161 DOI: 10.1080/10495398.2021.1981356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Assisted reproductive technique like in vitro fertilization has contributed immensely in producing genetically improved livestock. Production of embryos under in vitro conditions can affect global DNA methylation pattern during the course of embryonic development. The present study is aimed at the generation and comparison of global DNA methylome of embryos at 2-cell, 8-cell and blastocyst stage of buffalo embryos produced by in vitro fertilization using MeDIP-Sequencing. It is observed that there is a profound difference in the global DNA methylation profile of IVF embryos at different developmental stages. These differences are manifested throughout the course of embryonic development. Pathways like Wnt signaling pathway, gonadotropin-releasing hormone receptor pathway and integrin signaling were found to be majorly affected by hypermethylation of DNA in IVF embryos throughout the development.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| |
Collapse
|
7
|
Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 2020; 11:5972. [PMID: 33235224 PMCID: PMC7686362 DOI: 10.1038/s41467-020-19603-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA demethylation is a unique feature of mammalian development and naïve pluripotent stem cells. Here, we describe a recently evolved pathway in which global hypomethylation is achieved by the coupling of active and passive demethylation. TET activity is required, albeit indirectly, for global demethylation, which mostly occurs at sites devoid of TET binding. Instead, TET-mediated active demethylation is locus-specific and necessary for activating a subset of genes, including the naïve pluripotency and germline marker Dppa3 (Stella, Pgc7). DPPA3 in turn drives large-scale passive demethylation by directly binding and displacing UHRF1 from chromatin, thereby inhibiting maintenance DNA methylation. Although unique to mammals, we show that DPPA3 alone is capable of inducing global DNA demethylation in non-mammalian species (Xenopus and medaka) despite their evolutionary divergence from mammals more than 300 million years ago. Our findings suggest that the evolution of Dppa3 facilitated the emergence of global DNA demethylation in mammals.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Joel Ryan
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Merve Yiğit
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ivo M Glück
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carina Trummer
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Weihua Qin
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska R Traube
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London, UK
| | - Aishwarya Acharya
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Paul Stolz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Ziegenhain
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
8
|
Zhang M, Liu L, Cao X, Liu Y, Di J, Huang X, Sun F, Huang W, Xu F. Efficiently accumulating germ-like stem cells from mouse postnatal ovary by in situ tissue culture. Dev Growth Differ 2020; 62:223-231. [PMID: 32189336 DOI: 10.1111/dgd.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/27/2022]
Abstract
Although recent studies have revealed that germline stem cells (GSCs) exist in the mouse postnatal ovary, how to efficiently obtain GSCs for regenerating neo-oogenesis is still a technical challenge. Here, we report that using in situ tissue culture we can efficiently accumulate large amounts of proliferating germ-like cells from mouse postnatal ovaries. Usually, more than 10,000 germ-like cells can be derived from one ovary by this method, and over 20% of these cells can grow into germ-like cells with self-renewal, which thus can serve as a good cell pool to isolate GSCs by other cell assorting methods such as FACS. This method is simple and time-saving, which should be useful for in future studies on mouse GSCs.
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xiuying Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangzhen Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weihong Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
9
|
Cao H, Li J, Su W, Li J, Wang Z, Sun S, Tian S, Li L, Wang H, Li J, Fang X, Wei Q, Liu C. Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos. Reprod Fertil Dev 2019; 31:357-365. [PMID: 30196805 DOI: 10.1071/rd17357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/14/2018] [Indexed: 01/23/2023] Open
Abstract
Aberrant DNA methylation reduces the developmental competence of mammalian somatic cell nuclear transfer (SCNT) embryos. Thus, hypomethylation-associated drugs are beneficial for improving reprogramming efficiency. Therefore, in the present study we investigated the effect of zebularine, a relatively novel DNA methyltransferase inhibitor, on the developmental potential of ovine SCNT embryos. First, reduced overall DNA methylation patterns and gene-specific DNA methylation levels at the promoter regions of pluripotency genes (octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog) were found in zebularine-treated cumulus cells. In addition, the DNA methylation levels in SCNT embryos derived from zebularine-treated cumulus cells were significantly reduced at the 2-, 4-, 8-cell, and blastocyst stages compared with their corresponding controls (P<0.05). The blastocyst rate was significantly improved in SCNT embryos reconstructed by the cumulus donor cells treated with 5nM zebularine for 12h compared with the control group (25.4±1.6 vs 11.8±1.7%, P<0.05). Moreover, the abundance of Oct4 and Sox2 mRNA was significantly increased during the preimplantation stages after zebularine treatment (P<0.05). In conclusion, the results indicate that, in an ovine model, zebularine decreases overall DNA methylation levels in donor cumulus cells and reconstructed embryos, downregulates the DNA methylation profile in the promoter region of pluripotency genes in donor cells and ultimately elevates the expression of pluripotency genes in the reconstructed embryos, which can lead to improved development of SCNT embryos.
Collapse
Affiliation(s)
- Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jun Li
- Department of Reproductive Medicine,The First Hospital of Hebei Medical University, NO.89 Donggang Road, Yuhua District, Shijiazhuang 050031, PR China
| | - Wenlong Su
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Lu Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Hanyang Wang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Jiexin Li
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University , No. 2596 Lekai South Street, Lianchi District, Baoding 071000, PR China
| |
Collapse
|
10
|
Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 2018; 145:145/4/dev158261. [DOI: 10.1242/dev.158261] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanpeng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kezhen Yao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanli An
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Jeon Y, Nam YH, Cheong SA, Kwak SS, Lee E, Hyun SH. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure. J Reprod Dev 2016; 62:345-50. [PMID: 27064112 PMCID: PMC5004789 DOI: 10.1262/jrd.2015-175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.
Collapse
Affiliation(s)
- Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
14
|
Dobbs KB, Rodriguez M, Sudano MJ, Ortega MS, Hansen PJ. Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One 2013; 8:e66230. [PMID: 23799080 PMCID: PMC3683128 DOI: 10.1371/journal.pone.0066230] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6–8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6–8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation.
Collapse
Affiliation(s)
- Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | | | | | | | | |
Collapse
|
15
|
Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics 2012; 7:976-81. [PMID: 22895114 DOI: 10.4161/epi.21615] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.
Collapse
Affiliation(s)
- Yanina S Bogliotti
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
16
|
Methylation characteristics and developmental potential of Guangxi Bama minipig (Sus scrofa domestica) cloned embryos from donor cells treated with trichostatin A and 5-aza-2'-deoxycytidine. ZYGOTE 2012; 21:178-86. [PMID: 22355002 DOI: 10.1017/s0967199411000797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary Reprogramming of DNA methylation in somatic cell nuclear transfer (SCNT) embryos is incomplete, and aberrant DNA methylation patterns are related to the inefficiency of SCNT. To facilitate nuclear reprogramming, this study investigated the effect of treating Guangxi Bama minipig donor cells with trichostatin A (TSA), 5-aza-2'-deoxycytine (5-aza-dC), or combination of TSA and 5-aza-dC prior to nuclear transfer. Analyses showed that there were no major changes in cell-cycle status among all groups. We monitored the transcription of DNMT1, DNMT3a, HDAC1 and IGF2 genes in donor cells. Transcription levels of HDAC1 were decreased significantly after treatment with a combination of TSA and 5-aza-dC, along with a significantly increased level of IGF2 (P < 0.05). Although treatment of donor cells with either TSA or 5-aza-dC alone resulted in non-significant effects in blastocyst formation rate and DNA methylation levels, a combination of TSA and 5-aza-dC significantly improved the development rates of minipig SCNT embryos to blastocyst (25.6% vs. 16.0%, P < 0.05). This change was accompanied by decreased levels of DNA methylation in somatic cells and blastocyst (P < 0.05). Thus in combination with TSA, lower concentrations of 5-aza-dC may produce a potent demethylating activity, and lead to the significantly enhanced blastocyst development percentage of Bama minipig SCNT embryos.
Collapse
|
17
|
Abstract
DNA methylation is an epigenetic form of gene regulation that is universally important throughout the life course, especially during in utero and postnatal development. DNA methylation aids in cell cycle regulation and cellular differentiation processes. Previous studies have demonstrated that DNA methylation profiles may be altered by diet and the environment, and that these profiles are especially vulnerable during development. Thus, it is important to understand the role of DNA methylation in developmental governance and subsequent disease progression. A variety of molecular methods exist to assay for global, gene-specific, and epigenome-wide methylation. Here we describe these methods and discuss their relative strengths and limitations.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
18
|
Ju S, Rui R. Effects of cumulus cells on in vitro maturation of oocytes and development of cloned embryos in the pig. Reprod Domest Anim 2011; 47:521-9. [PMID: 22017764 DOI: 10.1111/j.1439-0531.2011.01912.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the role of porcine cumulus cells (CC) in oocyte maturation and somatic cell nuclear transfer (SCNT) embryo development in vitro. Denuded pig oocytes were co-cultured with CC or routinely cultured in maturation medium without a feeder layer. Porcine CC inactivated with mitomycin C or non-inactivated were used for the feeder layer in co-culture with porcine SCNT embryos to investigate comparatively the developmental competence of cloned embryos. The DNA damage aspects of apoptosis and expression pattern of genes implicated in apoptosis (Fas/FasL) as well as the mRNA expression of DNA methyltransferase (Dnmt1, Dnmt3a) of porcine SCNT embryos were also evaluated by comet assay or real-time RT-PCR, respectively. The results showed that co-culture with CC improved the extrusion rate of pbI (49.3% vs 31.5%, p<0.05) and survival rate (75.7% vs 53.3%, p<0.05) of denuded oocytes, but had no effects on blastocyst developmental rate or 2-cell-stage survival rate of in vitro fertilization embryos. Co-culture with CC inactivated by mitomycin C improved the blastocyst developmental rate (26.6% vs 13.0%, p<0.05) and decreased the apoptotic incidence (27.6% vs 46.2%, p<0.05) of porcine cloned embryos. Co-culture with inactivated CC reduced Fas and FasL mRNA expression of cloned embryos at the blastocyst stage compared with NT controls (p<0.05), but there were no differences in Dnmt1 and Dnmt3a mRNA expression among groups. Co-culture with inactivated cumulus cell monolayer significantly increased blastocyst formation and decreased the apoptotic incidence in porcine cloned embryos during in vitro development.
Collapse
Affiliation(s)
- S Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | | |
Collapse
|
19
|
Geng-Sheng C, Yu G, Kun W, Fang-Rong D, Ning L. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle. Dev Growth Differ 2011; 51:585-94. [PMID: 21314675 DOI: 10.1111/j.1440-169x.2009.01120.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.
Collapse
Affiliation(s)
- Cao Geng-Sheng
- Department of Biochemistry and Molecular Biology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
20
|
Lagutina I, Zakhartchenko V, Fulka H, Colleoni S, Wolf E, Fulka J, Lazzari G, Galli C. Formation of nucleoli in interspecies nuclear transfer embryos derived from bovine, porcine, and rabbit oocytes and nuclear donor cells of various species. Reproduction 2011; 141:453-65. [PMID: 21239525 DOI: 10.1530/rep-10-0266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The most successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos has been achieved in closely related species. The analyses of embryonic gene activity in iSCNT embryos of different species combinations have revealed the existence of significant aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). However, there are many studies with successful blastocyst (BL) development of iSCNT embryos derived from donor cells and oocytes of animal species with distant taxonomical relations (inter-family/inter-class) that should indicate proper EGA at least in terms of RNA polymerase I activation, nucleoli formation, and activation of genes engaged in morula and BL formation. We investigated the ability of bovine, porcine, and rabbit oocytes to activate embryonic nucleoli formation in the nuclei of somatic cells of different mammalian species. In iSCNT embryos, nucleoli precursor bodies originate from the oocyte, while most proteins engaged in the formation of mature nucleoli should be transcribed from genes de novo in the donor nucleus at the time of EGA. Thus, the success of nucleoli formation depends on species compatibility of many components of this complex process. We demonstrate that the time and cell stage of nucleoli formation are under the control of recipient ooplasm. Oocytes of the studied species possess different abilities to support nucleoli formation. Formation of nucleoli, which is a complex but small part of the whole process of EGA, is essential but not absolutely sufficient for the development of iSCNT embryos to the morula and BL stages.
Collapse
Affiliation(s)
- Irina Lagutina
- Avantea, Laboratorio di Tecnologie della Riproduzione, Avantea srl., Via Porcellasco 7/f, 26100 Cremona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lagutina I, Fulka H, Brevini TAL, Antonini S, Brunetti D, Colleoni S, Gandolfi F, Lazzari G, Fulka J, Galli C. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction 2010; 140:273-85. [PMID: 20530093 DOI: 10.1530/rep-09-0578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine-pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16-25-cell stage for pig-bovine iSCNT embryos and at the four-cell stage for bovine-pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus-cytoplasm compatibility between these animal species.
Collapse
Affiliation(s)
- Irina Lagutina
- Laboratorio di Tecnologie della Riproduzione, Avantea srl, Via Porcellasco 7/f, Cremona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ju S, Rui R, Lu Q, Lin P, Guo H. Analysis of apoptosis and methyltransferase mRNA expression in porcine cloned embryos cultured in vitro. J Assist Reprod Genet 2010; 27:49-59. [PMID: 20084449 DOI: 10.1007/s10815-009-9378-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/03/2009] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the relationship of porcine somatic cell nuclear transfer (SCNT) embryo developmental competence with embryonic cell apoptosis and DNA methylation. METHODS The apoptotic incidence was examined via comet assay, and the mRNA expression of genes implicated in apoptosis (Bcl-2) and DNA methylation (Dnmt1, Dnmt3a) was determined using real-time RT-PCR. RESULTS Comet assay showed that the SCNT embryos exhibited significantly higher apoptotic rate at 2-cell stage (8.3% versus 2.1%, P<0.05), 16-cell stage (27.3% versus 19.2%, P<0.05) and morula (37.5% versus 26.9, P<0.05) compared with IVF embryos. Compared with IVF embryos, a higher Bcl-2 mRNA expression pattern was observed in SCNT embryos before the 8-cell stage and differed significantly at 2- and 4-cell stages (P<0.05). After the 16-stage, Bcl-2 mRNA expression pattern became significantly lower in SCNT group (P<0.05). The relative expression level of Dnmt1 mRNA showed a higher expression level in oocytes, then sharply decreased and started to increase slightly after the 8-cell (IVF embryos) or 16-cell stage (SCNT embryos). Dnmt1 mRNA expression in IVF embryos appeared to have been lower than that of SCNT group before 16-cell stage embryos, especially at 4- and 8-cell stages (P<0.05). Although a trend for a similar increase of Dnmt3a expression was observed in IVF and SCNT embryos after 8-cell embryos, SCNT group resulted in much higher Dnmt3a mRNA abundance compared with the IVF group, particularly after 16-cell embryos (P<0.05). CONCLUSIONS The results showed that low efficiency of porcine SCNT technology may be associated with either embryonic apoptosis or incomplete reprogramming of donor nuclear caused by abnormal Dnmts mRNA expression.
Collapse
Affiliation(s)
- Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | | | | | | | | |
Collapse
|
23
|
Kuznetsova IS, Noniashvili EM, Gavrilova EV, Dyban AP. Modifications in major satellite methylation in the nucleus of a two-cell mouse embryo with respect to developmental conditions. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Brero A, Hao R, Schieker M, Wierer M, Wolf E, Cremer T, Zakhartchenko V. Reprogramming of active and repressive histone modifications following nuclear transfer with rabbit mesenchymal stem cells and adult fibroblasts. CLONING AND STEM CELLS 2009; 11:319-29. [PMID: 19508112 DOI: 10.1089/clo.2008.0083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Following nuclear transfer (NT) the epigenetic state of a donor nucleus must be reprogrammed to an embryonic one. To evaluate the efficiency of nuclear reprogramming, we monitored the levels of histone H3 di/tri-methylated on lysine 4 (H3K4m2/3), a marker for transcriptionally active/permissive euchromatin, and of histone H3 tri-methylated on lysine 27 (H3K27m3), a modification associated with facultative heterochromatin, in embryos cloned using rabbit mesenchymal stem cells (MSC) and adult fibroblasts (RAF) isolated from the same animals. In vivo fertilized, in vitro cultured embryos served as controls. H3K27m3 was undetectable in all stages of control embryos except for weak staining in a few blastocyst cells. A similar situation was found in all NT embryos irrespective of the type of donor cells used, although both MSC and RAF stained substantially for H3K27m3. H3K4m2/3 levels were very high in one- and two-cell control embryos, but then decreased to reach a minimum at the eight-cell stage, and finally increased again to initial levels at the morula and blastocyst stage. Reprogramming of H3K4m2/3 differed remarkably among the different types NT embryos as well as between NT embryos and control embryos, and was apparently dependent on the type of donor cells. Interestingly, abnormal reprogramming of H3K4m2/3 was observed in NT embryos derived from both MSC and RAF, donor cell types with markedly different proliferation capacity. Our study demonstrates that the repressive chromatin modification, H3K27m3, is faithfully reprogrammed in NT embryos derived from MSC or RAF, while reprogramming of the activating chromatin modification, H3K4m2/3, is quite variable and does not reflect the situation observed in control embryos derived by fertilization.
Collapse
Affiliation(s)
- Alessandro Brero
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, LMU Munich , Oberschleissheim, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lindeman LC, Vogt-Kielland LT, Aleström P, Collas P. Fish'n ChIPs: chromatin immunoprecipitation in the zebrafish embryo. Methods Mol Biol 2009; 567:75-86. [PMID: 19588086 DOI: 10.1007/978-1-60327-414-2_5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromatin immunoprecipitation (ChIP) is arguably the assay of choice to determine the genomic localization of DNA- or chromatin-binding proteins, including post-translationally modified histones, in cells. The increasing importance of the zebrafish, Danio rerio, as a model organism in functional genomics has recently sparked investigations of ChIP-based genome-scale mapping of modified histones on promoters, and studies on the role of specific transcription factors in developmental processes. ChIP assays used in these studies are cumbersome and conventionally require relatively large number of embryos. To simplify the procedure and to be able to apply the ChIP assay to reduced number of embryos, we re-evaluated the protocol for preparation of embryonic chromatin destined to ChIP. We found that manual homogenization of embryos rather than protease treatment to remove the chorion enhances ChIP efficiency and quickens the assay. We also incorporated key steps from a recently published ChIP assay for small cell numbers. We report here a protocol for immunoprecipitation of modified histones from mid-term blastula zebrafish embryos.
Collapse
Affiliation(s)
- Leif C Lindeman
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
26
|
Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 2008; 1:8. [PMID: 19014417 PMCID: PMC2590599 DOI: 10.1186/1756-8935-1-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/03/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In mammals the parental genomes are epigenetically reprogrammed after fertilization. This reprogramming includes a rapid demethylation of the paternal (sperm-derived) chromosomes prior to DNA replication in zygotes. Such active DNA demethylation in the zygote has been documented for several mammalian species, including mouse, rat, pig, human and cow, but questioned to occur in rabbit. RESULTS When comparing immunohistochemical patterns of antibodies against 5-methyl-cytosine, H3K4me3 and H3K9me2 modifications we observe similar pronuclear distribution and dynamics in mouse, bovine and rabbit zygotes. In rabbit DNA demethylation of the paternal chromosomes occurs at slightly advanced pronuclear stages. We also show that the rabbit oocyte rapidly demethylates DNA of donor fibroblast after nuclear transfer. CONCLUSION Our data reveal that major events of epigenetic reprogramming during pronuclear maturation, including mechanisms of active DNA demethylation, are apparently conserved among mammalian species.
Collapse
Affiliation(s)
- Konstantin Lepikhov
- University of Saarland, Natural Sciences - Technical Faculty III, Biological Sciences, Genetics/Epigenetics, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Liang X, Zhu J, Wei L, Hou Y, Chen DY, Sun QY. Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones. J Genet Genomics 2008; 35:559-68. [DOI: 10.1016/s1673-8527(08)60076-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 11/24/2022]
|
28
|
Liu L, Hou J, Lei T, Bai J, Guan H, An X. Aberrant DNA methylation in cloned ovine embryos. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0130-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Liu JH, Yin S, Xiong B, Hou Y, Chen DY, Sun QY. Aberrant DNA methylation imprints in aborted bovine clones. Mol Reprod Dev 2008; 75:598-607. [PMID: 17886268 DOI: 10.1002/mrd.20803] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomic imprinting plays a very important role during development and its abnormality may heavily undermine the developmental potential of bovine embryos. Because of limited resources of the cow genome, bovine genomic imprinting, both in normal development and in somatic cell nuclear transfer (SCNT) cloning, is not well documented. DNA methylation is thought to be a major factor for the establishment of genomic imprinting. In our study, we determined the methylation status of differential methylated regions (DMRs) of four imprinted genes in four spontaneously aborted SCNT-cloned fetuses (AF). Firstly, abnormal methylation imprints were observed in each individual to different extents. In particular, Peg3 and MAOA were either seriously demethylated or showed aberrant methylation patterns in four aborted clones we tested, but Xist and Peg10 exhibited relatively better maintained methylation status in AF1 and AF4. Secondly, two aborted fetuses, AF2 and AF3 exhibited severe aberrant methylation imprints of four imprinted genes. Finally, MAOA showed strong heterogeneous methylation patterns of its DMR in normal somatic adult tissue, but largely variable methylation levels and relatively homogeneous methylation patterns in aborted cloned fetuses. Our data indicate that the aborted cloned fetuses exhibited abnormal methylation imprints, to different extent, in aborted clones, which partially account for the higher abortion and developmental abnormalities during bovine cloning.
Collapse
Affiliation(s)
- Jing-He Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Fulka H, St John JC, Fulka J, Hozák P. Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 2007; 76:3-14. [PMID: 18093226 DOI: 10.1111/j.1432-0436.2007.00247.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gametes of both sexes (sperm and oocyte) are highly specialized and differentiated but within a very short time period post-fertilization the embryonic genome, produced by the combination of the two highly specialized parental genomes, is completely converted into a totipotent state. As a result, the one-cell-stage embryo can give rise to all cell types of all three embryonic layers, including the gametes. Thus, it is evident that extensive and efficient reprogramming steps occur soon after fertilization and also probably during early embryogenesis to reverse completely the differentiated state of the gamete and to achieve toti- or later on pluripotency of embryonic cells. However, after the embryo reaches the blastocyst stage, the first two distinct cell lineages can be clearly distinguished--the trophectoderm and the inner cells mass. The de-differentiation of gametes after fertilization, as well as the differentiation that is associated with the formation of blastocysts, are accompanied by changes in the state and properties of chromatin in individual embryonic nuclei at both the whole genome level as well as at the level of individual genes. In this contribution, we focus mainly on those events that take place soon after fertilization and during early embryogenesis in mammals. We will discuss the changes in DNA methylation and covalent histone modifications that were shown to be highly dynamic during this period; moreover, it has also been documented that abnormalities in these processes have a devastating impact on the developmental ability of embryos. Special attention will be paid to somatic cell nuclear transfer as it has been shown that the aberrant and inefficient reprogramming may be responsible for compromised development of cloned embryos.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Animal Science, Prátelství 815, 104 00 Prague 10, Czech Republic
| | | | | | | |
Collapse
|
31
|
Cho SJ, Yin XJ, Choi E, Lee HS, Bae I, Han HS, Yee ST, Kim NH, Kong IK. DNA Methylation Status in Somatic and Placenta Cells of Cloned Cats. CLONING AND STEM CELLS 2007; 9:477-84. [DOI: 10.1089/clo.2007.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Su-Jin Cho
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Xi-Jun Yin
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Eugene Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Hyo-Sang Lee
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Inhyu Bae
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Hyo-Sim Han
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 540-742, S. Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, S. Korea
| | - Il-Keun Kong
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| |
Collapse
|
32
|
Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev 2007; 74:1255-61. [PMID: 17290422 DOI: 10.1002/mrd.20704] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Virtually all mammalian species including mouse, rat, pig, cow, and human, but not sheep and rabbit, undergo genome-wide epigenetic reprogramming by demethylation of the male pronucleus in early preimplantation development. In this study, we have investigated and compared the dynamics of DNA demethylation in preimplantation mouse and rat embryos by immunofluorescence staining with an antibody against 5-methylcytosine. We performed for the first time a detailed analysis of demethylation kinetics of early rat preimplantation embryos and have shown that active demethylation of the male pronucleus in rat zygotes proceeds with a slower kinetic than that in mouse embryos. Using dated mating we found that equally methylated male and female pronuclei were observed at 3 hr after copulation for mouse and 6 hr for rat embryos. However, a difference in methylation levels between male and female pronuclei could be observed already at 8 hr after copulation in mouse and 10 hr in rat. At 10 hr after copulation, mouse male pronuclei were completely demethylated, whereas rat zygotes at 16 hr after copulation still exhibited detectable methylation of the male pronucleus. In addition in both species, a higher DNA methylation level was found in embryos developed in vitro compared to in vivo, which may be one of the possible reasons for the described aberrations in embryonic gene expression after in vitro embryo manipulation and culture.
Collapse
Affiliation(s)
- Ioulia Zaitseva
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
33
|
Csepregi A, Röcken C, Hoffmann J, Gu P, Saliger S, Müller O, Schneider-Stock R, Kutzner N, Roessner A, Malfertheiner P, Ebert MPA. APC promoter methylation and protein expression in hepatocellular carcinoma. J Cancer Res Clin Oncol 2007; 15:1415-28. [PMID: 20629990 PMCID: PMC4373337 DOI: 10.1111/j.1582-4934.2010.01124.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We investigated the impact of promoter methylation on APC protein expression in patients with hepatocellular carcinoma (HCC). MATERIALS AND METHODS 50 patients [HCC (n=19), liver metastasis (n=19), cholangiocellular cancer (n=7), and benign liver tumors (n=5)] were studied for methylation using Methylight analysis. APC mutation was investigated by protein truncation test and direct sequencing of genomic DNA. The protein expression was evaluated by immunohistochemistry and Western blot analysis. RESULTS The APC promoter was hypermethylated in 81.8% of non-cancerous liver tissue samples. All HCC samples and ten patients with liver metastasis (52.6%) exhibited APC promoter methylation. The degree of methylation was significantly higher in samples from HCC compared to the non-cancerous liver tissue samples (63.1% vs. 24.98%; p=0.001). The level of APC protein expression was significantly reduced in HCC samples compared to that of the corresponding non-tumor liver tissue (p<0.05). CONCLUSIONS Promoter methylation of the APC gene seems to be of significance in hepatocarcinogenesis and results in reduced protein expression in HCC. Interestingly, APC promoter methylation is also present in the vast majority of non-cancerous liver tissue whose (patho)physiological function remains unresolved.
Collapse
Affiliation(s)
- Antal Csepregi
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thurston A, Lucas ES, Allegrucci C, Steele W, Young LE. Region-specific DNA methylation in the preimplantation embryo as a target for genomic plasticity. Theriogenology 2007; 68 Suppl 1:S98-106. [PMID: 17482250 DOI: 10.1016/j.theriogenology.2007.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been long known that the unique genetic sequence each embryo inherits is not the sole determinant of phenotype. However, only recently have epigenetic modifications to DNA been implicated in providing potential developmental plasticity to the embryonic and fetal genome, with environmental influences directly altering the epigenetic modifications that contribute to tissue-specific gene regulation. Most is known about the potential environmental regulation of DNA methylation, epigenetic addition of methyl groups to cytosine residues in DNA that acts in the long-term silencing of affected sequences. While most attention has been paid to the methylation of imprinted gene sequences, in terms of developmental plasticity there are many more parts of the genome that are methylated and that could be affected. This review explores the distribution of cytosine methylation in the genome and discusses the potential effects of regional plasticity on subsequent development. Widening our consideration of potentially plastic regions is likely to greatly enhance our understanding of how individuals are shaped not only by DNA sequence, but by the environment in which pluripotent embryonic cells are transformed into the many cell types of the body.
Collapse
Affiliation(s)
- A Thurston
- Wolfson Centre for Stem cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
35
|
Hou J, Liu L, Lei T, Cui X, An X, Chen Y. Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. ACTA ACUST UNITED AC 2007; 50:56-61. [PMID: 17393083 DOI: 10.1007/s11427-007-0003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 04/25/2006] [Indexed: 11/29/2022]
Abstract
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplantation embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methylation level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos.
Collapse
Affiliation(s)
- Jian Hou
- State Key Laboratory for Agrobiotechnology and Department of Animal Physiology, College of Biological Science, China Agricultural University, Beijing, 100094, China
| | | | | | | | | | | |
Collapse
|
36
|
Arányi T, Páldi A. The constant variation: DNA methylation changes during preimplantation development. FEBS Lett 2006; 580:6521-6. [PMID: 17134704 DOI: 10.1016/j.febslet.2006.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/30/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Studies on the DNA methylation changes in the mouse preimplantation embryo suggested a simple and attractive model explaining the process believed to be general in mammals. However, recent reports revealed marked differences between different species that abrogates the universal validity of the model. In order to find an explanation to the differences, we have analyzed the published mouse data and compared them to the observations available in other species. The emerging common theme is the high variability of the methylation at all scales of observation and all levels of organization. This variability is the likely consequence of a dynamic and active redistribution process of the cytosine methylation in the genome.
Collapse
Affiliation(s)
- Tamás Arányi
- Institute of Enzymology, Hungarian Academy of Sciences, Karolina ut 29, 1113 Budapest, Hungary.
| | | |
Collapse
|
37
|
Chen T, Zhang YL, Jiang Y, Liu JH, Schatten H, Chen DY, Sun QY. Interspecies nuclear transfer reveals that demethylation of specific repetitive sequences is determined by recipient ooplasm but not by donor intrinsic property in cloned embryos. Mol Reprod Dev 2006; 73:313-7. [PMID: 16362970 DOI: 10.1002/mrd.20421] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA methylation/demethylation of donor genomes in recipient ooplasm after nuclear transfer occurs in a species-specific way. In cloned rabbit and bovine embryos, repetitive sequences maintain the donor-type methylation status, but typical demethylation of repetitive sequences takes place in cloned porcine embryos. To clarify whether the demethylation is controlled by donor nucleus intrinsic property or by recipient ooplasm, we used interspecies somatic cell nuclear transfer (iSCNT) model to examine the methylation status of repetitive sequences in pig-to-rabbit and rabbit-to-pig interspecies embryos. We found that no demethylation of pig repetitive sequences was observed in pig-to-rabbit iSCNT embryos, while the examined rabbit repetitive sequence Rsat IIE was demethylated in rabbit-to-pig iSCNT embryos. These results indicate that demethylation of donor repetitive sequences is determined by ooplasm but not by donor intrinsic property and that ooplasm from different species have different capabilities to demethylate genes.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, and Graduate School, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
38
|
El-Maarri O, Slim R. Familial hydatidiform molar pregnancy: the germline imprinting defect hypothesis? Curr Top Microbiol Immunol 2006; 301:229-41. [PMID: 16570850 DOI: 10.1007/3-540-31390-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imprinting is the uniparental expression of a set of genes. Somatic cells carry two haploid sets of chromosomes, one maternal and one paternal, while germ cells contain only one of the two forms of chromosomes, male or female. This implies that during early embryogenesis the cells committed for developing the future germ cell lineage, the primordial germ cells, which are diploid, have to undergo a total chromosome reprogramming process. This process is delicately controlled during gametogenesis to ensure that males and females have only their respective form of gametes. The machinery involved in this process is yet poorly defined. Familial hydatidiform molar (HM) pregnancy is an abnormal form of pregnancy characterized by hydropic degeneration of placental villi and abnormal, or absence of, embryonic development. To date, the molecular defect causing this condition is unknown. However, in a few studied cases, the presence of paternal methylation patterns on the maternal chromosomes was observed. In this chapter, we summarize what is known about methylation aberrations in HMs and examine more closely the proposed hypothesis of a maternal germline imprinting defect.
Collapse
Affiliation(s)
- O El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, Bonn, Germany.
| | | |
Collapse
|
39
|
Fulka J, Fulka H, Slavik T, Okada K, Fulka J. DNA methylation pattern in pig in vivo produced embryos. Histochem Cell Biol 2006; 126:213-7. [PMID: 16435122 DOI: 10.1007/s00418-006-0153-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2006] [Indexed: 10/25/2022]
Abstract
DNA methylation/demethylation pattern, determined by 5-methylcytosine (5-MeC) immunostaining, was evaluated in porcine "in vivo" produced embryos from zygote up to the blastocyst stage. In one-cell stage embryos, only the maternal pronucleus showed a positive labeling whilst the paternal pronucleus showed almost no labeling. The intensity of labeling is high until the late morula stage. Blastocysts containing less than 100 cells showed the same intensity of labeling in both the inner cell mass (ICM) nuclei and the trophectodermal (TE) cell nuclei. Interestingly, with further cell multiplication, cells of the ICM became more intensively labeled when compared to TE cells. This distinct methylation pattern is even more profound in blastocysts containing about 200-300 cells and is not caused by the difference in the cell volume of ICM and TE cells.
Collapse
Affiliation(s)
- Josef Fulka
- Center for Cell Therapy and Tissue Repair, IAPG Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Zhang YL, Chen T, Jiang Y, Zhong ZS, Liu SZ, Hou Y, Schatten H, Chen DY, Sun QY. Active demethylation of individual genes in intracytoplasmic sperm injection rabbit embryos. Mol Reprod Dev 2005; 72:530-3. [PMID: 16161163 DOI: 10.1002/mrd.20339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracytoplasmic sperm injection (ICSI), as an assisted reproduction technique, has been widely used in animal and human. However, its possible effect on epigenetic changes has not been well studied. To investigate whether ICSI can induce aberrant DNA methylation changes in rabbit preimplantation embryos, we examined the methylation status of the SP-A promoter region and the satellite sequence Rsat IIE by bisulfite-sequencing technology. The SP-A promoter region was extensively demethylated before the first round of DNA replication commences, and the unmethylated status was maintained until morula when dynamic remethylation occurred. A similar but more moderate demethylation process was observed in satellite sequence Rsat IIE. These results are in contrast with the previous reports of no active demethylation in normal rabbit embryos, suggesting that the active demethylation we observed may be induced by ICSI.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schatten H, Prather RS, Sun QY. The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion 2005; 5:303-21. [PMID: 16150655 DOI: 10.1016/j.mito.2005.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/17/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
The role of mitochondria in remodeling of the donor cell nucleus in cloned animals has gained increased attention, as mitochondria interact in direct or indirect ways with the donor cell nuclear DNA. Mitochondria comprise 1% of the genetic material that is contributed to the developing embryo by the recipient oocyte and provide the energy that is required for embryo development. In this review we compare mitochondria distribution in various species and the importance of mitochondria distribution for embryo development. We also compare the inheritance pattern of mitochondria in cloned embryos that remains unresolved, as the donor cell nucleus is typically transferred with surrounding cytoplasm including mitochondria which become destroyed in some but not all species. We review the role of mitochondria in cloned farm animals with emphasis on nucleo-cytoplasmic interactions and consequences for embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri-Columbia, 1600 E. Rollins Street, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
42
|
Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. ACTA ACUST UNITED AC 2005; 75:98-111. [PMID: 16035040 DOI: 10.1002/bdrc.20037] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of the cytosine base of DNA by its methylation introduced the possibility that beyond the inherent information contained within the nucleotide sequence there was an additional layer of information added to the underlying genetic code. DNA methylation has been implicated in a wide range of biological functions, including an essential developmental role in the reprogramming of germ cells and early embryos, the repression of endogenous retrotransposons, and a generalized role in gene expression. Special functions of DNA methylation include the marking of one of the parental alleles of many imprinted genes, a group of genes essential for growth and development in mammals with a unique parent-of-origin expression pattern, a role in stabilizing X-chromosome inactivation, and centromere function. In this regard, it is not surprising that errors in establishing or maintaining patterns of methylation are associated with a diverse group of human diseases and syndromes.
Collapse
Affiliation(s)
- Wendy Dean
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
43
|
Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 Spec No 1:R47-58. [PMID: 15809273 DOI: 10.1093/hmg/ddi114] [Citation(s) in RCA: 878] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic marking systems confer stability of gene expression during mammalian development. Genome-wide epigenetic reprogramming occurs at stages when developmental potency of cells changes. At fertilization, the paternal genome exchanges protamines for histones, undergoes DNA demethylation, and acquires histone modifications, whereas the maternal genome appears epigenetically more static. During preimplantation development, there is passive DNA demethylation and further reorganization of histone modifications. In blastocysts, embryonic and extraembryonic lineages first show different epigenetic marks. This epigenetic reprogramming is likely to be needed for totipotency, correct initiation of embryonic gene expression, and early lineage development in the embryo. Comparative work demonstrates reprogramming in all mammalian species analysed, but the extent and timing varies, consistent with notable differences between species during preimplantation development. Parental imprinting marks originate in sperm and oocytes and are generally protected from this genome-wide reprogramming. Early primordial germ cells possess imprinting marks similar to those of somatic cells. However, rapid DNA demethylation after midgestation erases these parental imprints, in preparation for sex-specific de novo methylation during gametogenesis. Aberrant reprogramming of somatic epigenetic marks after somatic cell nuclear transfer leads to epigenetic defects in cloned embryos and stem cells. Links between epigenetic marking systems appear to be developmentally regulated contributing to plasticity. A number of activities that confer epigenetic marks are firmly established, while for those that remove marks, particularly methylation, some interesting candidates have emerged recently which need thorough testing in vivo. A mechanistic understanding of reprogramming will be crucial for medical applications of stem cell technology.
Collapse
Affiliation(s)
- Hugh D Morgan
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|