1
|
Liang K, Zhan X, Li Y, Yang Y, Xie Y, Jin Z, Xu X, Zhang W, Lu Y, Zhang S, Zou Y, Feng S, Wu J, Yan Z. Conservation and specialization of the Ycf2-FtsHi chloroplast protein import motor in green algae. Cell 2024; 187:5638-5650.e18. [PMID: 39197449 DOI: 10.1016/j.cell.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The protein import motor in chloroplasts plays a pivotal role in their biogenesis and homeostasis by driving the translocation of preproteins into chloroplasts. While the Ycf2-FtsHi complex serves as the import motor in land plants, its evolutionary conservation, specialization, and mechanisms across photosynthetic organisms are largely unexplored. Here, we isolated and determined the cryogenic electron microscopy (cryo-EM) structures of the native Ycf2-FtsHi complex from Chlamydomonas reinhardtii, uncovering a complex composed of up to 19 subunits, including multiple green-algae-specific components. The heterohexameric AAA+ ATPase motor module is tilted, potentially facilitating preprotein handover from the translocon at the inner chloroplast membrane (TIC) complex. Preprotein interacts with Ycf2-FtsHi and enhances its ATPase activity in vitro. Integrating Ycf2-FtsHi and translocon at the outer chloroplast membrane (TOC)-TIC supercomplex structures reveals insights into their physical and functional interplay during preprotein translocation. By comparing these findings with those from land plants, our study establishes a structural foundation for understanding the assembly, function, evolutionary conservation, and diversity of chloroplast protein import motors.
Collapse
Affiliation(s)
- Ke Liang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoyan Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wenwen Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yang Lu
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Qi X, Chen X. Chitinase Chi 2 Positively Regulates Cucumber Resistance against Fusarium oxysporum f. sp. cucumerinum. Genes (Basel) 2021; 13:62. [PMID: 35052402 PMCID: PMC8775131 DOI: 10.3390/genes13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
3
|
Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:917-930. [PMID: 29315927 DOI: 10.1111/tpj.13819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 05/21/2023]
Abstract
In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jing Ji
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, Xuan D, Li Z, Yu P, Wu W, Wang K, Cao L, Cheng S. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:1639. [PMID: 29021797 PMCID: PMC5624289 DOI: 10.3389/fpls.2017.01639] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sittipun Sinumporn
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bin Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| |
Collapse
|
5
|
Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lehmemdi A, Mazel J, Crismani W, Mercier R. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet 2015; 11:e1005369. [PMID: 26161528 PMCID: PMC4498898 DOI: 10.1371/journal.pgen.1005369] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/17/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression. Sexually reproducing species produce offspring that are genetically unique from one another, despite having the same parents. This uniqueness is created by meiosis, which is a specialized cell division. After meiosis each parent transmits half of their DNA, but each time this occurs, the 'half portion' of DNA transmitted to offspring is different from the previous. The differences are due to resorting the parental chromosomes, but also recombining them. Here we describe a gene—FIDGETIN-LIKE 1—which limits the amount of recombination that occurs during meiosis. Previously we identified a gene with a similar function, FANCM. FIGL1 and FANCM operate through distinct mechanisms. This discovery will be useful to understand more, from an evolutionary perspective, why recombination is naturally limited. Also this has potentially significant applications for plant breeding which is largely about sampling many 'recombinants' to find individuals that have heritable advantages compared to their parents.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Sandrine Choinard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicolas Macaisne
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lehmemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| |
Collapse
|
6
|
Peng W, Lin Z, Li W, Lu J, Shen Y, Wang C. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein. J Biol Chem 2013; 288:29305-12. [PMID: 23979136 DOI: 10.1074/jbc.m113.502559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.
Collapse
Affiliation(s)
- Wentao Peng
- From the Institute of Protein Research, Tongji University, Shanghai 200092 and
| | | | | | | | | | | |
Collapse
|
7
|
Onitake A, Yamanaka K, Esaki M, Ogura T. Caenorhabditis elegans fidgetin homolog FIGL-1, a nuclear-localized AAA ATPase, binds to SUMO. J Struct Biol 2012; 179:143-51. [PMID: 22575764 DOI: 10.1016/j.jsb.2012.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/27/2012] [Accepted: 04/29/2012] [Indexed: 11/26/2022]
Abstract
Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we identified that the N-terminal PKRVK sequence of FIGL-1 functions as a monopartite nuclear localization signal. Nuclear localization of FIGL-1 is required for its function. We also found that FIGL-1 specifically interacted with SMO-1, a C. elegans homolog of small ubiquitin-like modifier (SUMO), using a yeast two-hybrid assay. Furthermore, the direct physical interaction between FIGL-1 and SMO-1 was demonstrated by pull-down assay using purified proteins as well as immunoprecipitation assay using lysates from epitope-tagged SMO-1-expressing worms. Binding of FIGL-1 to SMO-1 is required for its function. The depletion of FIGL-1 and SMO-1 resulted in developmental defects in C. elegans. Taken altogether, our results indicate that FIGL-1 is a nuclear protein and that in concert with SMO-1, FIGL-1 plays an important role in the regulation of C. elegans development.
Collapse
Affiliation(s)
- Akinobu Onitake
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
8
|
Matsushita-Ishiodori Y, Yamanaka K, Hashimoto H, Esaki M, Ogura T. Conserved aromatic and basic amino acid residues in the pore region ofCaenorhabditis elegansspastin play critical roles in microtubule severing. Genes Cells 2009; 14:925-40. [DOI: 10.1111/j.1365-2443.2009.01320.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Casanova M, Crobu L, Blaineau C, Bourgeois N, Bastien P, Pagès M. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol Microbiol 2009; 71:1353-70. [DOI: 10.1111/j.1365-2958.2009.06594.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Luke-Glaser S, Pintard L, Tyers M, Peter M. The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the C. elegans germ line. J Cell Sci 2007; 120:3179-87. [PMID: 17878235 DOI: 10.1242/jcs.015883] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the AAA-ATPase (ATPases associated with diverse cellular activities) family use the energy from ATP hydrolysis to disrupt protein complexes involved in many cellular processes. Here, we report that FIGL-1 (Fidgetin-like 1), the single Caenorhabditis elegans homolog of mammalian fidgetin and fidgetin-like 1 AAA-ATPases, controls progression through mitosis in the germ line and the early embryo. Loss of figl-1 function leads to the accumulation of mitotic nuclei in the proliferative zone of the germ line, resulting in sterility owing to depletion of germ cells. Like the AAA-ATPase MEI-1 (also known as katanin), FIGL-1 interacts with microtubules and with MEL-26, a specificity factor of CUL-3-based E3 ligases involved in targeting proteins for ubiquitin-dependent degradation by the 26S proteasome. In the germ line, FIGL-1 is enriched in nuclei of mitotic cells, but it disappears at the transition into meiosis. Conversely, MEL-26 expression is low in nuclei of the mitotic zone and induced during meiosis. FIGL-1 accumulates in the germ line and spreads to the meiotic zone after inactivation of mel-26 or cul-3 in vivo. We conclude that degradation of FIGL-1 by the CUL-3MEL-26 E3 ligase spatially restricts FIGL-1 function to mitotic cells, where it is required for correct progression through mitosis.
Collapse
Affiliation(s)
- Sarah Luke-Glaser
- Institute of Biochemistry, HPM G8, ETH Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
11
|
Matsushita-Ishiodori Y, Yamanaka K, Ogura T. The C. elegans homologue of the spastic paraplegia protein, spastin, disassembles microtubules. Biochem Biophys Res Commun 2007; 359:157-62. [PMID: 17531954 DOI: 10.1016/j.bbrc.2007.05.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Mutations in human spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia. Sequence analysis revealed that spastin contains the AAA (ATPases associated with diverse cellular activities) domain in the C-terminal region. Recently, it was reported that spastin interacts dynamically with microtubules and displays microtubule-severing activity. A plausible Caenorhabditis elegans homologue of spastin (SPAS-1) has been identified by homology search and phylogenetic analyses. To understand the function of the spastin homologue, we characterized the spas-1 deletion mutant and analyzed spas-1 expression regulation in C. elegans. SPAS-1 was localized with cytoskeletons at the perinuclear region. We found that microtubules were intensely stained at the centrosomal region in the deletion mutant. Furthermore, overexpression of SPAS-1 caused disassembly of microtubule network in cultured cells, while ATPase-deficient SPAS-1 did not. These results indicate that C. elegans SPAS-1 plays an important role in microtubule dynamics. We also found that two kinds of products were generated from spas-1 by alternative splicing in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Yuka Matsushita-Ishiodori
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
12
|
Yang Y, Mahaffey CL, Bérubé N, Frankel WN. Interaction between fidgetin and protein kinase A-anchoring protein AKAP95 is critical for palatogenesis in the mouse. J Biol Chem 2006; 281:22352-22359. [PMID: 16751186 DOI: 10.1074/jbc.m603626200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene defective in fidget mice encodes fidgetin, a member of the AAA (ATPases associated with diverse cellular activities) family of ATPases. Using a yeast two-hybrid screen, we identified cAMP-dependent protein kinase A anchoring protein 95 kDa (AKAP95) as a potential fidgetin-binding protein. Epitope-tagged fidgetin co-localized with endogenous AKAP95 in the nuclear matrix, and the physical interaction between fidgetin and AKAP95 was further confirmed by reciprocal immunoprecipitation. To evaluate the biological significance of the fidgetin-AKAP95 binding, we created AKAP95 mutant mice through a gene trap strategy. Akap95 mutant mice are surprisingly viable with no overt phenotype. However, a significant number of mice carrying both Akap95 and fidget mutations die soon after birth due to cleft palate, consistent with the overlapping expression of AKAP95 and fidgetin in the branchial arches during mouse embryogenesis. These results expand the spectrum of the pleiotropic phenotypes of fidget mice and provide new leads on the in vivo function of AKAP95.
Collapse
Affiliation(s)
- Yan Yang
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | |
Collapse
|
13
|
Yakushiji Y, Nishikori S, Yamanaka K, Ogura T. Mutational analysis of the functional motifs in the ATPase domain of Caenorhabditis elegans fidgetin homologue FIGL-1: firm evidence for an intersubunit catalysis mechanism of ATP hydrolysis by AAA ATPases. J Struct Biol 2006; 156:93-100. [PMID: 16621600 DOI: 10.1016/j.jsb.2006.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/02/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
The AAA family proteins usually form a hexameric ring structure. The ATP-binding pocket, which is located at the interface of subunits in the hexamer, consists of three functionally important motifs, the Walker A and B motifs, and the second region of homology (SRH). It is well known that Walker A and B motifs mediate ATP binding and hydrolysis, respectively. Highly conserved arginine residues in the SRH have been proposed to function as arginine fingers, which interact with the gamma-phosphate of bound ATP. To elucidate the mechanism of ATP hydrolysis, we prepared several mutants of the Caenorhabditis elegans fidgetin homologue FIGL-1 carrying a mutation in each of the above-mentioned three motifs. None of the constructed mutants showed ATPase activity. All the mutants except for K362A were able to bind ATP. A decrease in the ATPase activity by mixing wild-type and each mutant subunits was caused by the formation of hetero-hexamers. Mixtures of E416A and R471A, or N461A and R471A led to the formation of hetero-hexamers with partially restored ATPase activities, providing direct, firm evidence for the intersubunit catalysis model. In addition, based on the results obtained with mixtures of K362A with wild-type or R471A subunits, we propose that a conformational change upon ATP binding is required for proper orientation of the arginine fingers, which is essential for efficient hydrolysis of ATP bound to the neighboring subunit.
Collapse
Affiliation(s)
- Yasufumi Yakushiji
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|