1
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
4
|
Samyn DR, Van der Veken J, Van Zeebroeck G, Persson BL, Karlsson BCG. Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor: THE ROLE OF TYR179 IN FUNCTIONAL REGULATION. J Biol Chem 2016; 291:26388-26398. [PMID: 27875295 PMCID: PMC5159500 DOI: 10.1074/jbc.m116.738112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Pho84, a major facilitator superfamily (MFS) protein, is the main high-affinity Pi transceptor in Saccharomyces cerevisiae Although transport mechanisms have been suggested for other MFS members, the key residues and molecular events driving transport by Pi:H+ symporters are unclear. The current Pho84 transport model is based on the inward-facing occluded crystal structure of the Pho84 homologue PiPT in the fungus Piriformospora indica However, this model is limited by the lack of experimental data on the regulatory residues for each stage of the transport cycle. In this study, an open, inward-facing conformation of Pho84 was used to study the release of Pi A comparison of this conformation with the model for Pi release in PiPT revealed that Tyr179 in Pho84 (Tyr150 in PiPT) is not part of the Pi binding site. This difference may be due to a lack of detailed information on the Pi release step in PiPT. Molecular dynamics simulations of Pho84 in which a residue adjacent to Tyr179, Asp178, is protonated revealed a conformational change in Pho84 from an open, inward-facing state to an occluded state. Tyr179 then became part of the binding site as was observed in the PiPT crystal structure. The importance of Tyr179 in regulating Pi release was supported by site-directed mutagenesis and transport assays. Using trehalase activity measurements, we demonstrated that the release of Pi is a critical step for transceptor signaling. Our results add to previous studies on PiPT, creating a more complete picture of the proton-coupled Pi transport cycle of a transceptor.
Collapse
Affiliation(s)
- Dieter R Samyn
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Jeroen Van der Veken
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Griet Van Zeebroeck
- the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium, and.,the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium
| | - Bengt L Persson
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Björn C G Karlsson
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden, .,From the Computational Chemistry & Biochemistry Group
| |
Collapse
|
5
|
Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics. Biochem Soc Trans 2016; 44:905-15. [DOI: 10.1042/bst20160024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated.
Collapse
|
6
|
Samyn DR, Persson BL. Inorganic Phosphate and Sulfate Transport in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:253-269. [PMID: 26721277 DOI: 10.1007/978-3-319-25304-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.
Collapse
Affiliation(s)
- D R Samyn
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden.
| | - B L Persson
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden
| |
Collapse
|
7
|
Jost R, Pharmawati M, Lapis-Gaza HR, Rossig C, Berkowitz O, Lambers H, Finnegan PM. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2501-14. [PMID: 25697796 PMCID: PMC4986860 DOI: 10.1093/jxb/erv025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate.
Collapse
Affiliation(s)
- Ricarda Jost
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Made Pharmawati
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Biology Department, Faculty of Mathematics and Natural Sciences, Bukit Jimbaran Campus, Udayana University, Bali, Indonesia
| | - Hazel R Lapis-Gaza
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Claudia Rossig
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Patrick M Finnegan
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| |
Collapse
|
8
|
Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. THE NEW PHYTOLOGIST 2014; 201:1183-1191. [PMID: 24491113 PMCID: PMC4284032 DOI: 10.1111/nph.12596] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
• Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. • ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respiratory inhibitors significantly inhibited selenite uptake in the wildtype and the ltn1 mutant, indicating that selenite uptake was coupled with H(+) and energy-dependent. Selenite uptake was greatly enhanced under Pi-starvation conditions, suggesting that Pi transporters are involved in selenite uptake. • OsPT2, the most abundantly expressed Pi transporter in the roots, is also significantly up-regulated in ltn1 and dramatically induced by Pi starvation. OsPT2-overexpressing and knockdown plants displayed significantly increased and decreased rates of selenite uptake, respectively, suggesting that OsPT2 plays a crucial role in selenite uptake. Se content in rice grains also increased significantly in OsPT2-overexpressing plants. • These data strongly demonstrate that selenite and Pi share similar uptake mechanisms and that OsPT2 is involved in selenite uptake, which provides a potential strategy for breeding Se-enriched rice varieties.
Collapse
Affiliation(s)
- Lianhe Zhang
- Henan University of Science and TechnologyLuoyang, 471003, China
- These authors contributed equally to this work
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- These authors contributed equally to this work
| | - Wei Li
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Ronghui Che
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Kun Deng
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Hua Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Feiyan Yu
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Youjun Li
- Henan University of Science and TechnologyLuoyang, 471003, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| |
Collapse
|
9
|
Mohan S S, Perry JJP, Poulose N, Nair BG, Anilkumar G. Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn 2013; 26:455-64. [PMID: 19108584 DOI: 10.1080/07391102.2009.10507260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
GLUT4 is a 12 transmembrane (TM) protein belonging to the Class I facilitated glucose transporter family that transports glucose into the cells in an insulin regulated manner. GLUT4 plays a key role in the maintenance of blood glucose homeostasis and inhibition of glucose transporter activity may lead to insulin resistance, hallmark of type 2 diabetes. No crystal structure data is available for any members of the facilitated glucose transporter family. Here, in this paper, we have generated a homology model of GLUT4 based on experimental data available on GLUT1, a Class I facilitated glucose transporter and the crystal structure data obtained from the Glycerol 3-phosphate transporter. The model identified regions in GLUT4 that form a channel for the transport of glucose along with the substrate interacting residues. Docking and electrostatic potential data analysis of GLUT4 model has mapped an ATP binding region close to the binding site of cytochalasin B and genistein, two GLUT4 inhibitors, and this may explain the mechanism by which these inhibitors could potentially affect the GLUT4 function.
Collapse
Affiliation(s)
- Suma Mohan S
- School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | | | | | | | | |
Collapse
|
10
|
Mutational analysis of conserved glutamic acids of Pho89, a Saccharomyces cerevisiae high-affinity inorganic phosphate:Na+ symporter. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0118-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J 2012; 445:413-22. [PMID: 22587366 DOI: 10.1042/bj20112086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.
Collapse
|
12
|
Alanine scanning mutagenesis of a high-affinity nitrate transporter highlights the requirement for glycine and asparagine residues in the two nitrate signature motifs. Biochem J 2012; 447:35-42. [DOI: 10.1042/bj20120631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Common to all of the nitrate nitrite porter family are two conserved motifs in transmembrane helices 5 and 11 termed NS (nitrate signature) 1 and NS2. Although perfectly conserved substrate-interacting arginine residues have been described in transmembrane helices 2 and 8, the role of NSs has not been investigated. In the present study, a combination of structural modelling of NrtA (nitrate transporter from Aspergillus nidulans) with alanine scanning mutagenesis of residues within and around the NSs has been used to shed light on the probable role of conserved residues in the NSs. Models show that Asn168 in NS1 and Asn459 in NS2 are positioned approximately midway within the protein at the central pivot point in close proximity to the substrate-binding residues Arg368 and Arg87 respectively, which lie offset from the pivot point towards the cytoplasmic face. The Asn168/Arg368 and Asn459/Arg87 residue pairs are relatively widely separated on opposite sides of the probable substrate translocation pore. The results of the present study demonstrate the critical structural contribution of several glycine residues in each NS at sites of close helix packing. Given the relative locations of Asn168/Arg368 and Asn459/Arg87 pairs, the validity of the models and possible role of the NSs together with the substrate-binding arginine residues are discussed.
Collapse
|
13
|
Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals. G3-GENES GENOMES GENETICS 2012; 2:1003-17. [PMID: 22973537 PMCID: PMC3429914 DOI: 10.1534/g3.112.002808] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals.
Collapse
|
14
|
Basheer S, Samyn D, Hedström M, Thakur MS, Persson BL, Mattiasson B. A membrane protein based biosensor: Use of a phosphate – H+ symporter membrane protein (Pho84) in the sensing of phosphate ions. Biosens Bioelectron 2011; 27:58-63. [DOI: 10.1016/j.bios.2011.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/29/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
15
|
Bergwitz C, Jüppner H. Phosphate sensing. Adv Chronic Kidney Dis 2011; 18:132-44. [PMID: 21406298 PMCID: PMC3059779 DOI: 10.1053/j.ackd.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/07/2023]
Abstract
Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion, and involves the actions of parathyroid hormone, 1,25-dihydroxy-vitamin D, and fibroblast growth factor 23 to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast "sense" ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus, little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism ("metabolic" sensing) or to regulate the levels of extracellular phosphate through feedback system(s) ("endocrine" sensing). Whether the "metabolic" and the "endocrine" sensor use the same or different signal transduction cascades is unknown. This article will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and human beings.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
16
|
Nygaard EB, Lagerstedt JO, Bjerre G, Shi B, Budamagunta M, Poulsen KA, Meinild S, Rigor RR, Voss JC, Cala PM, Pedersen SF. Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J Biol Chem 2010; 286:634-48. [PMID: 20974853 DOI: 10.1074/jbc.m110.159202] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na(+)/H(+) exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716-19727). Here, we present a structural model of the transmembrane part of hNHE1 that further supports this conclusion. The hNHE1 model was based on the crystal structure of the Escherichia coli Na(+)/H(+) antiporter, NhaA, and previous cysteine scanning accessibility studies of hNHE1 and was validated by EPR spectroscopy of spin labels in TM IV and TM XI, as well as by functional analysis of hNHE1 mutants. Removal of all endogenous cysteines in hNHE1, introduction of the mutations A173C (TM IV) and/or I461C (TM XI), and expression of the constructs in mammalian cells resulted in functional hNHE1 proteins. The distance between these spin labels was ∼15 A, confirming that TM IV and TM XI are in close proximity. This distance was decreased both at pH 5.1 and in the presence of the NHE1 inhibitor cariporide. A similar TM IV·TM XI distance and a similar change upon a pH shift were found for the cariporide-insensitive Pleuronectes americanus (pa) NHE1; however, in paNHE1, cariporide had no effect on TM IV·TM XI distance. The central role of the TM IV·TM XI arrangement was confirmed by the partial loss of function upon mutation of Arg(425), which the model predicts stabilizes this arrangement. The data are consistent with a role for TM IV and TM XI rearrangements coincident with ion translocation and inhibitor binding by hNHE1.
Collapse
Affiliation(s)
- Eva B Nygaard
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Pavón L, Karlsson PM, Carlsson J, Samyn D, Persson B, Persson BL, Spetea C. Functionally important amino acids in the Arabidopsis thylakoid phosphate transporter: homology modeling and site-directed mutagenesis. Biochemistry 2010; 49:6430-9. [PMID: 20565143 PMCID: PMC2911078 DOI: 10.1021/bi100239j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na+-dependent active transport of inorganic phosphate (Pi). The aim of this study was to identify amino acid residues involved in Pi binding and translocation by ANTR1 and in the Na+ dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E. coli as a template. Based on this model and multiple sequence alignments, five highly conserved residues in plant ANTRs and mammalian SLC17 homologues have been selected for site-directed mutagenesis, namely, Arg-120, Ser-124, and Arg-201 inside the putative translocation pathway and Arg-228 and Asp-382 exposed at the cytoplasmic surface of the protein. The activities of the wild-type and mutant proteins have been analyzed using expression in E. coli and radioactive Pi transport assays and compared with bacterial cells carrying an empty plasmid. The results from Pi- and Na+-dependent kinetics indicate the following: (i) Arg-120 and Arg-201 may be important for binding and translocation of the substrate; (ii) Ser-124 may function as a transient binding site for Na+ ions in close proximity to the periplasmic side; (iii) Arg-228 and Asp-382 may participate in interactions associated with protein conformational changes required for full transport activity. Functional characterization of ANTR1 should provide useful insights into the function of other plant and mammalian SLC17 homologous transporters.
Collapse
Affiliation(s)
- Lorena Ruiz-Pavón
- Division of Molecular Genetics, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Amit R. Reddi
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Laran T. Jensen
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Valeria C. Culotta
- To whom correspondence should be addressed. . Phone: (410) 955-4712. Fax: (410) 955-0116
| |
Collapse
|
19
|
Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:798-809. [PMID: 18980647 DOI: 10.1111/j.1365-313x.2008.03726.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant phosphate (Pi) transporters mediate the uptake and translocation of this nutrient within plants. A total of 13 sequences in the rice (Oryza sativa) genome can be identified as belonging to the Pi transporter (Pht1) family. Here, we report on the expression patterns, biological properties and the physiological roles of two members of the family: OsPht1;2 (OsPT2) and OsPht1;6 (OsPT6). Expression of both genes increased significantly under Pi deprivation in roots and shoots. By using transgenic rice plants expressing the GUS reporter gene, driven by their promoters, we detected that OsPT2 was localized exclusively in the stele of primary and lateral roots, whereas OsPT6 was expressed in both epidermal and cortical cells of the younger primary and lateral roots. OsPT6, but not OsPT2, was able to complement a yeast Pi uptake mutant in the high-affinity concentration range. Xenopus oocytes injected with OsPT2 mRNA showed increased Pi accumulation and a Pi-elicited depolarization of the cell membrane electrical potential, when supplied with mM external concentrations. Both results show that OsPT2 mediated the uptake of Pi in oocytes. In transgenic rice, the knock-down of either OsPT2 or OsPT6 expression by RNA interference significantly decreased both the uptake and the long-distance transport of Pi from roots to shoots. Taken together, these data suggest OsPT6 plays a broad role in Pi uptake and translocation throughout the plant, whereas OsPT2 is a low-affinity Pi transporter, and functions in translocation of the stored Pi in the plant.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Casal M, Paiva S, Queirós O, Soares-Silva I. Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 2008; 32:974-94. [DOI: 10.1111/j.1574-6976.2008.00128.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y, Thevelein JM, Persson BL. Characterization of the Pho89 phosphate transporter by functional hyperexpression inSaccharomyces cerevisiae. FEMS Yeast Res 2008; 8:685-96. [DOI: 10.1111/j.1567-1364.2008.00408.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Lemieux MJ. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Membr Biol 2007; 24:333-41. [PMID: 17710637 DOI: 10.1080/09687680701496507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.
Collapse
Affiliation(s)
- M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Alberta, Edmonton, Canada.
| |
Collapse
|
23
|
Reimann J, Flock U, Lepp H, Honigmann A, Adelroth P. A pathway for protons in nitric oxide reductase from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:362-73. [PMID: 17466934 DOI: 10.1016/j.bbabio.2007.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. PLANT, CELL & ENVIRONMENT 2007; 30:310-322. [PMID: 17263776 DOI: 10.1111/j.1365-3040.2006.01617.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes recent advances in this area and explores current data and hypotheses of how the plant Pi status affects the symbiosis. Finally, suggestions of an interrelationship of Pi and nitrogen (N) in the AM symbiosis are discussed.
Collapse
Affiliation(s)
- Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| |
Collapse
|
25
|
Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, Mishra A, Marty F, Schoefs B, Adamska I, Persson BL, Spetea C. Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 2007; 282:8848-59. [PMID: 17261580 DOI: 10.1074/jbc.m609130200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.
Collapse
Affiliation(s)
- Sophie Thuswaldner
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsui K, Hirayama T, Kuroda K, Shirahige K, Ashikari T, Ueda M. Screening for candidate genes involved in tolerance to organic solvents in yeast. Appl Microbiol Biotechnol 2006; 71:75-9. [PMID: 16493551 DOI: 10.1007/s00253-006-0328-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 01/05/2006] [Accepted: 01/08/2006] [Indexed: 10/25/2022]
Abstract
Saccharomyces cerevisiae mutant strain, KK-211, isolated from serial culture in medium containing isooctane showed an extremely higher tolerance to the hydrophobic organic-solvents, which are toxic to yeast cells compared to the wild-type parent strain, DY-1. To detect genes that are related to this tolerance, a DNA microarray analysis was performed using mRNAs isolated from strains DY-1 and KK-211. Fourteen genes were identified as being related to the tolerance. The expression of 12 genes including ICT1, YNL190W, and PRY3, was induced while the expression of two genes including PHO84 was repressed in strain KK-211. Two genes, ICT1 and YNL190W showed the same profile in the DNA microarray analysis and a differential display-polymerase chain reaction analysis. But, there is no detectable difference in the expression profile of KK-211 cells cultured with or without isooctane. The results suggest that change in expression levels of multiple genes that confer the modification function of the cell surface, not by a single gene, might be required for yeast cell tolerance to organic solvents.
Collapse
Affiliation(s)
- Ken Matsui
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Mouillon JM, Persson BL. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:171-6. [PMID: 16487340 DOI: 10.1111/j.1567-1364.2006.00036.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism involved in the cellular phosphate response of Saccharomyces cerevisiae forms part of the PHO pathway, which upon expression allows a co-ordinated cellular response and adaptation to changes in availability of external phosphate. Although genetic studies and analyses of the S. cerevisiae genome have produced much information on the components of the PHO pathway, little is known about how cells sense the environmental phosphate level and the mechanistic regulation of phosphate acquisition. Recent studies emphasize different levels in phosphate sensing and signalling in response to external phosphate fluctuations. This review integrates all these findings into a model involving rapid and long-term effects of phosphate sensing and signalling in S. cerevisiae. The model describes in particular how yeast cells are able to adjust phosphate acquisition by integrating the status of the intracellular phosphate pools together with the extracellular phosphate concentration.
Collapse
Affiliation(s)
- Jean-Marie Mouillon
- Department of Chemistry and Biomedical Sciences, Kalmar University, Kalmar, Sweden
| | | |
Collapse
|
28
|
Chang C, Swaan PW. Computational approaches to modeling drug transporters. Eur J Pharm Sci 2005; 27:411-24. [PMID: 16274971 DOI: 10.1016/j.ejps.2005.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/27/2005] [Indexed: 11/15/2022]
Abstract
Computational modeling has advanced our understanding of drug absorption, tissue distribution, excretion and toxicity profiles by providing both direct and indirect knowledge of drug-transporter interactions that would otherwise be unavailable using experimental methods. Currently, two complementary approaches are available in modeling transporters: substrate-based and transporter-based methods. The transporter-based approach directly predicts the transporter's three-dimensional structure to assist in understanding the drug transport process, whereas substrate-based models infer such information by studying a group of substrates or inhibitors with measured activities. In this review, the available strategies in both transporter-based and substrate-based approaches are explained and illustrated with applications and case studies. With increasing computational power and continuously improving modeling algorithms, computational techniques can assist in further understanding transporter-substrate interactions as well as, the optimization of transporter-directed drug design.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
29
|
Yang Q, Wang X, Ye L, Mentrikoski M, Mohammadi E, Kim YM, Maloney PC. Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Proc Natl Acad Sci U S A 2005; 102:8513-8. [PMID: 15932938 PMCID: PMC1150865 DOI: 10.1073/pnas.0503533102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Indexed: 11/18/2022] Open
Abstract
Using the x-ray structure of the glycerol 3-phosphate transporter (GlpT), we devised a model for the distantly related oxalate transporter, OxlT. The model accommodates all earlier biochemical information on OxlT, including the idea that Lys-355 lies on the permeation pathway, and predicts that Lys-355 and a second positive center, Arg-272, comprise the binding site for divalent oxalate. Study of R272K, R272A, and R272Q derivatives verifies that Arg-272 is essential, and comparisons with GlpT show that both anion transporters bind substrates within equivalent domains. In 22 single-cysteine variants in TM7 and TM8, topology as marked by accessibility to Oregon green maleimide is predicted by the model, with similar concordance for 52 positions probed earlier. The model also reconciles cross-linking of a cysteine pair placed near the periplasmic ends of TM2 and TM7, and retrospective study of TM2 and TM11 confirms that positions supporting disulfide trapping lie at a helical interface. Our work describes a pathway to the modeling of OxlT and other transporters in the major facilitator superfamily and outlines simple experimental tests to evaluate such proposals.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Physiology, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|