1
|
Gizak A, Budziak B, Domaradzka A, Pietras Ł, Rakus D. Fructose 1,6-bisphosphatase as a promising target of anticancer treatment. Adv Biol Regul 2024:101057. [PMID: 39490352 DOI: 10.1016/j.jbior.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Fructose 1,6-bisphosphatase (FBP) is a regulatory enzyme of gluconeogenesis that also influences in a non-catalytic manner - via protein-protein interactions - cell cycle-dependent events, mitochondria biogenesis and polarization, synaptic plasticity and even cancer progression. FBP reduces glycolytic capacity of cells via blocking HIF-1α transcriptional activity and modulating NF-κB action, and influences oxidative metabolism by binding to c-MYC. Because FBP limits the energy-producing potential of cells and because a reduction of FBP amounts is observed in cancer cells, FBP is considered to be an anti-oncogenic protein. This is supported by the observation that cancer cells overexpress aldolase A (ALDOA), a pro-oncogenic protein that can bind to FBP and potentially block its anti-oncogenic activity. Interestingly, only the muscle isozyme of FBP (FBP2) interacts strongly with ALDOA, whereas the binding of the liver isozyme (FBP1) to ALDOA is more than an order of magnitude weaker. Here, we briefly review the most important evidence supporting the anti-oncogenic function of FBP and discuss what structural properties of the two FBP isozymes allow FBP2, rather than FBP1, to exert more flexible anticancer functions.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Bartosz Budziak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Aleksandra Domaradzka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Łukasz Pietras
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland.
| |
Collapse
|
2
|
Bai Q, Liu Y, Wang CM, Wang JR, Feng Y, Ma X, Yang X, Shi YN, Zhang WJ. Hepatic but not Intestinal FBP1 Is Required for Fructose Metabolism and Tolerance. Endocrinology 2023; 164:bqad054. [PMID: 36964915 DOI: 10.1210/endocr/bqad054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
Fructose intolerance in mammals is caused by defects in fructose absorption and metabolism. Fructose-1,6-bisphosphatase 1 (FBP1) is a key enzyme in gluconeogenesis, and its deficiency results in hypoglycemia as well as intolerance to fructose. However, the mechanism about fructose intolerance caused by FBP1 deficiency has not been fully elucidated. Here, we demonstrate that hepatic but not intestinal FBP1 is required for fructose metabolism and tolerance. We generated inducible knockout mouse models specifically lacking FBP1 in adult intestine or liver. Intestine-specific deletion of Fbp1 in adult mice does not compromise fructose tolerance, as evidenced by no significant body weight loss, food intake reduction, or morphological changes of the small intestine during 4 weeks of exposure to a high-fructose diet. By contrast, liver-specific deletion of Fbp1 in adult mice leads to fructose intolerance, as manifested by substantial weight loss, hepatomegaly, and liver injury after exposure to a high-fructose diet. Notably, the fructose metabolite fructose-1-phosphate is accumulated in FBP1-deficient liver after fructose challenge, which indicates a defect of fructolysis, probably due to competitive inhibition by fructose-1,6-bisphosphate and may account for the fructose intolerance. In conclusion, these data have clarified the essential role of hepatic but not intestinal FBP1 in fructose metabolism and tolerance.
Collapse
Affiliation(s)
- Qiufang Bai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Chen-Ma Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jue-Rui Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yingying Feng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xiaohang Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ya-Nan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, Lin Y, Zhang L, Yan GQ, An YP, Yao J, Zhang C, Lin PC, Yuan YY, Zhao JY, Xu W, Zhao SM. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab 2021; 3:859-875. [PMID: 34140692 DOI: 10.1038/s42255-021-00405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Ting-Ting Fan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yun-Zi Mao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Meng Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Guo-Quan Yan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yan-Peng An
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Cheng Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China.
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Gizak A, Duda P, Wisniewski J, Rakus D. Fructose-1,6-bisphosphatase: From a glucose metabolism enzyme to multifaceted regulator of a cell fate. Adv Biol Regul 2019; 72:41-50. [PMID: 30871972 DOI: 10.1016/j.jbior.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is one of the ancient, evolutionarily conserved enzymes of carbohydrate metabolism. It has been described for a first time in 1943, however, for the next half a century mostly kinetic and structural parameters of animal FBPases have been studied. Discovery of ubiquitous expression of the muscle isozyme of FBPase, thus far considered to merely regulate glycogen synthesis from carbohydrate precursors, and its nuclear localisation in several cell types has risen new interest in the protein, resulting in numerous publications revealing complex functions/properties of FBPase. This review summarises the current knowledge of FBPase in animal cells providing evidence that the enzyme merits the name of moonlighting protein.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Przemyslaw Duda
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Janusz Wisniewski
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland.
| |
Collapse
|
5
|
Lambert M, Bastide B, Cieniewski-Bernard C. Involvement of O-GlcNAcylation in the Skeletal Muscle Physiology and Physiopathology: Focus on Muscle Metabolism. Front Endocrinol (Lausanne) 2018; 9:578. [PMID: 30459708 PMCID: PMC6232757 DOI: 10.3389/fendo.2018.00578] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle represents around 40% of whole body mass. The principal function of skeletal muscle is the conversion of chemical energy toward mechanic energy to ensure the development of force, provide movement and locomotion, and maintain posture. This crucial energy dependence is maintained by the faculty of the skeletal muscle for being a central place as a "reservoir" of amino acids and carbohydrates in the whole body. A fundamental post-translational modification, named O-GlcNAcylation, depends, inter alia, on these nutrients; it consists to the transfer or the removal of a unique monosaccharide (N-acetyl-D-glucosamine) to a serine or threonine hydroxyl group of nucleocytoplasmic and mitochondrial proteins in a dynamic process by the O-GlcNAc Transferase (OGT) and the O-GlcNAcase (OGA), respectively. O-GlcNAcylation has been shown to be strongly involved in crucial intracellular mechanisms through the modulation of signaling pathways, gene expression, or cytoskeletal functions in various organs and tissues, such as the brain, liver, kidney or pancreas, and linked to the etiology of associated diseases. In recent years, several studies were also focused on the role of O-GlcNAcylation in the physiology and the physiopathology of skeletal muscle. These studies were mostly interested in O-GlcNAcylation during muscle exercise or muscle-wasting conditions. Major findings pointed out a different "O-GlcNAc signature" depending on muscle type metabolism at resting, wasting and exercise conditions, as well as depending on acute or long-term exhausting exercise protocol. First insights showed some differential OGT/OGA expression and/or activity associated with some differential stress cellular responses through Reactive Oxygen Species and/or Heat-Shock Proteins. Robust data displayed that these O-GlcNAc changes could lead to (i) a differential modulation of the carbohydrates metabolism, since the majority of enzymes are known to be O-GlcNAcylated, and to (ii) a differential modulation of the protein synthesis/degradation balance since O-GlcNAcylation regulates some key signaling pathways such as Akt/GSK3β, Akt/mTOR, Myogenin/Atrogin-1, Myogenin/Mef2D, Mrf4 and PGC-1α in the skeletal muscle. Finally, such involvement of O-GlcNAcylation in some metabolic processes of the skeletal muscle might be linked to some associated diseases such as type 2 diabetes or neuromuscular diseases showing a critical increase of the global O-GlcNAcylation level.
Collapse
|
6
|
Hughes J, Clarke F, Purslow P, Warner R. High pH in beef longissimus thoracis reduces muscle fibre transverse shrinkage and light scattering which contributes to the dark colour. Food Res Int 2017; 101:228-238. [DOI: 10.1016/j.foodres.2017.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/10/2017] [Accepted: 09/03/2017] [Indexed: 01/28/2023]
|
7
|
Kohnhorst CL, Kyoung M, Jeon M, Schmitt DL, Kennedy EL, Ramirez J, Bracey SM, Luu BT, Russell SJ, An S. Identification of a multienzyme complex for glucose metabolism in living cells. J Biol Chem 2017; 292:9191-9203. [PMID: 28424264 DOI: 10.1074/jbc.m117.783050] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/17/2017] [Indexed: 01/05/2023] Open
Abstract
Sequential metabolic enzymes in glucose metabolism have long been hypothesized to form multienzyme complexes that regulate glucose flux in living cells. However, it has been challenging to directly observe these complexes and their functional roles in living systems. In this work, we have used wide-field and confocal fluorescence microscopy to investigate the spatial organization of metabolic enzymes participating in glucose metabolism in human cells. We provide compelling evidence that human liver-type phosphofructokinase 1 (PFKL), which catalyzes a bottleneck step of glycolysis, forms various sizes of cytoplasmic clusters in human cancer cells, independent of protein expression levels and of the choice of fluorescent tags. We also report that these PFKL clusters colocalize with other rate-limiting enzymes in both glycolysis and gluconeogenesis, supporting the formation of multienzyme complexes. Subsequent biophysical characterizations with fluorescence recovery after photobleaching and FRET corroborate the formation of multienzyme metabolic complexes in living cells, which appears to be controlled by post-translational acetylation on PFKL. Importantly, quantitative high-content imaging assays indicated that the direction of glucose flux between glycolysis, the pentose phosphate pathway, and serine biosynthesis seems to be spatially regulated by the multienzyme complexes in a cluster-size-dependent manner. Collectively, our results reveal a functionally relevant, multienzyme metabolic complex for glucose metabolism in living human cells.
Collapse
Affiliation(s)
- Casey L Kohnhorst
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Minjoung Kyoung
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Miji Jeon
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Danielle L Schmitt
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Erin L Kennedy
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Julio Ramirez
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Syrena M Bracey
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Bao Tran Luu
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Sarah J Russell
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Songon An
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
8
|
Lambert M, Richard E, Duban-Deweer S, Krzewinski F, Deracinois B, Dupont E, Bastide B, Cieniewski-Bernard C. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta Gen Subj 2016; 1860:2017-30. [PMID: 27301331 DOI: 10.1016/j.bbagen.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. METHODS C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. RESULTS Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. CONCLUSIONS For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. GENERAL SIGNIFICANCE In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation.
Collapse
Affiliation(s)
- Matthias Lambert
- Univ.Lille, EA7369-URePSSS, Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Equipe « Activité Physique, Muscle, Santé », F-59000 Lille, France
| | - Elodie Richard
- BiCeL (BioImaging Center of Lille - Campus Lille 1), Univ.Lille, FR3688 CNRS FRABio, F-59000 Lille, France
| | - Sophie Duban-Deweer
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), EA2465, Université d'Artois, Faculté Jean Perrin, 62307 Lens, France
| | - Frederic Krzewinski
- PAGés (Plateforme d'Analyses des Glycoconjugués), Univ.Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Barbara Deracinois
- Univ.Lille, EA7369-URePSSS, Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Equipe « Activité Physique, Muscle, Santé », F-59000 Lille, France
| | - Erwan Dupont
- Univ.Lille, EA7369-URePSSS, Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Equipe « Activité Physique, Muscle, Santé », F-59000 Lille, France
| | - Bruno Bastide
- Univ.Lille, EA7369-URePSSS, Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Equipe « Activité Physique, Muscle, Santé », F-59000 Lille, France
| | - Caroline Cieniewski-Bernard
- Univ.Lille, EA7369-URePSSS, Unité de Recherche Pluridisciplinaire Sport, Santé, Société, Equipe « Activité Physique, Muscle, Santé », F-59000 Lille, France.
| |
Collapse
|
9
|
Gizak A, Rakus D. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology? Proteomes 2016; 4:proteomes4010002. [PMID: 28248211 PMCID: PMC5217361 DOI: 10.3390/proteomes4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
Molecular and cellular biology methodology is traditionally based on the reasoning called “the mechanistic explanation”. In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems’ complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| |
Collapse
|
10
|
A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase. Biochem J 2015; 472:225-37. [PMID: 26417114 DOI: 10.1042/bj20150269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022]
Abstract
Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.
Collapse
|
11
|
Changes in quaternary structure of muscle fructose-1,6-bisphosphatase regulate affinity of the enzyme to mitochondria. Int J Biochem Cell Biol 2014; 48:55-9. [PMID: 24412565 DOI: 10.1016/j.biocel.2013.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022]
Abstract
Muscle fructose-1,6-bisphosphatase (FBP2), a regulatory enzyme of glyconeogenesis, binds to mitochondria where it interacts with proteins involved in regulation of energy homeostasis. Here, we show that the quaternary structure of FBP2 plays a crucial role in this interaction, and that the AMP-driven transition of the FBP2 subunit arrangement from active to inactive precludes its association with the mitochondria. Moreover, we demonstrate that truncation of the evolutionarily conserved N-terminal residues of FBP2 results in a loss of its mitochondria-protective functions. This strengthens the recently raised hypothesis that FBP2 evolved as a regulator not only for glycogen storage but also for mitochondrial function in contracting muscle.
Collapse
|
12
|
Rakus D, Gizak A, Kasprzak AA, Zarzycki M, Maciaszczyk-Dziubinska E, Dzugaj A. The mechanism of calcium-induced inhibition of muscle fructose 1,6-bisphosphatase and destabilization of glyconeogenic complex. PLoS One 2013; 8:e76669. [PMID: 24146906 PMCID: PMC3795747 DOI: 10.1371/journal.pone.0076669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which calcium inhibits the activity of muscle fructose 1,6-bisphosphatase (FBPase) and destabilizes its interaction with aldolase, regulating glycogen synthesis from non-carbohydrates in skeletal muscle is poorly understood. In the current paper, we demonstrate evidence that Ca2+ affects conformation of the catalytic loop 52–72 of muscle FBPase and inhibits its activity by competing with activatory divalent cations, e.g. Mg2+ and Zn2+. We also propose the molecular mechanism of Ca2+-induced destabilization of the aldolase–FBPase interaction, showing that aldolase associates with FBPase in its active form, i.e. with loop 52–72 in the engaged conformation, while Ca2+ stabilizes the disengaged-like form of the loop.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Wroclaw, Poland
- * E-mail:
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Wroclaw, Poland
| | - Andrzej A. Kasprzak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marek Zarzycki
- Depatment of Genetics, Wroclaw University, Wroclaw, Poland
| | | | - Andrzej Dzugaj
- Depatment of Genetics, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
13
|
De Palma S, Leone R, Grumati P, Vasso M, Polishchuk R, Capitanio D, Braghetta P, Bernardi P, Bonaldo P, Gelfi C. Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency. PLoS One 2013; 8:e56716. [PMID: 23437220 PMCID: PMC3577731 DOI: 10.1371/journal.pone.0056716] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/14/2013] [Indexed: 02/06/2023] Open
Abstract
This study identifies metabolic and protein phenotypic alterations in gastrocnemius, tibialis anterior and diaphragm muscles of Col6a1−/− mice, a model of human collagen VI myopathies. All three muscles of Col6a1−/− mice show some common changes in proteins involved in metabolism, resulting in decreased glycolysis and in changes of the TCA cycle fluxes. These changes lead to a different fate of α-ketoglutarate, with production of anabolic substrates in gastrocnemius and tibialis anterior, and with lipotoxicity in diaphragm. The metabolic changes are associated with changes of proteins involved in mechanotransduction at the myotendineous junction/costameric/sarcomeric level (TN-C, FAK, ROCK1, troponin I fast) and in energy metabolism (aldolase, enolase 3, triose phosphate isomerase, creatine kinase, adenylate kinase 1, parvalbumin, IDH1 and FASN). Together, these change may explain Ca2+ deregulation, impaired force development, increased muscle-relaxation-time and fiber damage found in the mouse model as well as in patients. The severity of these changes differs in the three muscles (gastrocnemius<tibialis anterior<diaphragm) and correlates to the mass-to-tendon (myotendineous junction) ratio and to muscle morphology.
Collapse
Affiliation(s)
- Sara De Palma
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
| | - Roberta Leone
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
| | - Paolo Grumati
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Institute of Protein Biochemistry, Italian National Research Council (CNR), Naples, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
| | - Paola Braghetta
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bonaldo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
- * E-mail:
| |
Collapse
|
14
|
Gizak A, Mazurek J, Wozniak M, Maciaszczyk-Dziubinska E, Rakus D. Destabilization of fructose 1,6-bisphosphatase-Z-line interactions is a mechanism of glyconeogenesis down-regulation in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:622-8. [PMID: 23228565 DOI: 10.1016/j.bbamcr.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022]
Abstract
Although it is well known that insulin controls the synthesis of glycogen from non-carbohydrates by down-regulating expression of several glyconeogenic enzymes, a mechanism of short-term inhibition of glyconeogenesis remains unknown. In recent years, we have shown that in skeletal muscle, fructose 1,6-bisphosphatase (FBPase) is a part of the hypothetical glyconeogenic complex located on sarcomeric Z-line. Here, we show that inhibition of glycogen synthase kinase-3 causes disruption of the FBPase-Z-line interactions and reduction of muscle glycogen content in vivo. The normal, striated pattern of muscle FBPase localization is also disturbed by insulin treatment but preserved when insulin is applied together with Akt inhibitor. We suggest that destabilization of FBPase-Z-line interaction is a universal cellular mechanism of glyconeogenesis down-regulation, allowing for preferential utilization of glucose for insulin-stimulated muscle glycogen synthesis.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
15
|
Gizak A, Sok AJ, Lipinska A, Zarzycki M, Rakus D, Dzugaj A. A comparative study on the sensitivity of Cyprinus carpio muscle and liver FBPase toward AMP and calcium. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:51-5. [PMID: 22495200 DOI: 10.1016/j.cbpb.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/30/2022]
Abstract
The activity of fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) isozymes is influenced by AMP, Ca2+ and by reversible interactions with subcellular structures. In contrast to mammalian and avian isozymes, the kinetic properties of FBPases from ectothermal vertebrates are not fully described. To get some insight into mechanism of glycogen resynthesis in ectothermal vertebrates we examined the features of FBPases isolated from Cyprinus carpio skeletal muscle and liver. To investigate the evolutionary origin of the sensitivity of FBPase to effectors, we performed a phylogenetic analysis of known animal amino acids sequences of the enzyme. Based on our findings, we hypothesize that the high, mammalian-like, sensitivity of FBPase to Ca2+ is not essential for controlling the stability of glyconeogenic complex in striated muscles, instead it ensures the precise regulation of mitochondrial metabolism during prolonged Ca2+ elevation in contracting muscle fibers. Comparison of the kinetic properties of vertebrate and insect FBPases suggests that the high sensitivity of muscle isozyme to inhibitors has arisen as an adaptation enabling coordination of energy metabolism in warm-blooded animals.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
16
|
Mamczur P, Mazurek J, Rakus D. Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina. Cell Tissue Res 2010; 341:213-21. [PMID: 20614135 PMCID: PMC2914254 DOI: 10.1007/s00441-010-1008-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/14/2010] [Indexed: 01/29/2023]
Abstract
To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes.
Collapse
Affiliation(s)
- Piotr Mamczur
- Department of Animal Molecular Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205, Wroclaw, Poland
| | | | | |
Collapse
|
17
|
Lek M, North KN. Are biological sensors modulated by their structural scaffolds? The role of the structural muscle proteins alpha-actinin-2 and alpha-actinin-3 as modulators of biological sensors. FEBS Lett 2010; 584:2974-80. [PMID: 20515688 DOI: 10.1016/j.febslet.2010.05.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 02/01/2023]
Abstract
Biological sensors and their ability to detect and respond to change in the cellular environment can be modulated by protein scaffolds acting within their interaction network. The skeletal muscle alpha-actinins have been considered as primarily structural scaffold proteins. However, deficiency of alpha-actinin-3 due to a common null polymorphism results in predominantly metabolic changes in skeletal muscle function. In this review, we explore the range of phenotypes associated with alpha-actinin-3 deficiency, and draw supporting evidence from known interaction partners for its role as a scaffold which acts to modulate biological sensors that result in changes in muscle metabolism and structure.
Collapse
Affiliation(s)
- Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Nuclear targeting of FBPase in HL-1 cells is controlled by beta-1 adrenergic receptor-activated Gs protein signaling cascade. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:871-7. [DOI: 10.1016/j.bbamcr.2009.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/29/2009] [Accepted: 02/12/2009] [Indexed: 11/17/2022]
|
19
|
Ruan YW, Lei Z, Fan Y, Zou B, Xu ZC. Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia. J Neurosci Res 2009; 87:61-8. [DOI: 10.1002/jnr.21816] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Gizak A, Maciaszczyk E, Dzugaj A, Eschrich K, Rakus D. Evolutionary conserved N-terminal region of human muscle fructose 1,6-bisphosphatase regulates its activity and the interaction with aldolase. Proteins 2008; 72:209-16. [PMID: 18214967 DOI: 10.1002/prot.21909] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-terminal residues of muscle fructose 1,6-bisphosphatase (FBPase) are highly conserved among vertebrates. In this article, we present evidence that the conservation is responsible for the unique properties of the muscle FBPase isozyme: high sensitivity to AMP and Ca(2+) inhibition and the high affinity to muscle aldolase, which is a factor desensitizing muscle FBPase toward AMP and Ca(2+). The first N-terminal residue affecting the affinity of muscle FBPase to aldolase is arginine 3. On the other hand, the first residue significantly influencing the kinetics of muscle FBPase is proline 5. Truncation from 5-7 N-terminal residues of the enzyme not only decreases its affinity to aldolase but also reduces its k-(cat) and activation by Mg(2+), and desensitizes FBPase to inhibition by AMP and calcium ions. Deletion of the first 10 amino acids of muscle FBPase abolishes cooperativity of Mg(2+) activation and results in biphasic inhibition of the enzyme by AMP. Moreover, this truncation lowers affinity of muscle FBPase to aldolase about 14 times, making it resemble the liver isozyme. We suggest that the existence of highly AMP-sensitive muscle-like FBPase, activity of which is regulated by metabolite-dependent interaction with aldolase enables the precise regulation of muscle energy expenditures and might contributed to the evolutionary success of vertebrates.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
21
|
Zarzycki M, Maciaszczyk E, Dzugaj A. Glu 69 is essential for the high sensitivity of muscle fructose-1,6-bisphosphatase inhibition by calcium ions. FEBS Lett 2007; 581:1347-50. [PMID: 17350621 DOI: 10.1016/j.febslet.2007.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022]
Abstract
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions.
Collapse
Affiliation(s)
- Marek Zarzycki
- Department of Animal Physiology, Zoological Institute, University of Wroclaw, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | |
Collapse
|
22
|
Gizak A, Wrobel E, Moraczewski J, Dzugaj A. Changes in subcellular localization of fructose 1,6-bisphosphatase during differentiation of isolated muscle satellite cells. FEBS Lett 2006; 580:4042-6. [PMID: 16814784 DOI: 10.1016/j.febslet.2006.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/06/2006] [Accepted: 06/14/2006] [Indexed: 11/27/2022]
Abstract
Subcellular localization of FBPase, a regulatory enzyme of glyconeogenesis, was examined inside dividing and differentiating satellite cells from rat muscle. In dividing myoblasts, FBPase was located in cytosol and nuclei. When divisions ceased, FBPase became restricted to the cytosolic compartment and finally was found to associate with the Z-lines, as in adult muscle. Moreover, a 12-fold decrease was observed in the number of FBPase-positive nuclei associated with muscle fibres of adult rat, as compared with young muscle, possibly reflecting the reduction in number of active satellite cells during muscle maturation. The data might suggest that FBPase participates in some nuclear processes during development and regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A Gizak
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | |
Collapse
|
23
|
Adamowicz A, Gizak A, Dzugaj A. Subcellular localization of muscle FBPase in carp (Cyprinus carpio) tissues. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:223-8. [PMID: 16580859 DOI: 10.1016/j.cbpb.2006.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/25/2022]
Abstract
Subcellular localization of muscle FBPase-a regulatory enzyme of glyconeogenesis-was investigated in carp using immunohistochemistry and protein exchange method. Results of the experiments revealed that, in striated muscles, FBPase associates with alpha-actinin of the Z-line and co-localizes with aldolase. Additionally, in cardiac and smooth muscle cells FBPase is present inside the nuclei. In the light of findings on mammalian muscle FBPase, the data presented here indicates that interaction of the enzyme with specific cellular partners and nuclear presence of FBPase is a general phenomenon in contemporary vertebrates.
Collapse
Affiliation(s)
- A Adamowicz
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | |
Collapse
|
24
|
Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 2006; 574:889-903. [PMID: 16690701 PMCID: PMC1817750 DOI: 10.1113/jphysiol.2006.111757] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed. Furthermore, the effect of exercise duration and intensity on skeletal muscle CaMKII activity and phosphorylation of downstream targets was examined. Eight healthy men exercised at approximately 67% of peak pulmonary O2 uptake(VO2peak) with muscle samples taken at rest and after 1, 10, 30, 60 and 90 min of exercise. Ten other men exercised for three consecutive 10 min bouts at 35%, 60% and 85% VO2peak with muscle samples taken at rest, at the end of each interval and 30 min post-exercise. There was a rapid and transient increase in autonomous CaMKII activity and CaMKII phosphorylation at Thr287 in skeletal muscle during exercise. Furthermore, the phosphorylation of phospholamban (PLN) at Thr17, which was identified as a CaMKII substrate in skeletal muscle, was rapidly (< 1 min) increased by exercise, and remained phosphorylated 5-fold above basal level during 90 min of exercise. The phosphorylation of serum response factor at Ser103, a putative CaMKII substrate, was higher after 30 min of exercise. PLN phosphorylation at Thr17 was higher with increasing exercise intensities. These data indicate that CaMKII is the major multifunctional CaMK in skeletal muscle and its activation occurs rapidly and is sustained during continuous exercise, with the activation being greater during intense exercise.
Collapse
Affiliation(s)
- Adam J Rose
- Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark, 2100.
| | | | | |
Collapse
|
25
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
26
|
Dzugaj A. Localization and regulation of muscle fructose-1,6-bisphosphatase, the key enzyme of glyconeogenesis. ACTA ACUST UNITED AC 2006; 46:51-71. [PMID: 16857246 DOI: 10.1016/j.advenzreg.2006.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrzej Dzugaj
- Department of Animal Physiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
27
|
Rakus D, Maciaszczyk E, Wawrzycka D, Ułaszewski S, Eschrich K, Dzugaj A. The origin of the high sensitivity of muscle fructose 1,6-bisphosphatase towards AMP. FEBS Lett 2005; 579:5577-81. [PMID: 16213487 DOI: 10.1016/j.febslet.2005.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/13/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
Adenosine 5'-monophosphate (AMP) inhibits muscle fructose 1,6-bisphosphatase (FBPase) about 44 times stronger than the liver isozyme. The key role in strong AMP binding to muscle isozyme play K20, T177 and Q179. Muscle FBPase which has been mutated towards the liver enzyme (K20E/T177M/Q179C) is inhibited by AMP about 26 times weaker than the wild-type muscle enzyme, but it binds the fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP), similarly to the wild-type liver enzyme. The reverse mutation of liver FBPase towards the muscle isozyme significantly increases the affinity of the mutant to TNP-AMP. High affinity to the inhibitor but low sensitivity to AMP of the liver triple mutant suggest differences between the isozymes in the mechanism of allosteric signal transmission.
Collapse
Affiliation(s)
- D Rakus
- Department of Animal Physiology, Institute of Zoology, Wroclaw University, Poland
| | | | | | | | | | | |
Collapse
|