1
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
2
|
Miguel L, Gervais J, Nicolas G, Lecourtois M. SorLA Protective Function Is Restored by Improving SorLA Protein Maturation in a Subset of Alzheimer's Disease-Associated SORL1 Missense Variants. J Alzheimers Dis 2023; 94:1343-1349. [PMID: 37424467 DOI: 10.3233/jad-230211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
SORL1 loss of function is associated with Alzheimer's disease (AD) risk through increased Aβ peptide secretion. We expressed 10 maturation-defective rare missense SORL1 variants in HEK cells and showed that decreasing growing temperature led to a significant increase in the maturation of the encoded protein SorLA for 6/10. In edited hiPSC carrying two of these variants, maturation of the protein was restored partially by decreasing the culture temperature and was associated with concomitant decrease in Aβ secretion. Correcting SorLA maturation in the context of maturation-defective missense variants could thus be a relevant strategy to improve SorLA protective function against AD.
Collapse
Affiliation(s)
- Laetitia Miguel
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Juliette Gervais
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| | - Magalie Lecourtois
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000 Rouen, France
| |
Collapse
|
3
|
Boodhansingh KE, Kandasamy B, Mitteer L, Givler S, De Leon DD, Shyng S, Ganguly A, Stanley CA. Novel dominant K ATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. Am J Med Genet A 2019; 179:2214-2227. [PMID: 31464105 PMCID: PMC6852436 DOI: 10.1002/ajmg.a.61335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Lauren Mitteer
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Stephanie Givler
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Show‐Ling Shyng
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Arupa Ganguly
- Department of GeneticsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
4
|
Ion Channels as Reporters of Membrane Receptor Function: Automated Analysis in Xenopus Oocytes. Methods Mol Biol 2017; 1635:283-301. [PMID: 28755375 DOI: 10.1007/978-1-4939-7151-0_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G-protein-coupled receptors (GPCR) are the most widely used system of communication used by cells. They sense external signals and translate them into intracellular signals. The information is carried mechanically across the cell membrane, without perturbing its integrity. Agonist binding on the extracellular side causes a change in receptor conformation which propagates to the intracellular side and causes release of activated G-proteins, the first messengers of a variety of signaling cascades.Permitting access to powerful electrophysiological techniques, ion channels can be employed to monitor precisely the most proximal steps of GPCR signaling, receptor conformational changes, and G-protein release. The former is achieved by physical attachment of a potassium channel to the GPCR to create an Ion-Channel Coupled Receptor (ICCR). The latter is based on the use of G-protein-regulated potassium channels (GIRK). We describe here how these two systems may be used in the Xenopus oocyte heterologous system with a robotic system for increased throughput.
Collapse
|
5
|
Zhang Y, O'Brien WG, Zhao Z, Lee CC. 5'-adenosine monophosphate mediated cooling treatment enhances ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) stability in vivo. J Biomed Sci 2015; 22:72. [PMID: 26335336 PMCID: PMC4559075 DOI: 10.1186/s12929-015-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport. Results Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice. Conclusions Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.
Collapse
Affiliation(s)
- Yueqiang Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William G O'Brien
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Duarri A, Lin MCA, Fokkens MR, Meijer M, Smeets CJLM, Nibbeling EAR, Boddeke E, Sinke RJ, Kampinga HH, Papazian DM, Verbeek DS. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci 2015; 72:3387-99. [PMID: 25854634 PMCID: PMC4531139 DOI: 10.1007/s00018-015-1894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gavilan HS, Kulikauskas RM, Gutmann DH, Fehon RG. In vivo functional analysis of the human NF2 tumor suppressor gene in Drosophila. PLoS One 2014; 9:e90853. [PMID: 24595234 PMCID: PMC3942481 DOI: 10.1371/journal.pone.0090853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
The proper control of tissue growth is essential during normal development and an important problem in human disease. Merlin, the product of the Neurofibromatosis 2 tumor suppressor gene, has been extensively studied to understand its functions in growth control. Here we describe experiments in which we used Drosophila as an in vivo system to test the functions of the normal human NF2 gene products and patient-derived mutant alleles. Although the predominant NF2 gene isoform, isoform 1, could functionally replace the Drosophila Merlin gene, a second isoform with a distinct C-terminal tail could not. Immunofluorescence studies show that the two isoforms have distinct subcellular localizations when expressed in the polarized imaginal epithelium, and function in genetic rescue assays correlates with apical localization of the NF2 protein. Interestingly, we found that a patient-derived missense allele, NF2L64P, appears to be temperature sensitive. These studies highlight the utility of Drosophila for in vivo functional analysis of highly conserved human disease genes.
Collapse
Affiliation(s)
- Heather S. Gavilan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Rima M. Kulikauskas
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
9
|
Sampson HM, Lam H, Chen PC, Zhang D, Mottillo C, Mirza M, Qasim K, Shrier A, Shyng SL, Hanrahan JW, Thomas DY. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet J Rare Dis 2013; 8:11. [PMID: 23316740 PMCID: PMC3558398 DOI: 10.1186/1750-1172-8-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/01/2013] [Indexed: 11/12/2022] Open
Abstract
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.
Collapse
Affiliation(s)
- Heidi M Sampson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, McIntyre Medical Building, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li Y, Liu X, Wu Y, Xu Z, Li H, Griffith LC, Zhou Y. Intracellular regions of the Eag potassium channel play a critical role in generation of voltage-dependent currents. J Biol Chem 2010; 286:1389-99. [PMID: 21059657 DOI: 10.1074/jbc.m110.184077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding, assembly, and trafficking of ion channels are tightly controlled processes and are important for biological functions relevant to health and disease. Here, we report that functional expression of the Eag channel is temperature-sensitive by a mechanism that is independent of trafficking or surface targeting of the channel protein. Eag channels in cells grown at 37 °C exhibit voltage-evoked gating charge movements but fail to conduct K(+) ions. By mutagenesis and chimeric channel studies, we show that the N- and C-terminal regions are involved in controlling a step after movement of the voltage sensor, as well as in regulating biophysical properties of the Eag channel. Synthesis and assembly of Eag at high temperature disrupt the ability of these domains to carry out their function. These results suggest an important role of the intracellular regions in the generation of Eag currents.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Pozza A, Préz-Victoria JM, Pietro AD. Overexpression of homogeneous and active ABCG2 in insect cells. Protein Expr Purif 2009; 63:75-83. [DOI: 10.1016/j.pep.2008.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 01/10/2023]
|
12
|
Wheeler A, Wang C, Yang K, Fang K, Davis K, Styer AM, Mirshahi U, Moreau C, Revilloud J, Vivaudou M, Liu S, Mirshahi T, Chan KW. Coassembly of different sulfonylurea receptor subtypes extends the phenotypic diversity of ATP-sensitive potassium (KATP) channels. Mol Pharmacol 2008; 74:1333-44. [PMID: 18723823 DOI: 10.1124/mol.108.048355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
K(ATP) channels are metabolic sensors and targets of potassium channel openers (KCO; e.g., diazoxide and pinacidil). They comprise four sulfonylurea receptors (SUR) and four potassium channel subunits (Kir6) and are critical in regulating insulin secretion. Different SUR subtypes (SUR1, SUR2A, SUR2B) largely determine the metabolic sensitivities and the pharmacological profiles of K(ATP) channels. SUR1- but not SUR2-containing channels are highly sensitive to metabolic inhibition and diazoxide, whereas SUR2 channels are sensitive to pinacidil. It is generally believed that SUR1 and SUR2 are incompatible in channel coassembly. We used triple tandems, T1 and T2, each containing one SUR (SUR1 or SUR2A) and two Kir6.2Delta26 (last 26 residues are deleted) to examine the coassembly of different SUR. When T1 or T2 was expressed in Xenopus laevis oocytes, small whole-cell currents were activated by metabolic inhibition (induced by azide) plus a KCO (diazoxide for T1, pinacidil for T2). When coexpressed with any SUR subtype, the activated-currents were increased by 2- to 13-fold, indicating that different SUR can coassemble. Consistent with this, heteromeric SUR1+SUR2A channels were sensitive to azide, diazoxide, and pinacidil, and their single-channel burst duration was 2-fold longer than that of the T1 channels. Furthermore, SUR2A was coprecipitated with SUR1. Using whole-cell recording and immunostaining, heteromeric channels could also be detected when T1 and SUR2A were coexpressed in mammalian cells. Finally, the response of the SUR1+SUR2A channels to azide was found to be intermediate to those of the homomeric channels. Therefore, different SUR subtypes can coassemble into K(ATP) channels with distinct metabolic sensitivities and pharmacological profiles.
Collapse
Affiliation(s)
- Adam Wheeler
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 2007; 56:2339-48. [PMID: 17575084 PMCID: PMC2225993 DOI: 10.2337/db07-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
14
|
Fang K, Csanády L, Chan KW. The N-terminal transmembrane domain (TMD0) and a cytosolic linker (L0) of sulphonylurea receptor define the unique intrinsic gating of KATP channels. J Physiol 2006; 576:379-89. [PMID: 16887879 PMCID: PMC1890349 DOI: 10.1113/jphysiol.2006.112748] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels comprise four pore-forming Kir6 and four regulatory sulphonylurea receptor (SUR) subunits. SUR, an ATP-binding cassette protein, associates with Kir6 through its N-terminal transmembrane domain (TMD0). TMD0 connects to the core domain of SUR through a cytosolic linker (L0). The intrinsic gating of Kir6.2 is greatly altered by SUR. It has been hypothesized that these changes are conferred by TMD0. Exploiting the fact that the pancreatic (SUR1/Kir6.2) and the cardiac (SUR2A/Kir6.2) K(ATP) channels show different gating behaviours, we have tested this hypothesis by comparing the intrinsic gating of Kir6.2 with the last 26 residues deleted (Kir6.2Delta26) co-expressed with SUR1, S1-TMD0, SUR2A and S2-TMD0 at -40 and -100 mV (S is an abbreviation for SUR; TMD0/Kir6.2Delta26, but not TMD0/Kir6.2, can exit the endoplastic reticulum and reach the cell membrane). Single-channel kinetic analyses revealed that the mean burst and interburst durations are shorter for TMD0/Kir6.2Delta26 than for the corresponding SUR channels. No differences were found between the two TMD0 channels. We further demonstrated that in isolation even TMD0-L0 (SUR truncated after L0) cannot confer the wild-type intrinsic gating to Kir6.2Delta26 and that swapping L0 (SUR truncated after L0)between SUR1 and SUR2A only partially exchanges their different intrinsic gating. Therefore, in addition to TMD0, L0 and the core domain also participate in determining the intrinsic gating of Kir6.2. However, TMD0 and L0 are responsible for the different gating patterns of full-length SUR1 and SUR2A channels. A kinetic model with one open and four closed states is presented to explain our results in a mechanistic context.
Collapse
Affiliation(s)
- Kun Fang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
15
|
Lin CW, Lin YW, Yan FF, Casey J, Kochhar M, Pratt EB, Shyng SL. Kir6.2 mutations associated with neonatal diabetes reduce expression of ATP-sensitive K+ channels: implications in disease mechanism and sulfonylurea therapy. Diabetes 2006; 55:1738-46. [PMID: 16731837 DOI: 10.2337/db05-1571] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heterozygous missense mutations in the pore-forming subunit Kir6.2 of ATP-sensitive K(+) channels (K(ATP) channels) have recently been shown to cause permanent neonatal diabetes mellitus (PNDM). Functional studies demonstrated that PNDM mutations reduce K(ATP) channel sensitivity to ATP inhibition, resulting in gain of channel function. However, the impact of these mutations on channel expression has not been examined. Here, we show that PNDM mutations, including Q52R, V59G, V59M, R201C, R201H, and I296L, not only reduce channel ATP sensitivity but also impair channel expression at the cell surface to varying degrees. By tagging the PNDM Kir6.2 mutant V59G or R201H with an additional mutation, N160D, that confers voltage-dependent polyamine block of K(ATP) channels, we demonstrate that in simulated heterozygous state, all surface channels are either wild-type or heteromeric channels containing both wild-type and mutant Kir6.2 subunits. Comparison of the various PNDM mutations in their effects on channel nucleotide sensitivity and expression, as well as disease phenotype, suggests that both channel-gating defect and expression level may play a role in determining disease severity. Interestingly, sulfonylureas significantly increase surface expression of certain PNDM mutants, suggesting that the efficacy of sulfonylurea therapy may be compromised by the effect of these drugs on channel expression.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Csanády L. Statistical evaluation of ion-channel gating models based on distributions of log-likelihood ratios. Biophys J 2006; 90:3523-45. [PMID: 16461404 PMCID: PMC1440734 DOI: 10.1529/biophysj.105.075135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 01/12/2006] [Indexed: 11/18/2022] Open
Abstract
The distributions of log-likelihood ratios (DeltaLL) obtained from fitting ion-channel dwell-time distributions with nested pairs of gating models (Xi, full model; Xi(R), submodel) were studied both theoretically and using simulated data. When Xi is true, DeltaLL is asymptotically normally distributed with predictable mean and variance that increase linearly with data length (n). When Xi(R) is true and corresponds to a distinct point in full parameter space, DeltaLL is Gamma-distributed (2DeltaLL is chi-square). However, when data generated by an l-component multiexponential distribution are fitted by l+1 components, Xi(R) corresponds to an infinite set of points in parameter space. The distribution of DeltaLL is a mixture of two components, one identically zero, the other approximated by a Gamma-distribution. This empirical distribution of DeltaLL, assuming Xi(R), allows construction of a valid log-likelihood ratio test. The log-likelihood ratio test, the Akaike information criterion, and the Schwarz criterion all produce asymmetrical Type I and II errors and inefficiently recognize Xi, when true, from short datasets. A new decision strategy, which considers both the parameter estimates and DeltaLL, yields more symmetrical errors and a larger discrimination power for small n. These observations are explained by the distributions of DeltaLL when Xi or Xi(R) is true.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, and Neurochemical Group of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|