1
|
Li Z, Shang D. NOD1 and NOD2: Essential Monitoring Partners in the Innate Immune System. Curr Issues Mol Biol 2024; 46:9463-9479. [PMID: 39329913 PMCID: PMC11430502 DOI: 10.3390/cimb46090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain containing 1 (NOD1) and NOD2 are pivotal cytoplasmic pattern-recognition receptors (PRRs) that exhibit remarkable evolutionary conservation. They possess the ability to discern specific peptidoglycan (PGN) motifs, thereby orchestrating innate immunity and contributing significantly to immune homeostasis maintenance. The comprehensive understanding of both the structure and function of NOD1 and NOD2 has been extensively elucidated. These receptors proficiently recognize an array of damage-associated molecular patterns (DAMPs) as well as pathogen-associated molecular patterns (PAMPs), subsequently mediating inflammatory responses and autophagy. In recent years, emerging evidence has highlighted the crucial roles played by NOD1 and NOD2 in regulating infectious diseases, metabolic disorders, cancer, and autoimmune conditions, among others. Perturbation in either their loss or excessive activation can detrimentally impact immune homeostasis. This review offers a comprehensive overview of the structural characteristics, subcellular localization, activation mechanisms, and significant roles of NOD1 and NOD2 in innate immunity and related disease.
Collapse
Affiliation(s)
- Zhenjia Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
2
|
Poggio P, Rocca S, Fusella F, Ferretti R, Ala U, D'Anna F, Giugliano E, Panuzzo C, Fontana D, Palumbo V, Carrà G, Taverna D, Gambacorti-Passerini C, Saglio G, Fava C, Piazza R, Morotti A, Orso F, Brancaccio M. miR-15a targets the HSP90 co-chaperone Morgana in chronic myeloid leukemia. Sci Rep 2024; 14:15089. [PMID: 38956394 PMCID: PMC11220062 DOI: 10.1038/s41598-024-65404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Morgana is a ubiquitous HSP90 co-chaperone protein coded by the CHORDC1 gene. Morgana heterozygous mice develop with age a myeloid malignancy resembling human atypical myeloid leukemia (aCML), now renamed MDS/MPN with neutrophilia. Patients affected by this pathology exhibit low Morgana levels in the bone marrow (BM), suggesting that Morgana downregulation plays a causative role in the human malignancy. A decrease in Morgana expression levels is also evident in the BM of a subgroup of Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) patients showing resistance or an incomplete response to imatinib. Despite the relevance of these data, the mechanism through which Morgana expression is downregulated in patients' bone marrow remains unclear. In this study, we investigated the possibility that Morgana expression is regulated by miRNAs and we demonstrated that Morgana is under the control of four miRNAs (miR-15a/b and miR-26a/b) and that miR-15a may account for Morgana downregulation in CML patients.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Down-Regulation
- Gene Expression Regulation, Leukemic
- HSP90 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Chaperones/metabolism
- Molecular Chaperones/genetics
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberta Ferretti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Flora D'Anna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Giugliano
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valeria Palumbo
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Novara, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
3
|
Li H, Jiang Y, Chen J, Li Z, Zhang R, Wei Y, Zhao Y, Shen S, Chen F. Systematic characterization of m6A proteomics across 12 cancer types: a multi-omics integration study. Mol Omics 2024; 20:103-114. [PMID: 37942799 DOI: 10.1039/d3mo00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The modification patterns of N6-methyladenosine (m6A) regulators and interacting genes are deeply involved in tumors. However, the effect of m6A modification patterns on human proteomics remains largely unknown. We evaluated the molecular characteristics and clinical relevance of m6A modification proteomics patterns among 1013 pan-cancer samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). More than half of the m6A proteins were expressed at higher levels in tumor tissues and presented oncogenic characteristics. Furthermore, we performed multi-omics analyses integrating with transcriptomics data of m6A regulators and interactive coding and non-coding RNAs and developed a m6A multi-omics signature to identify potential m6A modification target proteins across global proteomics. It was significantly associated with overall survival in nine cancer types, tumor mutation burden (P = 0.01), and immune checkpoints including PD-L1 (P = 4.9 × 10-8) and PD-1 (P < 0.01). We identified 51 novel proteins associated with the multi-omics signature (PFDR < 0.05). These proteins were functional through pathway enrichment analyses. The protein with the highest hit frequency was CHORDC1, which was significantly up-regulated in tumor tissues in nine cancer types. Its higher abundance was significantly associated with a poorer prognosis in seven cancer types. The identified m6A target proteins might provide infomation for the study of molecular mechanism of cancer.
Collapse
Affiliation(s)
- Hongru Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yunke Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Zaiming Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing 211166, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| |
Collapse
|
4
|
Xiao J, Guo W, Han Z, Xu Y, Xing Y, Phillips CJC, Shi B. The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions. Animals (Basel) 2024; 14:518. [PMID: 38338161 PMCID: PMC10854601 DOI: 10.3390/ani14030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Cold conditions in northern China during winter may reduce sheep growth and affect their health, especially if they are young, unless housing is provided. We allocated 45 two-month-old female lambs to be housed in an enclosed building, a polytunnel, or kept outdoors, for 28 days. The daily weight gain and scalp and ear skin temperature of outdoor lambs were less than those of lambs that were housed in either a house or polytunnel; however, rectal temperature was unaffected by treatment. There was a progressive change in blood composition over time, and by the end of the experiment, outdoor lambs had reduced total antioxidant capacity (T-AOC), catalase (CAT), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) and increased malondialdehyde compared to those in the house or polytunnel. In relation to immune responses in the lambs' serum, in the polytunnel, immunoglobulin A (IgA), tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) were higher and immunoglobulin G (IgG) lower compared with the concentrations in lambs that were outdoors. Over the course of the experiment, genes expressing heat shock proteins and antioxidant enzymes increased in lambs in the outdoor treatment, whereas they decreased in lambs in the indoor treatments. It is concluded that although there were no treatment effects on core body temperature, the trends for progressive changes in blood composition and gene expression indicate that the outdoor lambs were not physiologically stable; hence, they should not be kept outdoors in these environmental conditions for long periods.
Collapse
Affiliation(s)
- Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Zhipeng Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Science, Estonia University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.X.); (W.G.); (Z.H.); (Y.X.); (Y.X.)
| |
Collapse
|
5
|
Dixon CL, Wu A, Fairn GD. Multifaceted roles and regulation of nucleotide-binding oligomerization domain containing proteins. Front Immunol 2023; 14:1242659. [PMID: 37869013 PMCID: PMC10585062 DOI: 10.3389/fimmu.2023.1242659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.
Collapse
Affiliation(s)
| | - Amy Wu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Haridevamuthu B, Guru A, Velayutham M, Snega Priya P, Arshad A, Arockiaraj J. Long non‐coding RNA, a supreme post‐transcriptional immune regulator of bacterial or virus‐driven immune evolution in teleost. REVIEWS IN AQUACULTURE 2023; 15:163-178. [DOI: 10.1111/raq.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2023]
Abstract
AbstractThe global aquaculture boom, fuelled by a reduction in wild population and detection of novel viruses, has created a demanding market, hence, there is a pressing need to investigate the immune system of fish, further. As the most diverse community of vertebrates and a central contributor to the progressing global aquaculture market, teleost continues to draw vast scientific interest. Recent breakthroughs in multi‐omics technologies have provided a platform to understand the role of long non‐coding RNA (lncRNA) in the host immune system during infection. Emerging evidence shows that teleost lncRNA might have a regulatory role in immune responses, mostly through lncRNA–microRNA (miRNA) sponging. Teleost lncRNA shares a functionally active short sequence complement to target the miRNA which is conserved among the several fish species. Recent report suggests that rhabdovirus exploits a lncRNA in teleost and, to dodge the host immune mechanism and negatively regulate the immune system. This observation reveals the essentiality of lncRNA in pathogen‐driven immunity in teleost. Reports available on the function of teleost lncRNA are still in early stages and experimental verifications are a limiting factor. Unravelling the lncRNA‐mediated immune regulation in fishes could be used against the invading pathogens to strengthen the aquaculture production. This review elaborates on the experimentally identified and functionally characterized lncRNA and its regulatory role in the teleost immune response during infection and pathogen‐driven host immune evolution, which could eventually lead to achieving high standards in aquaculture productivity.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
7
|
Zheng W, Su H, Lv X, Xin S, Xu T. Exon-Intron Circular RNA circRNF217 Promotes Innate Immunity and Antibacterial Activity in Teleost Fish by Reducing miR-130-3p Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1099-1114. [PMID: 35101892 DOI: 10.4049/jimmunol.2100890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Circular RNA (circRNA) is produced by splicing head to tail and is widely distributed in multicellular organisms, and circRNA reportedly can participate in various cell biological processes. In this study, we discovered a novel exon-intron circRNA derived from probable E3 ubiquitin-protein ligase RNF217 (RNF217) gene, namely, circRNF217, which was related to the antibacterial responses in teleost fish. Results indicated that circRNF217 played essential roles in host antibacterial immunity and inhibited the Vibrio anguillarum invasion into cells. Our study also found a microRNA miR-130-3p, which could inhibit antibacterial immune response and promote V. anguillarum invasion into cells by targeting NOD1. Moreover, we also found that the antibacterial effect inhibited by miR-130-3p could be reversed with circRNF217. In mechanism, our data revealed that circRNF217 was a competing endogenous RNA of NOD1 by sponging miR-130-3p, leading to activation of the NF-κB pathway and then enhancing the innate antibacterial responses. In addition, we also found that circRNF217 can promote the antiviral response caused by Siniperca chuatsi rhabdovirus through targeting NOD1. Our study provides new insights for understanding the impact of circRNA on host-pathogen interactions and formulating fish disease prevention to resist the severely harmful V. anguillarum infection.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hui Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; and.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Pei G. Identification of Novel Endogenous NOD Ligands: Quantitative Analysis of Binding Affinities of NOD1 or NOD2 with Sphingosine-1-Phosphate Using Microscale Thermophoresis. Methods Mol Biol 2022; 2523:151-160. [PMID: 35759196 DOI: 10.1007/978-1-0716-2449-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleotide binding oligomerization domain-containing protein 1 (NOD1) and NOD2 have been identified as intracellular receptors for bacterial peptidoglycan for almost two decades; however, the direct binding with their respective ligands has only been recently demonstrated due to the difficulty of achieving large quantity of proteins with high purity. Here we describe a strategy combining immunoprecipitation of GFP-tagged proteins and microscale thermophoresis (MST) for efficient one-step purification of NOD1-GFP and NOD2-GFP and easy measurement of the binding affinities of NOD1 or NOD2 with sphingosine-1-phosphate (S1P) using small amount of proteins (nM range). This method will allow the identification of novel agonists/antagonists for NOD1/2.
Collapse
Affiliation(s)
- Gang Pei
- Institute for Immunology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| |
Collapse
|
9
|
Schaefer-Ramadan S, Aleksic J, Al-Thani NM, Mohamoud YA, Hill DE, Malek JA. Scaling-up a fragment-based protein-protein interaction method using a human reference interaction set. Proteins 2021; 90:959-972. [PMID: 34850971 PMCID: PMC9299658 DOI: 10.1002/prot.26288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
Protein–protein interactions (PPIs) are essential in understanding numerous aspects of protein function. Here, we significantly scaled and modified analyses of the recently developed all‐vs‐all sequencing (AVA‐Seq) approach using a gold‐standard human protein interaction set (hsPRS‐v2) containing 98 proteins. Binary interaction analyses recovered 20 of 47 (43%) binary PPIs from this positive reference set (PRS), comparing favorably with other methods. However, the increase of 20× in the interaction search space for AVA‐Seq analysis in this manuscript resulted in numerous changes to the method required for future use in genome‐wide interaction studies. We show that standard sequencing analysis methods must be modified to consider the possible recovery of thousands of positives among millions of tested interactions in a single sequencing run. The PRS data were used to optimize data scaling, auto‐activator removal, rank interaction features (such as orientation and unique fragment pairs), and statistical cutoffs. Using these modifications to the method, AVA‐Seq recovered >500 known and novel PPIs, including interactions between wild‐type fragments of tumor protein p53 and minichromosome maintenance complex proteins 2 and 5 (MCM2 and MCM5) that could be of interest in human disease.
Collapse
Affiliation(s)
| | - Jovana Aleksic
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Nayra M Al-Thani
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Yasmin A Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| |
Collapse
|
10
|
Seclì L, Avalle L, Poggio P, Fragale G, Cannata C, Conti L, Iannucci A, Carrà G, Rubinetto C, Miniscalco B, Hirsch E, Poli V, Morotti A, De Andrea M, Turco E, Cavallo F, Fusella F, Brancaccio M. Targeting the extracellular HSP90 co-chaperone Morgana inhibits cancer cell migration and promotes anti-cancer immunity. Cancer Res 2021; 81:4794-4807. [PMID: 34193441 DOI: 10.1158/0008-5472.can-20-3150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) is secreted by cancer cells into the extracellular milieu, where it exerts pro-tumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a monoclonal antibody targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, this data defines Morgana as a new player in the HSP90 extracellular interactome and suggests that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Laura Seclì
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Lidia Avalle
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Pietro Poggio
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Giuseppe Fragale
- Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences - Molecular Biotechnology Center, University of Turin
| | - Andrea Iannucci
- CAAD-Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin
| | | | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Marco De Andrea
- Public Health and Pediatric Sciences, University of Turin, Medical School
| | - Emilia Turco
- Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Federica Fusella
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Mara Brancaccio
- Molecular Biotechnology and Health Sciences, University of Turin
| |
Collapse
|
11
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
12
|
Zheng W, Chu Q, Xu T. The long noncoding RNA NARL regulates immune responses via microRNA-mediated NOD1 downregulation in teleost fish. J Biol Chem 2021; 296:100414. [PMID: 33581111 PMCID: PMC7966872 DOI: 10.1016/j.jbc.2021.100414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that the long noncoding RNA (lncRNA) is a major regulator and participates in the regulation of various physiological and pathological processes, such as cell proliferation, differentiation, metastasis, and apoptosis. Unlike mammals, however, the study of lncRNA in lower invertebrates is just beginning and the extent of lncRNA-mediate regulation remains unclear. Here, we for the first time identify an lncRNA, termed nucleotide oligomerization domain 1 (NOD1) antibacterial and antiviral-related lncRNA (NARL), as a key regulator for innate immunity in teleost fish. We found that NOD1 plays an important role in the antibacterial and antiviral process in fish and that the microRNA miR-217-5p inhibits NOD1 expression and thus weakens the NF-κB and the IRF3-driven signaling pathway. Furthermore, our results indicated that NARL functions as a competing endogenous RNA (ceRNA) for miR-217-5p to regulate protein abundance of NOD1; thus, invading microorganisms are eliminated and immune responses are promoted. Our study also demonstrates the regulation mechanism that lncRNA NARL can competitive adsorption miR-217-5p to regulate the miR-217-5p/NOD1 axis is widespread in teleost fish. Taken together, our results reveal that NARL in fish is a critical positive regulator of innate immune responses to viral and bacterial infection by suppressing a feedback to NOD1-NF-κB/IRF3-mediated signaling.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
MicroRNA negatively regulates NF-κB-mediated immune responses by targeting NOD1 in the teleost fish Miichthys miiuy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:803-815. [PMID: 32815068 DOI: 10.1007/s11427-020-1777-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs (miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNA-mediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide (LPS) treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1 (NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa (NF-kB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.
Collapse
|
14
|
Fusella F, Seclì L, Cannata C, Brancaccio M. The one thousand and one chaperones of the NF-κB pathway. Cell Mol Life Sci 2020; 77:2275-2288. [PMID: 31811308 PMCID: PMC11104964 DOI: 10.1007/s00018-019-03402-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
The NF-κB pathway represents a crucial signaling mechanism in sensing and integrating a multitude of environmental and intracellular stimuli and directing a coordinated response that from the cellular level may impact on the entire organism. A plethora of chaperone proteins work at multiple steps of the pathway, from membrane receptor activation to transcription factor binding to DNA. Indeed, chaperones are required to assist protein conformational changes, to assemble supramolecular complexes and to regulate protein ubiquitination, required for pathway activation. Some chaperones acquired a role as integral components of the signaling complexes, needed for signal progression. Here we describe the chaperones involved in the NF-κB pathway and their specific roles in the different contexts.
Collapse
Affiliation(s)
- Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Cristiana Cannata
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
15
|
Palumbo V, Tariq A, Borgal L, Metz J, Brancaccio M, Gatti M, Wakefield JG, Bonaccorsi S. Drosophila Morgana is an Hsp90-interacting protein with a direct role in microtubule polymerisation. J Cell Sci 2020; 133:jcs236786. [PMID: 31907206 PMCID: PMC6983718 DOI: 10.1242/jcs.236786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Morgana (Mora, also known as CHORD in flies) and its mammalian homologue, called CHORDC1 or CHP1, is a highly conserved cysteine and histidine-rich domain (CHORD)-containing protein that has been proposed to function as an Hsp90 co-chaperone. Morgana deregulation promotes carcinogenesis in both mice and humans while, in Drosophila, loss of mora causes lethality and a complex mitotic phenotype that is rescued by a human morgana transgene. Here, we show that Drosophila Mora localises to mitotic spindles and co-purifies with the Hsp90-R2TP-TTT supercomplex and with additional well-known Hsp90 co-chaperones. Acute inhibition of Mora function in the early embryo results in a dramatic reduction in centrosomal microtubule stability, leading to small spindles nucleated from mitotic chromatin. Purified Mora binds to microtubules directly and promotes microtubule polymerisation in vitro, suggesting that Mora directly regulates spindle dynamics independently of its Hsp90 co-chaperone role.
Collapse
Affiliation(s)
- Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ammarah Tariq
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Lori Borgal
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy Metz
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Mara Brancaccio
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Torino, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, 00185 Rome, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
| |
Collapse
|
16
|
McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:65-109. [PMID: 31997773 DOI: 10.1016/bs.apcsb.2019.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pattern recognition receptors (PRRs) are a key part of the innate immune system, the body's first line of defense against infection and tissue damage. This superfamily of receptors including Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs) and RIG-like receptors (RLRs) are responsible for initiation of the inflammatory response by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) during infection or in molecules released following tissue damage during acute or chronic disease states (such as sepsis or arthritis). These receptors are widely expressed and located on the cell surface, in intracellular compartments or in the cytoplasm can detect a single or subset of molecules including lipoproteins, carbohydrates or nucleic acids. In response, they initiate an intracellular signaling cascade that culminates in the synthesis and release of cytokines, chemokines and vasoactive molecules. These steps are necessary to maintain tissue homeostasis and remove potentially dangerous pathogens. However, during extreme or acute responses or during chronic disease, this can be damaging and even lead to death. Therefore, it is thought that targeting such receptors may offer a therapeutic approach in chronic inflammatory diseases or in cases of acute infection leading to sepsis. Herein, the current knowledge on the molecular biology of PRRs is reviewed along with their association with inflammatory and infectious diseases. Finally, the testing of therapeutic compounds and their future merit as targets is discussed.
Collapse
|
17
|
Foot-and-Mouth Disease Virus Antagonizes NOD2-Mediated Antiviral Effects by Inhibiting NOD2 Protein Expression. J Virol 2019; 93:JVI.00124-19. [PMID: 30894473 DOI: 10.1128/jvi.00124-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of nucleotide-binding oligomerization domain 2 (NOD2) in foot-and-mouth disease virus (FMDV)-infected cells remains unknown. Here, we showed that FMDV infection activated NOD2-mediated beta interferon (IFN-β) and nuclear factor-κB (NF-ĸB) signaling pathways. NOD2 inhibited FMDV replication in the infected cells. FMDV infection triggered NOD2 transcription, while it reduced the abundance of NOD2 protein. Our results revealed that FMDV 2B, 2C, and 3C proteinase (3Cpro) were responsible for the decrease in NOD2 protein levels. 3Cpro is a viral proteinase that can cleave multiple host proteins and limit protein synthesis. Our previous studies determined that FMDV 2B suppressed protein expression of RIG-I and LGP2. Here, we found that 3Cpro and 2B also decreased NOD2 expression. However, this is the first report that 2C induced the reduction of NOD2 protein levels. We determined that both 2B- and 2C-induced decreases in NOD2 were independent of the cleavage of host eukaryotic translation initiation factor 4 gamma (eIF4G), induction of cellular apoptosis, or proteasome, lysosome, and caspase pathways. The interactions between NOD2 and 2B or 2C were observed in the context of viral infection. The carboxyl-terminal amino acids 105 to 114 and 135 to 144 of 2B were essential for the reduction of NOD2, while the residues 105 to 114 were required for the interaction. Amino acids 116 to 260 of the carboxyl terminus of 2C were essential for the interaction, while truncated 2C mutants did not reduce NOD2. These data suggested novel antagonistic mechanisms of FMDV that were mediated by 2B, 2C, and 3Cpro proteins.IMPORTANCE NOD2 was identified as a cytoplasmic viral pattern recognition receptor in 2009. Subsequently, many viruses were reported to activate NOD2-mediated signaling pathways. This study demonstrated that FMDV infection activated NOD2-mediated IFN-β and NF-ĸB signaling pathways. Host cells have developed multiple strategies against viral infection; however, viruses have evolved many strategies to escape host defenses. FMDV has evolved multiple mechanisms to inhibit host type I IFN production. Here, we showed that NOD2 suppressed FMDV replication during viral infection. FMDV 2B, 2C, and 3Cpro decreased NOD2 protein expression by different mechanisms to promote viral replication. This study provided new insight into the immune evasion mechanisms mediated by FMDV and identified 2B, 2C, and 3Cpro as antagonistic factors for FMDV to evade host antiviral responses.
Collapse
|
18
|
Sengar GS, Kant R, Deb R, Verma P. Small interfering RNA based knock down of acute heat shock and or GGA inducible bovine heat shock protein 70 may interfere invitro expression pattern of TLR2/4 and NOD1/2. J Therm Biol 2018; 77:75-85. [DOI: 10.1016/j.jtherbio.2018.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/16/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
|
19
|
Siligardi G, Zhang M, Prodromou C. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy. Front Mol Biosci 2018; 4:95. [PMID: 29387685 PMCID: PMC5776081 DOI: 10.3389/fmolb.2017.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer) or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule) and an asymmetric complex (Sgt11-Hsp902-Rar11). The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat) in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD)-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.
Collapse
Affiliation(s)
| | - Minghao Zhang
- Structural genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
20
|
The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8:1636. [PMID: 29158506 PMCID: PMC5696377 DOI: 10.1038/s41467-017-01829-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor involved in the regulation of multiple physiological and pathological cellular processes, including inflammation, cell survival, proliferation, and cancer cell metastasis. NF-κB is frequently hyperactivated in several cancers, including triple-negative breast cancer. Here we show that NF-κB activation in breast cancer cells depends on the presence of the CHORDC1 gene product Morgana, a previously unknown component of the IKK complex and essential for IκBα substrate recognition. Morgana silencing blocks metastasis formation in breast cancer mouse models and this phenotype is reverted by IκBα downregulation. High Morgana expression levels in cancer cells decrease recruitment of natural killer cells in the first phases of tumor growth and induce the expression of cytokines able to attract neutrophils in the primary tumor, as well as in the pre-metastatic lungs, fueling cancer metastasis. In accordance, high Morgana levels positively correlate with NF-κB target gene expression and poor prognosis in human patients. NF-κB regulates inflammation, cell survival, proliferation, and metastasis and is often hyperactivated in triple-negative breast cancer. Here the authors show that Morgana, a protein highly expressed in triple-negative breast cancers, drives NF-kB activation to promote metastasis and neutrophil recruitment.
Collapse
|
21
|
Zhu X, Xiao K, Cui H, Hu J. Overexpression of the Prunus sogdiana NBS-LRR Subgroup Gene PsoRPM2 Promotes Resistance to the Root-Knot Nematode Meloidogyne incognita in Tobacco. Front Microbiol 2017; 8:2113. [PMID: 29163405 PMCID: PMC5671597 DOI: 10.3389/fmicb.2017.02113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Root-knot nematodes (RKNs), particularly Meloidogyne incognita, are the most devastating soil-borne pathogens that significantly affect the production of Prunus spp. fruit. RKN infection is difficult to control and consequently causes massive yield losses each year. However, several germplasms of wild Prunus spp. have been shown to display resistance to M. incognita. Consequently, both the isolation of novel plant resistance (R) genes and the characterization of their resistance mechanisms are important strategies for future disease control. R proteins require the co-chaperone protein HSP90-SGT1-RAR1 to achieve correct folding, maturation, and stabilization. Here, we used homologous cloning to isolate the R gene PsoRPM2 from the RKN-resistant species Prunus sogdiana. PsoRPM2 was found to encode a TIR-NB-LRR-type protein and react with significantly elevated PsoRPM2 expression levels in response to RKN infection. Transient expression assays indicated PsoRPM2 to be located in both the cytoplasm and the nucleus. Four transgenic tobacco lines that heterologously expressed PsoRPM2 showed enhanced resistance to M. incognita. Yeast two-hybrid analysis and bimolecular fluorescence complementation analysis demonstrated that both PsoRAR1 and PsoRPM2 interacted with PsoHSP90-1 and PsoSGT1, but not with one another. These results indicate that the observed PsoRPM2-mediated RKN resistance requires both PsoHSP90-1 and PsoSGT1, further suggesting that PsoRAR1 plays a functionally redundant role in the HSP90-SGT1-RAR1 co-chaperone.
Collapse
Affiliation(s)
| | | | | | - Jianfang Hu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases - a 'Nod' in the right direction. Immunology 2016; 150:237-247. [PMID: 27706808 DOI: 10.1111/imm.12677] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs) are a family of 23 receptors known as pattern recognition receptors; they are expressed in many cell types and play a key role in the innate immune response. The NLRs are activated by pathogen-associated molecular patterns, which include structurally conserved molecules present on the surfaces of bacteria. The activation of these NLRs by pathogens results in the downstream activation of signalling kinases and transcription factors, culminating in the transcription of genes coding for pro-inflammatory factors. Expression of NLR is altered in many cellular, physiological and disease states. There is a lack of understanding of the mechanisms by which NLR expression is regulated, particularly in chronic inflammatory states. Genetic polymorphisms and protein interactions are included in such mechanisms. This review seeks to examine the current knowledge regarding the regulation of this family of receptors and their signalling pathways as well as how their expression changes in disease states with particular focus on NOD1 and NOD2 in inflammatory bowel diseases among others.
Collapse
Affiliation(s)
- Claire L Feerick
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Brancaccio M, Rocca S, Seclì L, Busso E, Fusella F. The double face of Morgana in tumorigenesis. Oncotarget 2016; 6:42603-12. [PMID: 26460959 PMCID: PMC4767456 DOI: 10.18632/oncotarget.6058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023] Open
Abstract
Morgana is a chaperone protein able to bind to ROCK I and II and to inhibit their kinase activity. Rho kinases are multifunctional proteins involved in different cellular processes, including cytoskeleton organization, centrosome duplication, cell survival and proliferation. In human cancer samples Morgana appears to be either downregulated or overexpressed, and experimental evidence indicate that Morgana behaves both as an oncosuppressor and as a proto-oncogene. Our most recent findings demonstrated that if on the one hand low Morgana expression levels, by inducing ROCK II hyperactivation, cause centrosome overduplication and genomic instability, on the other hand, Morgana overexpression induces tumor cell survival and chemoresistance through the ROCK I-PTEN-AKT axis. Therefore, Morgana belongs to a new class of proteins, displaying both oncogenic and oncosuppressor features, depending on the specific cellular context.
Collapse
Affiliation(s)
- Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Busso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
24
|
Hong TJ, Hahn JS. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 2016; 478:1647-52. [PMID: 27591899 DOI: 10.1016/j.bbrc.2016.08.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expression level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Sorge M, Brancaccio M. Melusin Promotes a Protective Signal Transduction Cascade in Stressed Hearts. Front Mol Biosci 2016; 3:53. [PMID: 27672636 PMCID: PMC5018970 DOI: 10.3389/fmolb.2016.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023] Open
Abstract
Melusin is a chaperone protein selectively expressed in heart and skeletal muscles. Melusin expression levels correlate with cardiac function in pre-clinical models and in human patients with aortic stenosis. Indeed, previous studies in several animal models indicated that Melusin plays a broad cardioprotective role in different pathological conditions. Chaperone proteins, besides playing a role in protein folding, are also able to facilitate supramolecular complex formation and conformational changes due to activation/deactivation of signaling molecules. This role sets chaperone proteins as crucial regulators of intracellular signal transduction pathways. In particular Melusin activates AKT and ERK1/2 signaling, protects cardiomyocytes from apoptosis and induces a compensatory hypertrophic response in several pathological conditions. Therefore, selective delivery of the Melusin gene in heart via cardiotropic adenoviral associated virus serotype 9 (AAV9), may represent a new promising gene-therapy approach for different cardiac pathologies.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| |
Collapse
|
26
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
27
|
Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol 2015; 4:rsob.140178. [PMID: 25520185 PMCID: PMC4281710 DOI: 10.1098/rsob.140178] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1β, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn's disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more ‘basic’ elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.
Collapse
Affiliation(s)
- Joseph P Boyle
- Department of Biochemistry, University of Cambridge, Cambridge, UK Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tom P Monie
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, UK
| |
Collapse
|
28
|
Wang GF, Fan R, Wang X, Wang D, Zhang X. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. PLANT MOLECULAR BIOLOGY 2015; 87:577-89. [PMID: 25697954 DOI: 10.1007/s11103-015-0298-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
29
|
Structural models of zebrafish (Danio rerio) NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations. PLoS One 2015; 10:e0121415. [PMID: 25811192 PMCID: PMC4374677 DOI: 10.1371/journal.pone.0121415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/01/2015] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved ‘Lysine’ at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. ‘Proline’ of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.
Collapse
|
30
|
Morgana acts as an oncosuppressor in chronic myeloid leukemia. Blood 2015; 125:2245-53. [PMID: 25678499 DOI: 10.1182/blood-2014-05-575001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
We recently described morgana as an essential protein able to regulate centrosome duplication and genomic stability, by inhibiting ROCK. Here we show that morgana (+/-) mice spontaneously develop a lethal myeloproliferative disease resembling human atypical chronic myeloid leukemia (aCML), preceded by ROCK hyperactivation, centrosome amplification, and cytogenetic abnormalities in the bone marrow (BM). Moreover, we found that morgana is underexpressed in the BM of patients affected by atypical CML, a disorder of poorly understood molecular basis, characterized by nonrecurrent cytogenetic abnormalities. Morgana is also underexpressed in the BM of a portion of patients affected by Philadelphia-positive CML (Ph(+) CML) caused by the BCR-ABL oncogene, and in this condition, morgana underexpression predicts a worse response to imatinib, the standard treatment for Ph(+) CML. Thus, morgana acts as an oncosuppressor with different modalities: (1) Morgana underexpression induces centrosome amplification and cytogenetic abnormalities, and (2) in Ph(+) CML, it synergizes with BCR-ABL signaling, reducing the efficacy of imatinib treatment. Importantly, ROCK inhibition in the BM of patients underexpressing morgana restored the efficacy of imatinib to induce apoptosis, suggesting that ROCK inhibitors, combined with imatinib treatment, can overcome suboptimal responses in patients in which morgana is underexpressed.
Collapse
|
31
|
Fusella F, Ferretti R, Recupero D, Rocca S, Di Savino A, Tornillo G, Silengo L, Turco E, Cabodi S, Provero P, Pandolfi PP, Sapino A, Tarone G, Brancaccio M. Morgana acts as a proto-oncogene through inhibition of a ROCK-PTEN pathway. J Pathol 2014; 234:152-63. [PMID: 24615293 DOI: 10.1002/path.4341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/22/2022]
Abstract
Morgana/CHP-1 is a ubiquitously expressed protein able to inhibit ROCK II kinase activity. We have previously demonstrated that morgana haploinsufficiency leads to multiple centrosomes, genomic instability, and higher susceptibility to tumour development. While a large fraction of human cancers has shown morgana down-regulation, a small subset of tumours was shown to express high morgana levels. Here we demonstrate that high morgana expression in different breast cancer subtypes correlates with high tumour grade, mitosis number, and lymph node positivity. Moreover, morgana overexpression induces transformation in NIH-3T3 cells and strongly protects them from various apoptotic stimuli. From a mechanistic point of view, we demonstrate that morgana causes PTEN destabilization, by inhibiting ROCK activity, hence triggering the PI3K/AKT survival pathway. In turn, morgana down-regulation in breast cancer cells that express high morgana levels increases PTEN expression and leads to sensitization of cells to chemotherapy.
Collapse
Affiliation(s)
- Federica Fusella
- Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:427-39. [PMID: 24889324 DOI: 10.1111/tpj.12573] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/08/2023]
Abstract
Heat shock proteins (HSPs) serve as molecular chaperones for diverse client proteins in many biological processes. In plant immunity, cytosolic HSP90s participate in the assembly, stability control and/or activation of immune receptor complexes. In this paper we report that in addition to the well-established positive roles that HSP90 isoforms play in plant immunity, they are also involved in the negative regulation of immune receptor accumulation. Point mutations in two HSP90 genes, HSP90.2 and HSP90.3, were identified from a forward genetic screen designed to isolate mutants with enhanced disease resistance. We found that specific mutations in HSP90.2 and HSP90.3 lead to heightened accumulation of immune receptors, including SNC1, RPS2 and RPS4. HSP90s may assist SGT1 in the formation of SCF E3 ubiquitin ligase complexes that target immune receptors for degradation. Such regulation is critical for maintaining appropriate levels of immune receptor proteins to avoid autoimmunity.
Collapse
Affiliation(s)
- Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
When less becomes more: Optimization of protein expression in HEK293–EBNA1 cells using plasmid titration – A case study for NLRs. Protein Expr Purif 2014; 99:27-34. [DOI: 10.1016/j.pep.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
|
34
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Keestra AM, Bäumler AJ. Detection of enteric pathogens by the nodosome. Trends Immunol 2013; 35:123-30. [PMID: 24268520 DOI: 10.1016/j.it.2013.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/31/2023]
Abstract
Nucleotide-binding oligomerization domain protein (NOD)1 and NOD2 participate in signaling pathways that detect pathogen-induced processes, such as the presence of peptidoglycan fragments in the host cell cytosol, as danger signals. Recent work suggests that peptidoglycan fragments activate NOD1 indirectly, through activation of the small Rho GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1). Excessive activation of small Rho GTPases by virulence factors of enteric pathogens also triggers the NOD1 signaling pathway. Many enteric pathogens use virulence factors that alter the activation state of small Rho GTPases, thereby manipulating the host cell cytoskeleton of intestinal epithelial cells to promote bacterial attachment or entry. These data suggest that the NOD1 signaling pathway in intestinal epithelial cells provides an important sentinel function for detecting 'breaking and entering' by enteric pathogens.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA.
| |
Collapse
|
36
|
Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. PLANT, CELL & ENVIRONMENT 2013; 36:757-74. [PMID: 22994555 DOI: 10.1111/pce.12011] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
WRKY proteins form a large family of plant transcription factors implicated in the modulation of numerous biological processes, such as growth, development and responses to various environmental stresses. However, the roles of the majority WRKY family members, especially in non-model plants, remain poorly understood. We identified CaWRKY40 from pepper. Transient expression in onion epidermal cells showed that CaWRKY40 can be targeted to nuclei and activates expression of a W-box-containing reporter gene. CaWRKY40 transcripts are induced in pepper by Ralstonia solanacearum and heat shock. To assess roles of CaWRKY40 in plant stress responses we performed gain- and loss-of-function experiments. Overexpression of CaWRKY40 enhanced resistance to R. solanacearum and tolerance to heat shock in tobacco. In contrast, silencing of CaWRKY40 enhanced susceptibility to R. solanacearum and impaired thermotolerance in pepper. Consistent with its role in multiple stress responses, we found CaWRKY40 transcripts to be induced by signalling mechanisms mediated by the stress hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Overexpression of CaWRKY40 in tobacco modified the expression of hypersensitive response (HR)-associated and pathogenesis-related genes. Collectively, our results suggest that CaWRKY40 orthologs are regulated by SA, JA and ET signalling and coordinate responses to R. solanacearum attacks and heat stress in pepper and tobacco.
Collapse
Affiliation(s)
- Feng-Feng Dang
- College of Life Science National Education Minster Key laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS. Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem 2012. [PMID: 23184943 DOI: 10.1074/jbc.m112.398636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca(2+), which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca(2+). Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Kadota Y, Shirasu K. The HSP90 complex of plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:689-97. [PMID: 22001401 DOI: 10.1016/j.bbamcr.2011.09.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
39
|
Abstract
Inflammasome activation leads to caspase-1 activation, which causes the maturation and secretion of pro-IL-1β and pro-IL-18 among other substrates. A subgroup of the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins are key mediators of the inflammasome. Studies of gene-deficient mice and cells have implicated NLR inflammasomes in a host of responses to a wide range of microbial pathogens, inflammatory diseases, cancer, and metabolic and autoimmune disorders. Determining exactly how the inflammasome is activated in these diseases and disease models remains a challenge. This review presents and integrates recent progress in the field.
Collapse
Affiliation(s)
- Beckley K Davis
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599, USA.
| | | | | |
Collapse
|
40
|
Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 2010; 28:1687-702. [PMID: 21183612 DOI: 10.1093/molbev/msq349] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Distinguishing self from nonself and the onset of defense effector mechanisms upon recognition of pathogens are essential for the survival of all life forms in the animal kingdom. The family of nucleotide -binding and oligomeriszation domain-like receptors (NLRs) was first identified in vertebrates and comprises a group of pivotal sensor protein of the innate immune system for microbial cell wall components or danger signals. Here, we provide first evidence that early diverging metazoans have large and complex NLR repertoires. The cnidarian NACHT/NB-ARC genes include novel combinations of domains, and the number of one specific type (NB-ARC and tetratricopeptide repeat containing) in Hydra is particularly large. We characterize the transcript structure and expression patterns of a selected HyNLR, HyNLR type 1 and describe putative interaction partners. In a heterologous expression system, we show induced proximity recruitment of an effector caspase (HyDD-Caspase) to the HyNLR type 1 protein upon oligomerization indicating a potential role of caspase activation downstream of NLR activation in Hydra. These results add substantially to our understanding of the ancestral innate immune repertoire as well as providing the first insights into putative cytoplasmic defense mechanisms at the base of animal evolution.
Collapse
Affiliation(s)
- Christina Lange
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tinel A, Eckert MJ, Logette E, Lippens S, Janssens S, Jaccard B, Quadroni M, Tschopp J. Regulation of PIDD auto-proteolysis and activity by the molecular chaperone Hsp90. Cell Death Differ 2010; 18:506-15. [PMID: 20966961 DOI: 10.1038/cdd.2010.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In response to DNA damage, p53-induced protein with a death domain (PIDD) forms a complex called the PIDDosome, which either consists of PIDD, RIP-associated protein with a death domain and caspase-2, forming a platform for the activation of caspase-2, or contains PIDD, RIP1 and NEMO, important for NF-κB activation. PIDDosome activation is dependent on auto-processing of PIDD at two different sites, generating the fragments PIDD-C and PIDD-CC. Despite constitutive cleavage, endogenous PIDD remains inactive. In this study, we screened for novel PIDD regulators and identified heat shock protein 90 (Hsp90) as a major effector in both PIDD protein maturation and activation. Hsp90, together with p23, binds PIDD and inhibition of Hsp90 activity with geldanamycin efficiently disrupts this association and impairs PIDD auto-processing. Consequently, both PIDD-mediated NF-κB and caspase-2 activation are abrogated. Interestingly, PIDDosome formation itself is associated with Hsp90 release. Characterisation of cytoplasmic and nuclear pools of PIDD showed that active PIDD accumulates in the nucleus and that only cytoplasmic PIDD is bound to Hsp90. Finally, heat shock induces Hsp90 release from PIDD and PIDD nuclear translocation. Thus, Hsp90 has a major role in controlling PIDD functional activity.
Collapse
Affiliation(s)
- A Tinel
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH. Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 2010; 39:269-81. [PMID: 20670895 PMCID: PMC2935968 DOI: 10.1016/j.molcel.2010.05.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/19/2010] [Accepted: 05/10/2010] [Indexed: 01/09/2023]
Abstract
Hsp90-mediated function of NLR receptors in plant and animal innate immunity depends on the cochaperone Sgt1 and, at least in plants, on a cysteine- and histidine-rich domains (CHORD)-containing protein Rar1. Functionally, CHORD domains are associated with CS domains, either within the same protein, as in the mammalian melusin and Chp1, or in separate but interacting proteins, as in the plant Rar1 and Sgt1. Both CHORD and CS domains are independently capable of interacting with the molecular chaperone Hsp90 and can coexist in complexes with Hsp90. We have now determined the structure of an Hsp90-CS-CHORD ternary complex, providing a framework for understanding the dynamic nature of Hsp90-Rar1-Sgt1 complexes. Mutational and biochemical analyses define the architecture of the ternary complex that recruits nucleotide-binding leucine-rich repeat receptors (NLRs) by manipulating the structural elements to control the ATPase-dependent conformational cycle of the chaperone.
Collapse
Affiliation(s)
- Minghao Zhang
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Yasuhiro Kadota
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chrisostomos Prodromou
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Ken Shirasu
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Laurence H. Pearl
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK
| |
Collapse
|
43
|
Zhou X, Chen Q, Schaukowitch K, Kelsoe JR, Geyer MA. Insoluble DISC1-Boymaw fusion proteins generated by DISC1 translocation. Mol Psychiatry 2010; 15:669-72. [PMID: 20351725 PMCID: PMC2891102 DOI: 10.1038/mp.2009.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093,To whom correspondence should be addressed ()
| | - Qi Chen
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Katie Schaukowitch
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
44
|
Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci U S A 2010; 107:11056-61. [PMID: 20534456 DOI: 10.1073/pnas.1001269107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Olfactomedin 4 (OLFM4) is a glycoprotein that has been found to be up-regulated in inflammatory bowel diseases and Helicobacter pylori infected patients. However, its role in biological processes such as inflammation or other immune response is not known. In this study, we generated OLFM4 KO mice to investigate potential role(s) of OLFM4 in gastric mucosal responses to H. pylori infection. H. pylori colonization in the gastric mucosa of OLFM4 KO mice was significantly lower compared with WT littermates. The reduced bacterial load was associated with enhanced infiltration of inflammatory cells in gastric mucosa. Production and expression of proinflammatory cytokines/chemokines such as IL-1beta, IL-5, IL-12 p70, and MIP-1alpha was increased in OLFM4 KO mice compared with infected controls. Furthermore, we found that OLFM4 is a target gene of NF--kappaB pathway and has a negative feedback effect on NF-kappaB activation induced by H. pylori infection through a direct association with nucleotide oligomerization domain-1 (NOD1) and -2 (NOD2). Together these observations indicate that OLFM4 exerts considerable influence on the host defense against H. pylori infection acting through NOD1 and NOD2 mediated NF-kappaB activation and subsequent cytokines and chemokines production, which in turn inhibit host immune response and contribute to persistence of H. pylori colonization.
Collapse
|
45
|
Michowski W, Ferretti R, Wisniewska MB, Ambrozkiewicz M, Beresewicz M, Fusella F, Skibinska-Kijek A, Zablocka B, Brancaccio M, Tarone G, Kuznicki J. Morgana/CHP-1 is a novel chaperone able to protect cells from stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1043-9. [PMID: 20493909 DOI: 10.1016/j.bbamcr.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 11/19/2022]
Abstract
Morgana/CHP-1 (CHORD containing protein-1) has been recently shown to be necessary for proper cell divisions. However, the presence of the protein in postmitotic tissues such as brain and striated muscle suggests that morgana/CHP-1 has additional cellular functions. Here we show that morgana/CHP-1 behaves like an HSP90 co-chaperone and possesses an independent molecular chaperone activity towards denatured proteins. The expression time profile of morgana/Chp-1 in NIH3T3 cells in response to heat stress is similar to that of Hsp70, a classical effector of Heat Shock Factor-1 mediated stress response. Moreover, overexpression of morgana/CHP-1 in NIH3T3 cells leads to the increased stress resistance of the cells. Interestingly, morgana/Chp-1 upregulation in response to transient global brain ischemia lasts longer in ischemia-resistant regions of the gerbil hippocampus than in vulnerable ones, suggesting the involvement of morgana/CHP-1 in natural protective mechanisms in vivo.
Collapse
Affiliation(s)
- Wojciech Michowski
- International Institute of Molecular and Cell Biology; ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferretti R, Palumbo V, Di Savino A, Velasco S, Sbroggiò M, Sportoletti P, Micale L, Turco E, Silengo L, Palumbo G, Hirsch E, Teruya-Feldstein J, Bonaccorsi S, Pandolfi PP, Gatti M, Tarone G, Brancaccio M. Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev Cell 2010; 18:486-95. [PMID: 20230755 DOI: 10.1016/j.devcel.2009.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 11/04/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
Centrosome abnormalities lead to genomic instability and are a common feature of many cancer cells. Here we show that mutations in morgana/chp-1 result in centrosome amplification and lethality in both Drosophila and mouse, and that the fly centrosome phenotype is fully rescued by the human ortholog of morgana. In mouse cells, morgana forms a complex with Hsp90 and ROCK I and II, and directly binds ROCK II. Morgana downregulation promotes the interaction between ROCK II and nucleophosmin (NPM), leading to an increased ROCK II kinase activity, which results in centrosome amplification. Morgana(+/-) primary cells and mice display an increased susceptibility to neoplastic transformation. In addition, tumor tissue array histochemical analysis revealed that morgana is underexpressed in a large fraction of breast and lung human cancers. Thus, morgana/chp-1 appears to prevent both centrosome amplification and tumorigenesis.
Collapse
Affiliation(s)
- Roberta Ferretti
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kadota Y, Shirasu K, Guerois R. NLR sensors meet at the SGT1–HSP90 crossroad. Trends Biochem Sci 2010; 35:199-207. [DOI: 10.1016/j.tibs.2009.12.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 12/21/2022]
|
48
|
Xu J, James R. Genes related to immunity, as expressed in the alfalfa leafcutting bee, Megachile rotundata, during pathogen challenge. INSECT MOLECULAR BIOLOGY 2009; 18:785-794. [PMID: 19863668 DOI: 10.1111/j.1365-2583.2009.00927.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virtually nothing is known about disease resistance in solitary bees, so expressed sequence tag (EST) databases were developed to search for immune response genes in the alfalfa leafcutting bee. We identified 104 putative immunity-related genes from both healthy and pathogen-challenged bee larvae, and 12 more genes using PCR amplification. The genes identified coded for proteins with a wide variety of innate immune response functions, including pathogen recognition, phagocytosis, the prophenoloxidase cascade, melanization, coagulation and several signalling pathways. Some immune response genes were highly conserved with honey bee genes, and more distantly related to other insects. The data presented provides the first analysis of immune function in a solitary bee and provides a foundation for the further analysis of gene expression patterns in bees.
Collapse
Affiliation(s)
- J Xu
- Utah State University, Department of Biology, North Logan, UT 84322-5310, USA
| | | |
Collapse
|
49
|
|
50
|
Gano JJ, Simon JA. A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics 2009; 9:255-70. [PMID: 19875381 DOI: 10.1074/mcp.m900261-mcp200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Structural studies of the chaperone HSP90 have revealed that nucleotide and drug ligands induce several distinct conformational states; however, little is known how these conformations affect interactions with co-chaperones and client proteins. Here we use tandem affinity purification and LC-MS/MS to investigate the proteome-wide effects of ATP, ADP, and geldanamycin on the constituents of the human HSP90 interactome. We identified 52 known and novel components of HSP90 complexes that are regulated by these ligands, including several co-chaperones. Interestingly, our results also show that geldanamycin treatment causes HSP90 complexes to become significantly enriched for core transcription machinery, suggesting that HSP90 inhibition may have broad based effects on transcription and RNA processing. We further characterized a novel ADP-dependent HSP90 interaction with the cysteine- and histidine-rich domain (CHORD)-containing protein CHORDC1. We show that this interaction is stimulated by high ADP:ATP ratios in cell lysates and in vitro with purified recombinant proteins. Furthermore, we demonstrate that this interaction is dependent upon the ability of HSP90 to bind nucleotides and requires the presence of a linker region between the CHORD domains in CHORDC1. Together these findings suggest that the HSP90 interactome is dynamic with respect to nucleotide and drug ligands and that pharmacological inhibition of HSP90 may stimulate the formation of specific complexes.
Collapse
Affiliation(s)
- Jacob J Gano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|