1
|
Carter SD, Hampton CM, Langlois R, Melero R, Farino ZJ, Calderon MJ, Li W, Wallace CT, Tran NH, Grassucci RA, Siegmund SE, Pemberton J, Morgenstern TJ, Eisenman L, Aguilar JI, Greenberg NL, Levy ES, Yi E, Mitchell WG, Rice WJ, Wigge C, Pilli J, George EW, Aslanoglou D, Courel M, Freyberg RJ, Javitch JA, Wills ZP, Area-Gomez E, Shiva S, Bartolini F, Volchuk A, Murray SA, Aridor M, Fish KN, Walter P, Balla T, Fass D, Wolf SG, Watkins SC, Carazo JM, Jensen GJ, Frank J, Freyberg Z. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. SCIENCE ADVANCES 2020; 6:eaay9572. [PMID: 32270040 PMCID: PMC7112762 DOI: 10.1126/sciadv.aay9572] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.
Collapse
Affiliation(s)
- Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheri M. Hampton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Callen T. Wallace
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ngoc Han Tran
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stephanie E. Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenny I. Aguilar
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Nili L. Greenberg
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Elana S. Levy
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Edward Yi
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - William G. Mitchell
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily W. George
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Maïté Courel
- CNRS-UMR7622, Institut de Biologie Paris-Seine, Université Pierre & Marie Curie, 75252 Paris, France
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meir Aridor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter Walter
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Grant J. Jensen
- HHMI, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Carter SD, Mageswaran SK, Farino ZJ, Mamede JI, Oikonomou CM, Hope TJ, Freyberg Z, Jensen GJ. Distinguishing signal from autofluorescence in cryogenic correlated light and electron microscopy of mammalian cells. J Struct Biol 2017; 201:15-25. [PMID: 29078993 DOI: 10.1016/j.jsb.2017.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/09/2023]
Abstract
In cryogenic correlated light and electron microscopy (cryo-CLEM), frozen targets of interest are identified and located on EM grids by fluorescence microscopy and then imaged at higher resolution by cryo-EM. Whilst working with these methods, we discovered that a variety of mammalian cells exhibit strong punctate autofluorescence when imaged under cryogenic conditions (80 K). Autofluorescence originated from multilamellar bodies (MLBs) and secretory granules. Here we describe a method to distinguish fluorescent protein tags from these autofluorescent sources based on the narrower emission spectrum of the former. The method is first tested on mitochondria and then applied to examine the ultrastructural variability of secretory granules within insulin-secreting pancreatic beta-cell-derived INS-1E cells.
Collapse
Affiliation(s)
- Stephen D Carter
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shrawan K Mageswaran
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - João I Mamede
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, PA 15213, USA.
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute (HHMI), California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Hur YS, Kim KD, Paek SH, Yoo SH. Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 2010; 5:e11973. [PMID: 20700485 PMCID: PMC2916839 DOI: 10.1371/journal.pone.0011973] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The gliotransmitters released from astrocytes are deemed to play key roles in the glial cell-neuron communication for normal function of the brain. The gliotransmitters, such as glutamate, ATP, D-serine, neuropeptide Y, are stored in vesicles of astrocytes and secreted following the inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ releases. Yet studies on the identity of the IP3-dependent intracellular Ca2+ stores remain virtually unexplored. PRINCIPAL FINDINGS We have therefore studied the potential existence of the IP3-sensitive intracellular Ca2+ stores in the cytoplasm of astrocytes using human brain tissue samples in contrast to cultured astrocytes that had primarily been used in the past. It was thus found that secretory granule marker proteins chromogranins and secretogranin II localize in the large dense core vesicles of astrocytes, thereby confirming the large dense core vesicles as bona fide secretory granules. Moreover, consistent with the major IP3-dependent intracellular Ca2+ store role of secretory granules in secretory cells, secretory granules of astrocytes also contained all three (types 1, 2, and 3) IP3R isoforms. SIGNIFICANCE Given that the secretory granule marker proteins chromogranins and secretogranin II are high-capacity, low-affinity Ca2+ storage proteins and chromogranins interact with the IP3Rs to activate the IP3R/Ca2+ channels, i.e., increase both the mean open time and the open probability of the channels, these results imply that secretory granules of astrocytes function as the IP3-sensitive intracellular Ca2+ store.
Collapse
Affiliation(s)
- Yong Suk Hur
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| | - Ki Deok Kim
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Jongno Gu, Seoul, Korea
| | - Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| |
Collapse
|