1
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Galano M, Li Y, Li L, Sottas C, Papadopoulos V. Role of Constitutive STAR in Leydig Cells. Int J Mol Sci 2021; 22:2021. [PMID: 33670702 PMCID: PMC7922663 DOI: 10.3390/ijms22042021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Leydig cells contain significant amounts of constitutively produced steroidogenic acute regulatory protein (STAR; STARD1). Hormone-induced STAR plays an essential role in inducing the transfer of cholesterol into the mitochondria for hormone-dependent steroidogenesis. STAR acts at the outer mitochondrial membrane, where it interacts with a protein complex, which includes the translocator protein (TSPO). Mutations in STAR cause lipoid congenital adrenal hyperplasia (lipoid CAH), a disorder characterized by severe defects in adrenal and gonadal steroid production; in Leydig cells, the defects are seen mainly after the onset of hormone-dependent androgen formation. The function of constitutive STAR in Leydig cells is unknown. We generated STAR knockout (KO) MA-10 mouse tumor Leydig cells and showed that STAR KO cells failed to form progesterone in response to dibutyryl-cAMP and to TSPO drug ligands, but not to 22(R)-hydroxycholesterol, which is a membrane-permeable intermediate of the CYP11A1 reaction. Electron microscopy of STAR KO cells revealed that the number and size of lipid droplets were similar to those in wild-type (WT) MA-10 cells. However, the density of lipid droplets in STAR KO cells was drastically different than that seen in WT cells. We isolated the lipid droplets and analyzed their content by liquid chromatography-mass spectrometry. There was a significant increase in cholesteryl ester and phosphatidylcholine content in STAR KO cell lipid droplets, but the most abundant increase was in the amount of diacylglycerol (DAG); DAG 38:1 was the predominantly affected species. Lastly, we identified genes involved in DAG signaling and lipid metabolism which were differentially expressed between WT MA-10 and STAR KO cells. These results suggest that constitutive STAR in Leydig cells is involved in DAG accumulation in lipid droplets, in addition to cholesterol transport. The former event may affect cell functions mediated by DAG signaling.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (M.G.); (Y.L.); (L.L.); (C.S.)
| |
Collapse
|
3
|
Wolosz D, Walczak A, Szparecki G, Dwojak M, Winiarska M, Wolinska E, Gornicka B. Deleted in Liver Cancer 2 (DLC2) protein expression in hepatocellular carcinoma. Eur J Histochem 2019; 63. [PMID: 30827083 PMCID: PMC6383041 DOI: 10.4081/ejh.2019.2981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Deleted in Liver Cancer (DLC) proteins belong to the family of RhoGAPs and are believed to operate as negative regulators of the Rho family of small GTPases. So far, the role of the first identified member from the DLC family, DLC1, was established as a tumor suppressor in hepatocellular carcinoma. The function of its close family relative, DLC2 is unequivocal. In the present study we attempted to determine whether the loss of DLC2 is a common feature of hepatocellular carcinoma tissue. We examined two types of hepatocellular carcinomatypical and fibrolamellar one. Our analysis revealed that DLC2 protein is not diminished in cancer tissue when compared to non-cancerous liver specimens. What is more, we observed DLC2 to be more abundantly expressed in cancer tissue, particularly in tumors with the inflammation background. In addition, we found that DLC2 gene status was diploid in virtually all tumor samples examined. Our results indicate that DLC2 is not diminished in hepatocellular carcinoma cells. It appears that members of the DLC family, although structurally highly related, may function differently in cancer cells.
Collapse
|
4
|
Abstract
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Collapse
|
5
|
Braun AC, Olayioye MA. Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27:1643-51. [PMID: 25889896 DOI: 10.1016/j.cellsig.2015.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Rho GTPases function as molecular switches that connect changes of the external environment to intracellular signaling pathways. They are active at various subcellular sites and require fast and tight regulation to fulfill their role as transducers of extracellular stimuli. New imaging technologies visualizing the active states of Rho proteins in living cells elucidated the necessity of precise spatiotemporal activation of the GTPases. The local regulation of Rho proteins is coordinated by the interaction with different guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn on and off GTPase signaling to downstream effectors. GEFs and GAPs thus serve as critical signaling nodes that specify the amplitude and duration of a particular Rho signaling pathway. Despite their importance in Rho regulation, the molecular aspects underlying the spatiotemporal control of the regulators themselves are still largely elusive. In this review we will focus on the Deleted in Liver Cancer (DLC) family of RhoGAP proteins and summarize the evidence gathered over the past years revealing their different subcellular localizations that might account for isoform-specific functions. We will also highlight the importance of their tightly controlled expression in the context of neoplastic transformation.
Collapse
Affiliation(s)
- Anja C Braun
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
6
|
Barras D, Chevalier N, Zoete V, Dempsey R, Lapouge K, Olayioye MA, Michielin O, Widmann C. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide. J Biol Chem 2014; 289:23701-11. [PMID: 25008324 DOI: 10.1074/jbc.m114.576272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.
Collapse
Affiliation(s)
- David Barras
- From the Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Nadja Chevalier
- From the Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vincent Zoete
- the Molecular Modeling Group, Swiss Institute of Bioinformatics (SIB), Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Rosemary Dempsey
- From the Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Karine Lapouge
- the Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland, and
| | - Monilola A Olayioye
- the Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Olivier Michielin
- the Molecular Modeling Group, Swiss Institute of Bioinformatics (SIB), Quartier Sorge, Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Christian Widmann
- From the Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland,
| |
Collapse
|
7
|
Nasrallah A, Saykali B, Al Dimassi S, Khoury N, Hanna S, El-Sibai M. Effect of StarD13 on colorectal cancer proliferation, motility and invasion. Oncol Rep 2013; 31:505-15. [PMID: 24253896 DOI: 10.3892/or.2013.2861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/29/2013] [Indexed: 01/12/2023] Open
Abstract
Colon cancer is a cancer of the epithelial cells lining the colon. It is mainly divided into different stages according to the invasiveness and metastatic ability of the tumor. Many mutations are acquired which leads to the development of this malignancy. These occur in entities that greatly affect the cell cycle, cell signaling pathways and cell motility, which all involve the action of Rho GTPases. The protein of interest in the present study was DLC2, also known as StarD13 or START-GAP2, a GTPase-activating protein (GAP) for Rho and Cdc42. Literature data indicate that this protein is considered a tumor-suppressor in hepatocellular carcinoma. Previous research in our laboratory confirmed StarD13 as a tumor suppressor in astrocytoma and in breast cancer. In the present study, we investigated the role of StarD13 in colon cancer. When overexpressed, StarD13 was found to lead to a decrease in cell proliferation in colon cancer cells. Consistently, knockdown of StarD13 led to an increase in cell proliferation. This showed that, similarly to its role in astrocytoma and breast cancer, StarD13 appears to be a tumor suppressor in colon cancer as well. We also examined the role of StarD13 in cell motility. StarD13 knockdown resulted in the inhibition of 2D cell motility. This was due to the inhibition of Rho; consequently Rac-dependent focal complexes were not formed nor detached for the cells to move forward. However, StarD13 knockdown led to an increase in 3D cell motility. Although StarD13 was indeed a tumor suppressor in our colon cancer cells, as evidenced by its effect on cell proliferation, it was required for cancer cell invasion. The present study further describes the role of StarD13 as a tumor suppressor as well as a Rho GAP.
Collapse
Affiliation(s)
- Anita Nasrallah
- Department of Natural Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
RhoGTPases are defined as a family of 20 small G proteins playing important roles in almost every cellular process. RhoGTPases are guanine nucleotide-binding proteins existing in two forms: the active form which is GTP bound and the inactive one that being GDP bound. RhoGTPase-activating proteins known as RhoGAPs constitute one of the major classes of regulators of RhoGTPases. They act as negative regulators of the RhoGTPases by enhancing their slow intrinsic GTPase activity. STARD13, a GTPase activating protein (GAP) for RhoGTPases, has been described as a tumor suppressor in hepatocellular carcinoma. In the present review, we discuss the family of RhoGTPases, their regulation and their RhoGAPs, focusing mainly on STARD13.
Collapse
Affiliation(s)
- Sally El-Sitt
- Department of Natural Sciences, Lebanese American University, Beirut Campus, Beirut, Lebanon
| | | |
Collapse
|
9
|
Gao K, Li X, Hu G, Yang K, Tian B, Zhang Y. Expression of deleted in liver cancer 2 in colorectal cancer and its correlation with clinicopathological parameters. Oncol Lett 2012; 4:988-992. [PMID: 23162637 DOI: 10.3892/ol.2012.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 01/04/2023] Open
Abstract
Deleted in liver cancer 2 (DLC2) has been identified as a tumor suppressor gene. DLC2 is closely related to deleted in liver cancer 1 (DLC1) and is located at chromosome 13q12.3. The expression of DLC2 mRNA has been found in a wide range of cancers, including colorectal cancer (CRC). However, there are no available data on the expression status of DLC2 in Chinese patients with CRC and its correlation with clinicopathological parameters. The aim of this study was to investigate the expression levels of DLC2 mRNA and protein in Chinese patients with CRC and the correlation between DLC2 expression and clinicopathological parameters. To this end, real-time PCR, western blotting and immunohistochemistry were employed to detect DLC2 mRNA and protein expression in CRC and pericarcinomatous intestinal tissue (PCIT) specimens, which were obtained from 102 Chinese CRC patients who underwent surgical resection between October 2010 and February 2012. We also analyzed the correlations between DLC2 expression and the clinicopathological parameters of CRC patients. Our results showed that CRC tissues had significantly lower levels of DLC2 mRNA compared with PCITs (P<0.05); however, the protein expression levels were not significantly different between CRCs and PCITs. The expression levels of DLC2 mRNA and protein were significantly correlated with lymph node metastasis and tumor TNM stage. Additionally, DLC2 mRNA expression levels were also correlated with tumor histopathological degree (P<0.05). Collectively, our results suggest that the downregulated expression of DLC2 participates in CRC carcinogenesis, invasion and lymph node metastasis. Furthermore, our results imply that DLC2 is be a potential prognostic marker for CRC patients.
Collapse
Affiliation(s)
- Kai Gao
- Department of General Surgery, The Third Affiliated Hospital of Central South University, Central South University, Changsha, Hunan 410013, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Painful peripheral neuropathy is a dose-limiting complication of chemotherapy. Cisplatin produces a cumulative toxic effect on peripheral nerves, and 30-40% of cancer patients receiving this agent experience pain. By modeling cisplatin-induced hyperalgesia in mice with daily injections of cisplatin (1 mg/kg, i.p.) for 7 d, we investigated the anti-hyperalgesic effects of anandamide (AEA) and cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of AEA hydrolysis. Cisplatin-induced mechanical and heat hyperalgesia were accompanied by a decrease in the level of AEA in plantar paw skin. No changes in motor activity were observed after seven injections of cisplatin. Intraplantar injection of AEA (10 μg/10 μl) or URB597 (9 μg/10 μl) transiently attenuated hyperalgesia through activation of peripheral CB₁ receptors. Co-injections of URB597 (0.3 mg/kg daily, i.p.) with cisplatin decreased and delayed the development of mechanical and heat hyperalgesia. The effect of URB597 was mediated by CB₁ receptors since AM281 (0.33 mg/kg daily, i.p.) blocked the effect of URB597. Co-injection of URB597 also normalized the cisplatin-induced decrease in conduction velocity of Aα/Aβ-fibers and reduced the increase of ATF-3 and TRPV1 immunoreactivity in dorsal root ganglion (DRG) neurons. Since DRGs are a primary site of toxicity by cisplatin, effects of cisplatin were studied on cultured DRG neurons. Incubation of DRG neurons with cisplatin (4 μg/ml) for 24 h decreased the total length of neurites. URB597 (100 nM) attenuated these changes through activation of CB₁ receptors. Collectively, these results suggest that pharmacological facilitation of AEA signaling is a promising strategy for attenuating cisplatin-associated sensory neuropathy.
Collapse
|
11
|
El-Sitt S, Khalil BD, Hanna S, El-Sabban M, Fakhreddine N, El-Sibai M. DLC2/StarD13 plays a role of a tumor suppressor in astrocytoma. Oncol Rep 2012; 28:511-8. [PMID: 22614672 DOI: 10.3892/or.2012.1819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/08/2012] [Indexed: 11/06/2022] Open
Abstract
Astrocytomas are tumors occurring in young adulthood. Astrocytic tumors can be classified into four grades according to histologic features: grades I, II, III and grade IV. Malignant tumors, those of grades III and IV, are characterized by uncontrolled proliferation, which is known to be regulated by the family of Rho GTPases. StarD13, a GAP for Rho GTPases, has been described as a tumor suppressor in hepatocellular carcinoma. In the present study, IHC analysis on grades I-IV brain tissues from patients showed StarD13 to be overexpressed in grades III and IV astrocytoma tumors when compared to grades I and II. However, when we mined the REMBRANDT data, we found that the mRNA levels of StarD13 are indeed higher in the higher grades but much lower than the normal tissues. Knocking down StarD13 using siRNA led to a decrease in cell death and an increase in cell viability, proving that StarD13 is indeed a tumor suppressor in astrocytomas. This was found to be mainly through cell cycle arrest independently of apoptosis. Finally, we detected an increase in p-ERK in StarD13 knockdown cells, uncovering a potential link between Rho GTPases and ERK activation.
Collapse
Affiliation(s)
- Sally El-Sitt
- Department of Natural Sciences, The Lebanese American University, Beirut 1102 2801, Lebanon
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
13
|
Lukasik D, Wilczek E, Wasiutynski A, Gornicka B. Deleted in liver cancer protein family in human malignancies (Review). Oncol Lett 2011; 2:763-768. [PMID: 22866123 DOI: 10.3892/ol.2011.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/21/2011] [Indexed: 01/12/2023] Open
Abstract
The Deleted in Liver Cancer (DLC) protein family comprises proteins that exert their function mainly by the Rho GTPase-activating protein (GAP) domain and by regulation of the small GTPases. Since Rho GTPases are key factors in cell proliferation, polarity, cytoskeletal remodeling and migration, the aberrant function of their regulators may lead to cell transformation. One subgroup of these proteins is the DLC family. It was found that the first identified gene from this family, DLC1, is often lost in hepatocellular carcinoma and may be involved as a tumor suppressor in the liver. Subsequent studies evaluated the hypothesis that the DLC1 gene acts as a tumor suppressor, not only in liver cancer, but also in other types of cancer. Following DLC1, two other members of the DLC protein family, DLC2 and DLC3, were identified. However, limited published data are available concerning the role of these proteins in malignant transformation. This review focuses on the structure and the role of DLC1 and its relatives in physiological conditions and summarizes data published thus far regarding DLC function in the neoplastic process.
Collapse
Affiliation(s)
- D Lukasik
- Department of Pathology, Medical University of Warsaw, Warsaw 02-106, Poland
| | | | | | | |
Collapse
|
14
|
Deleted in liver cancer 2 (DLC2) was dispensable for development and its deficiency did not aggravate hepatocarcinogenesis. PLoS One 2009; 4:e6566. [PMID: 19668331 PMCID: PMC2718616 DOI: 10.1371/journal.pone.0006566] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/10/2009] [Indexed: 01/26/2023] Open
Abstract
DLC2 (deleted in liver cancer 2), a Rho GTPase-activating protein, was previously shown to be underexpressed in human hepatocellular carcinoma and has tumor suppressor functions in cell culture models. We generated DLC2-deficient mice to investigate the tumor suppressor role of DLC2 in hepatocarcinogenesis and the function of DLC2 in vivo. In this study, we found that, unlike homologous DLC1, which is essential for embryonic development, DLC2 was dispensable for embryonic development and DLC2-deficient mice could survive to adulthood. We also did not observe a higher incidence of liver tumor formation or diethylnitrosamine (DEN)-induced hepatocarcinogenesis in DLC2-deficient mice. However, we observed that DLC2-deficient mice were smaller and had less adipose tissue than the wild type mice. These phenotypes were not due to reduction of cell size or defect in adipogenesis, as observed in the 190B RhoGAP-deficient mouse model. Together, these results suggest that deficiency in DLC2 alone does not enhance hepatocarcinogenesis.
Collapse
|
15
|
de Tayrac M, Etcheverry A, Aubry M, Saïkali S, Hamlat A, Quillien V, Le Treut A, Galibert MD, Mosser J. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer 2009; 48:55-68. [PMID: 18828157 DOI: 10.1002/gcc.20618] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma multiforme shows multiple chromosomal aberrations, the impact of which on gene expression remains unclear. To investigate this relationship and to identify putative initiating genomic events, we integrated a paired copy number and gene expression survey in glioblastoma using whole human genome arrays. Loci of recurrent copy number alterations were combined with gene expression profiles obtained on the same tumor samples. We identified a set of 406 "cis-acting DNA targeted genes" corresponding to genomic aberrations with direct copy-number-driving changes in gene expression, defined as genes with either significantly concordant or correlated changes in DNA copy number and expression. Functional annotation revealed that these genes participate in key processes of cancer cell biology, providing insights into the genetic mechanisms driving glioblastoma. The robustness of the gene selection was validated on an external microarray data set including 81 glioblastomas and 23 non-neoplastic brain samples. The integration of array CGH and gene expression data highlights a robust cis-acting DNA targeted genes signature that may be critical for glioblastoma progression, with two tumor suppressor genes PCDH9 and STARD13 that could be involved in tumor invasiveness and resistance to etoposide.
Collapse
Affiliation(s)
- Marie de Tayrac
- Faculty of Medicine, CNRS-UMR 6061, Regulation of Transcription and Oncogenesis, IFR140 GFAS, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Holeiter G, Heering J, Erlmann P, Schmid S, Jähne R, Olayioye MA. Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Res 2008; 68:8743-51. [PMID: 18974116 DOI: 10.1158/0008-5472.can-08-0984] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deleted in liver cancer (DLC) 1 and 2 are Rho GTPase-activating proteins that are frequently down-regulated in various types of cancer. Ectopic expression in carcinoma cell lines lacking these proteins has been shown to inhibit cell migration and invasion. However, whether the loss of DLC1 or DLC2 is the cause of aberrant Rho signaling in transformed cells has not been investigated. Here, we have down-regulated DLC1 and DLC2 expression in breast cancer cells using a RNA interference approach. Silencing of DLC1 led to the stabilization of stress fibers and focal adhesions and enhanced cell motility in wound-healing as well as chemotactic Transwell assays. We provide evidence that enhanced migration of cells lacking DLC1 is dependent on the Rho effector protein Dia1 but does not require the activity of Rho kinase. By contrast, DLC2 knockdown failed to affect the migratory behavior of cells, suggesting that the two proteins have distinct functions. This is most likely due to their differential subcellular localizations, with DLC1 found in focal adhesions and DLC2 being mainly cytosolic. Collectively, our data show that DLC1 is critically involved in the control of Rho signaling and actin cytoskeleton remodeling and that its cellular loss is sufficient for the acquisition of a more migratory phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Gerlinde Holeiter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Xiaorong L, Wei W, Liyuan Q, Kaiyan Y. Underexpression of deleted in liver cancer 2 (DLC2) is associated with overexpression of RhoA and poor prognosis in hepatocellular carcinoma. BMC Cancer 2008; 8:205. [PMID: 18651974 PMCID: PMC2496915 DOI: 10.1186/1471-2407-8-205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 07/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DLC2, a unique RhoGAP, has been recently identified as a tumor suppressor gene in hepatocellular carcinoma (HCC). However, the expression of DLC2 protein, and its relationship with RhoA in clinical hepatocellular carcinoma have not been studied. The aim of this study was to investigate the DLC2 protein expression and its correlation with expression of RhoA, as well as to evaluate the prognostic value of DLC2 for HCC patients. METHODS Western blot and immunohistochemical staining were employed to detect DLC2 protein expression in 128 HCC specimens. The correlation between DLC2 protein expression and clinicopathologic outcome, and prognostic value of DLC2 for HCC patients were analyzed. RESULTS HCC tissues revealed significantly lower level of DLC2 protein than pericarcinomatous liver tissues (PCLT). There was significant correlation between underexpression of DLC2 protein and cell differentiation. Meanwhile, underexpression of DLC2 protein was correlated with overexression of RhoA. Furthermore, HCC Patients with DLC2-negative expression showed a significantly poorer prognosis than those with DLC2-positve expression. CONCLUSION Our data strongly suggested that decreased DLC2 expression in HCC correlates with cell differentiation of HCC and overexpression of RhoA, underexpression of DLC2 is associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Li Xiaorong
- Department of General Surgery, The Third Affiliated Hospital of Central South University, Central South University, Tongzhipo Road, Changsha, Hunan Province, 410013, PR China.
| | | | | | | |
Collapse
|
18
|
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1:a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 2008; 11:1185-207. [PMID: 17979893 PMCID: PMC4401278 DOI: 10.1111/j.1582-4934.2007.00098.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deleted in liver cancer 1 (DLC-1) gene encodes a GTPase activating protein that acts as a negative regulator of the Rho family of small GTPases. Rho proteins transduce signals that influence cell morphology and physiology, and their aberrant up-regulation is a key factor in the neoplastic process, including metastasis. Since its discovery, compelling evidence has accumulated that demonstrates a role for DLC-1 as a bona fide tumour suppressor gene in different types of human cancer. Loss of DLC-1 expression mediated by genetic and epigenetic mechanisms has been associated with the development of many human cancers, and restoration of DLC-1 expression inhibited the growth of tumour cells in vivo and in vitro. Two closely related genes, DLC-2 and DLC-3, may also be tumour suppressors. This review presents the current status of progress in understanding the biological functions of DLC-1 and its relatives and their roles in neoplasia.
Collapse
Affiliation(s)
- Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hatch GM, Gu Y, Xu FY, Cizeau J, Neumann S, Park JS, Loewen S, Mowat MRA. StARD13(Dlc-2) RhoGap mediates ceramide activation of phosphatidylglycerolphosphate synthase and drug response in Chinese hamster ovary cells. Mol Biol Cell 2007; 19:1083-92. [PMID: 18162584 DOI: 10.1091/mbc.e06-08-0737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To identify genes involved in etoposide drug response, we used promoter trap mutagenesis to isolate an etoposide-resistant Chinese hamster ovary (CHO) cell line. This resistant CHO-K1 line, named E91, showed cross-resistance to C(2)-ceramide (N-acetylsphingosine). The promoter trap retrovirus was found integrated into intron 1-2 of the Dlc-2 (Stard13) RhoGap gene. The E91 cells showed elevated guanosine triphosphate (GTP)-bound RhoA levels compared with the parental line, suggesting that retrovirus integration had inactivated one of the Dlc-2 RhoGap alleles. To test whether E91 cells were impaired in an intracellular ceramide-regulated process not directly related to cell killing, we measured mitochondrial phosphatidylglycerolphosphate (PGP) synthase and phospholipase A2 enzyme activities in cells after C(2)-ceramide addition. Parental cells showed elevated enzyme activities after treatment with C(2)-ceramide or tumor necrosis factor alpha, but not the E91 cells. These results suggested that intracellular ceramide signaling was defective in E91 cells due to increased levels of active GTP-bound RhoA. RNA knockdown experiments of the Dlc2 RhoGap resulted in increased GTP-bound RhoA and reduced induction of PGP synthase after C(2)-ceramide addition compared with controls. Expression of a dominant-negative RhoA in the E91 cell line allowed induction of PGP synthase by ceramide. The RNA interference knockdown cell line also showed increased etoposide resistance. This study is the first report for the regulation of a phospholipid biosynthetic enzyme through RhoGap expression.
Collapse
Affiliation(s)
- Grant M Hatch
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, Manitoba, Canada R3E 0V9
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li H, Fung KL, Jin DY, Chung SSM, Ching YP, Ng IOL, Sze KH, Ko BCB, Sun H. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins 2007; 67:1154-66. [PMID: 17380510 DOI: 10.1002/prot.21361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The NMR structure of the murine DLC2 SAM domain reveals a variant fold that is similar to a four-helix bundle. BMC STRUCTURAL BIOLOGY 2007; 7:34. [PMID: 17519008 PMCID: PMC1899508 DOI: 10.1186/1472-6807-7-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/22/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The tumor suppressor DLC2 (Deleted in Liver Cancer -2) participates in cell signaling at the mitochondrial membrane. DLC2 is characterized by a SAM (sterile alpha motif) domain, a Rho GTPase activating protein (GAP) domain, and a START lipid transfer domain. RESULTS Towards understanding the function of DLC2, we have solved the NMR solution structure of the SAM domain. The DLC2-SAM domain structure reveals an atypical four-helix composition that is distinct from the five-helix SAM domain structures that have been determined to date. From structural alignments, helix 3 of the canonical SAM domain appears to be replaced by shorter, extended secondary structure that follows a similar path. Another difference is demonstrated by helices 1 and 2 that form a helical hairpin that is situated approximately parallel to the canonical helix 5. CONCLUSION The DLC2-SAM domain adopts a structure that is topologically more similar to an anti-parallel four-helix bundle than a canonical SAM domain. This alternate topology may allow the DLC2-SAM domain to interact with a novel set of ligands.
Collapse
|
22
|
Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol 2007; 40:843-7. [PMID: 17521951 PMCID: PMC2323245 DOI: 10.1016/j.biocel.2007.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/15/2022]
Abstract
Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Lawrence Ellison Center for Tissue Regeneration and Repair, Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | |
Collapse
|
23
|
Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2006; 80:9279-87. [PMID: 16940539 PMCID: PMC1563899 DOI: 10.1128/jvi.00659-06] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Perturbation of the function of endoplasmic reticulum (ER) causes stress leading to the activation of cell signaling pathways known as the unfolded protein response (UPR). Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) uses ER as a site for synthesis and processing of viral proteins. In this report, we demonstrate that infection with SARS-CoV induces the UPR in cultured cells. A comparison with M, E, and NSP6 proteins indicates that SARS-CoV spike (S) protein sufficiently induces transcriptional activation of several UPR effectors, including glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein. A substantial amount of S protein accumulates in the ER. The expression of S protein exerts different effects on the three major signaling pathways of the UPR. Particularly, it induces GRP78/94 through PKR-like ER kinase but has no influence on activating transcription factor 6 or X box-binding protein 1. Taken together, our findings suggest that SARS-CoV S protein specifically modulates the UPR to facilitate viral replication.
Collapse
Affiliation(s)
- Ching-Ping Chan
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | | | | | | | | | | |
Collapse
|
24
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1755-1761. [DOI: 10.11569/wcjd.v14.i18.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|