1
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Hamouda AF, Felemban S. A Bio-Indicator Pilot Study Screening Selected Heavy Metals in Female Hair, Nails, and Serum from Lifestyle Cosmetic, Canned Food, and Manufactured Drink Choices. Molecules 2023; 28:5582. [PMID: 37513454 PMCID: PMC10386365 DOI: 10.3390/molecules28145582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Lifestyles, genetic predispositions, environmental factors, and geographical regions are considered key factors of heavy metals initiatives related to health issues. Heavy metals enter the body via the environment, daily lifestyle, foods, beverages, cosmetics, and other products. The accumulation of heavy metals in the human body leads to neurological issues, carcinogenesis, failure of multiple organs in the body, and a reduction in sensitivity to treatment. We screened for Cr, Al, Pb, and Cd in selected foods, beverages, and cosmetics products depending on questionnaire outcomes from female volunteers. We also screened for Cr, Al, Pb, and Cd on hair, nails, and serum samples using inductively coupled plasma mass spectrometry (ICP-MS) from the same volunteers, and we analyzed the serum cholinesterase and complete blood picture (CBC). We performed an AutoDock study on Cr, Al, Pb, and Cd as potential ligands. Our results indicate that the most elevated heavy metal in the cosmetic sample was Al. In addition, in the food and beverages samples, it was Pb and Al, respectively. The results of the questionnaire showed that 71 percent of the female volunteers used the studied cosmetics, food, and beverages, which were contaminated with Cr, Al, Pb, and Cd, reflecting the high concentration of Cr, Al, Cd, and Pb in the three different types of biological samples of sera, nails, and hair of the same females, with 29 percent of the female volunteers not using the products in the studied samples. Our results also show an elevated level of cholinesterase in the serum of group 1 that was greater than group 2, and this result was confirmed by AutoDock. Moreover, the negative variation in the CBC result was compared with the reference ranges. Future studies should concentrate on the actions of these heavy metal contaminations and their potential health consequences for various human organs individually.
Collapse
Affiliation(s)
- Asmaa Fathi Hamouda
- Department of Biochemistry, Faculty of Science, University of Alexandria, Alexandria 21111, Egypt
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, University College-Al Leith, University of Umm Al-Qura, Makkah 21955, Saudi Arabia
| |
Collapse
|
3
|
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants (Basel) 2023; 12:1251. [PMID: 37371981 DOI: 10.3390/antiox12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes' expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Daniel Jamrozik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Radosław Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Adrian Smędowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- GlaucoTech Co., Gen., Władysława Sikorskiego 45/177, 40-282 Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
4
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
6
|
Yiwen W, Xiaohan T, Chunfeng Z, Xiaoyu Y, Yaodong M, Huanhuan Q. Genetics of metallothioneins in Drosophilamelanogaster. CHEMOSPHERE 2022; 288:132562. [PMID: 34653491 DOI: 10.1016/j.chemosphere.2021.132562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-chelating proteins involved in cellular metal homeostasis. MTs were found to be related with almost all the biological processes and their malfunctioning is responsible for a lot of important human diseases. Invertebrate MTs were also used broadly as biomarkers of metal contamination due to their inducible expression by metal exposure. MT system plays a significant role in maintaining human health and ecological stability. Drosophila melanogaster, the vinegar fly, is a perfect model for studying insect MT systems. Six MTs were identified in D. melanogaster, and were designated MtnA to F. All the MTs are considered as Cu-thioneins except for MtnF, which is putatively a Zn-thionein. Expression of all the MTs are regulated by MTF-1/MRE system, thus being able to be induced by heavy metal exposure. The expression pattern and function of separated MTs are partially overlapped and partially distinct. In this work, we made a summary of all the studies on D. melanogaster MTs. From this review, we noted that, compared with studies on mammalian MTs, the understanding of the MT system of D. melanogaster and other invertebrates, especially the regulation mechanism for MT expression and protein-protein interaction with them, is still in a low level.
Collapse
Affiliation(s)
- Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Tian Xiaohan
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Zhu Chunfeng
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yu Xiaoyu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Miao Yaodong
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Qiao Huanhuan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
7
|
The Impact of Fullerenes as Doxorubicin Nano-Transporters on Metallothionein and Superoxide Dismutase Status in MCF-10A Cells. Pharmaceutics 2022; 14:pharmaceutics14010102. [PMID: 35056998 PMCID: PMC8777724 DOI: 10.3390/pharmaceutics14010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
This study aimed to synthesise C60–DOX complexes followed by the analysis of their effect on the concentration of metallothionein (MT) as a non-enzymatic antioxidant and on the concentration and activity of superoxide dismutase (SOD) as an antioxidant enzyme in healthy human mammary MCF-10A cells. Dynamic light scattering and electrophoretic light scattering were used to establish the size and zeta potential of the complexes. The MT and SOD concentrations were determined using the ELISA method; SOD activity was determined by tetrazolium salt reduction inhibition. Lower MT concentration following exposure of cells to both DOX and C60 fullerene compared to the control sample was found. However, the concentration of this protein increased as a consequence of the C60–DOX complexes action on MCF-10A cells compared to the control. C60 used alone did not affect the concentration and activity of SOD in MCF-10A cells. Application of free DOX did not activate cellular antioxidant defence in the form of an increase in SOD concentration or its activity. In contrast treatment of cells with the C60–DOX complex resulted in a decrease in SOD1 concentration and a significant increase in SOD activity compared to cells treated with free DOX, C60 and control. Thus, it was found that C60–DOX complexes showed potential for protective effects against DOX-induced toxicity to MCF-10A cells.
Collapse
|
8
|
Alandiyjany MN, Kishawy ATY, Abdelfattah-Hassan A, Eldoumani H, Elazab ST, El-Mandrawy SAM, Saleh AA, ElSawy NA, Attia YA, Arisha AH, Ibrahim D. Nano-silica and magnetized-silica mitigated lead toxicity: Their efficacy on bioaccumulation risk, performance, and apoptotic targeted genes in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106054. [PMID: 34923218 DOI: 10.1016/j.aquatox.2021.106054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with heavy metals (HM) is of great concern owing to their deleterious impact on living organism. The current research is focused on application of silica particles with new functionalized properties (magnetic silica; SiMag or Nanoporous silica; SiNPs) and their efficacy to mitigate lead (pb) toxicity in Nile tilapia. One thousand fingerlings were distributed: two control groups (negative; without pb toxicity (NC) positive (with pb toxicity) and other four groups received two silica sources (SiMag or SiNPs) with two levels (400 and 600 mg/kg diet) for 56 days then exposed to pb for 30 days. Before toxicity exposure, maximum growth, and most improved feed conversion ratio and biochemical parameters were noticed with higher SiMag or SiNPs levels. Serum antioxidant enzymes and their transcriptional levels in muscle and liver were boosted in groups received SiMag or SiNPs. After toxicity exposure, hematological and antioxidants biomarkers maintained at adequate levels in SiMag or SiNPs. Prominent reduction of residual pb in gills, liver, kidney, and muscle was observed in SiNPs then SiMag groups. Interestingly, the maximum down-regulation of P450, caspase-3 and HSP-70 and MT were observed in groups received 600 mg/kg diet of SiMag or SiNPs. The higher level of P53 in liver and gills was detected in PC, inversely reduced in SiMag or SiNPs. Severity of the histopathological alterations in examined organs greatly reduced in groups received SiMag or SiNPs, unlike it were induced in PC group. In conclusion, higher SiMag or SiNPs levels not only mitigate negatives impact of pb toxicity in fish but also ensure its safety for human consumption.
Collapse
Affiliation(s)
- Maher N Alandiyjany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6(th) of October, Giza 12578, Egypt
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Naser A ElSawy
- Department of Anatomy & Embryology Faculty of Medicine, Zagazig University, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
9
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
10
|
Phillips-Chavez C, Coward J, Watson M, Schloss J. A Retrospective Cross-Sectional Cohort Trial Assessing the Prevalence of MTHFR Polymorphisms and the Influence of Diet on Platinum Resistance in Ovarian Cancer Patients. Cancers (Basel) 2021; 13:5215. [PMID: 34680361 PMCID: PMC8533864 DOI: 10.3390/cancers13205215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Ovarian cancer has the lowest survival rate in gynaecologic malignancies with a 5-year survival rate of 43%. Platinum resistance is one of the main drivers of ovarian cancer mortality, of which aberrant methylation has been cited as a significant contributor. Understanding the essential role of the methylenetetrahydrofolate reductase enzyme (MTHFR) on DNA synthesis and repair, and how nutrient status can vastly affect its performance, led to the investigation of MTHFR status and dietary influence on platinum response in epithelial ovarian cancer (EOC) patients. Twenty-five adult female patients who completed first-line platinum-based chemotherapy for primary ovarian cancer were selected from Icon Cancer Centres in Australia. Participants were grouped based on platinum response. A full medical and family history, food frequency questionnaire and single blood test were completed, testing for MTHFR polymorphisms, serum folate, serum and active B12 and homocysteine levels. Nineteen of twenty-five participants had an MTHFR polymorphism. Of those, 20% were compound heterozygous, 12% were heterozygous C677T (CT), 4% homozygous C677T, 12% homozygous A1298C and 28% were heterozygous A1298C (AC). Statistically significant associations were found between dietary zinc (p = 0.0086; 0.0030; 0.0189) and B12 intakes in CT genotypes (p = 0.0157; 0.0030; 0.0068) indicating that zinc or vitamin B12 intakes below RDI were associated with this genotype. There were strong associations of vitamin B6 intakes in AC genotypes (p = 0.0597; 0.0547; 0.0610), and dietary folate in compound heterozygotes with sensitive and partially sensitive disease (p = 0.0627; 0.0510). There were also significant associations between serum folate (p = 0.0478) and dietary B12 (p = 0.0350) intakes above RDI and platinum sensitivity in wild-types as well as strong associations with homocysteine levels (p = 0.0886) and zinc intake (p = 0.0514). Associations with dietary B12 (p = 0.0514) and zinc intakes (p = 0.0731) were also strong in resistant wild types. Results indicate that dietary zinc, B12 and B6 intakes may be associated with platinum sensitivity dependent on MTHFR genotype. These results require further research to clarify the dosages necessary to elicit a response; however, they provide a novel foundation for acknowledging the role of diet on treatment response in EOC.
Collapse
Affiliation(s)
- Caitlin Phillips-Chavez
- Icon Cancer Centre, Queensland, Australia;
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
| | - Jermaine Coward
- Icon Cancer Centre, Queensland, Australia;
- School of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Michael Watson
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4006, Australia
| | - Janet Schloss
- NCNM, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
11
|
Meshkini A. A Correlation Between Intracellular Zinc Content and Osteosarcoma. Biol Trace Elem Res 2021; 199:3222-3231. [PMID: 33150482 DOI: 10.1007/s12011-020-02466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Zinc is a trace element in human body involved in many biological processes. It is critical for cell growth and acts as a cofactor for the structure and function of a wide range of cellular proteins such as enzymes. Mounting evidence has shown the involvement of intracellular zinc in the bone-related biological processes such as bone growth, homeostasis, and regeneration; however, the molecular mechanism(s) whereby zinc impels tumorigenesis in bone remains largely unexplored. In this article, selective outline related to the content of intracellular zinc in osteosarcoma cells was provided, and its correlation with signaling molecules that are activated and consequently guide the cells toward tumorigenesis or osteogenesis was discussed. Based on preclinical and clinical evidence, dysregulation of zinc homeostasis, both at intracellular and tissue level, has the main role in the pathogenesis of osteosarcoma. Based on the intracellular zinc content, this element could have a direct role in the dynamics of bone cell transformation and tumor development and play an indirect role in the modulation of the inflammatory and pro/antitumorigenic responses in immune cells. In this context, zinc transporters and the proteins containing zinc domain are regulated by the availability of zinc, playing a crucial role in bone cell transformation and differentiation. According to recent studies, it seems that intracellular zinc levels could be considered as an early prognosis marker. Besides, identification and targeting of zinc-dependent signaling molecules could tilt the balance of life and death toward the latter in chemoresistant malignant cells and may pave a way for designing of the novel osteosarcoma treatment strategies.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, P. O. Box 9177948974, Iran.
| |
Collapse
|
12
|
Napolitano R, De Matteis S, Carloni S, Bruno S, Abbati G, Capelli L, Ghetti M, Bochicchio MT, Liverani C, Mercatali L, Calistri D, Cuneo A, Menon K, Musuraca G, Martinelli G, Simonetti G. Kevetrin induces apoptosis in TP53 wild‑type and mutant acute myeloid leukemia cells. Oncol Rep 2020; 44:1561-1573. [PMID: 32945487 PMCID: PMC7448420 DOI: 10.3892/or.2020.7730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor protein p53 is a key regulator of several cellular pathways, including DNA repair, cell cycle and angiogenesis. Kevetrin exhibits p53-dependent as well as-independent activity in solid tumors, while its effects on leukemic cells remain unknown. The aim of the present study was to analyze the response of acute myeloid leukemia (AML) cell lines (TP53 wild-type: OCI-AML3 and MOLM-13; and TP53-mutant: KASUMI-1 and NOMO-1) to kevetrin at a concentration range of 85–340 µM. The cellular and molecular effects of the treatment were analyzed in terms of cell growth, viability [Annexin V-propidium iodide (PI) staining] and cell cycle alterations (PI staining). Gene expression profiling, western blotting and immunofluorescence were performed to elucidate the pathways underlying kevetrin activity. Pulsed exposure exerted no effect on the wild-type cells, but was effective on mutant cells. After continuous treatment, significant cell growth arrest and apoptosis were observed in all cell lines, with TP53-mutant models displaying a higher sensitivity and p53 induction. Kevetrin also displayed efficacy against TP53 wild-type and mutant primary AML, with a preferential cytotoxic activity against blast cells. Gene expression profiling revealed a common core transcriptional program altered by drug exposure and the downregulation of glycolysis, DNA repair and unfolded protein response signatures. These findings suggest that kevetrin may be a promising therapeutic option for patients with both wild-type and TP53-mutant AML.
Collapse
Affiliation(s)
- Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Silvia Carloni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology 'L. e A. Seràgnoli', I‑40138 Bologna, Italy
| | - Giulia Abbati
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Laura Capelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Chiara Liverani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Laura Mercatali
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara‑Arcispedale Sant'Anna, I‑44124 Ferrara, Italy
| | | | - Gerardo Musuraca
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology 'L. e A. Seràgnoli', I‑40138 Bologna, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| |
Collapse
|
13
|
Lewis KEA, Bennett W, Blizzard CL, West AK, Chung RS, Chuah MI. The influence of metallothionein treatment and treadmill running exercise on disease onset and survival in SOD1 G93A amyotrophic lateral sclerosis mice. Eur J Neurosci 2020; 52:3223-3241. [PMID: 31954073 DOI: 10.1111/ejn.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised by the degeneration of motor neurons innervating skeletal muscle. The mechanisms underlying neurodegeneration in ALS are not yet fully elucidated, and with current therapeutics only able to extend lifespan by a matter of months there is a clear need for novel therapies to increase lifespan and patient quality of life. Here, we evaluated whether moderate-intensity treadmill exercise and/or treatment with metallothionein-2 (MT2), a neuroprotective protein, could improve survival, behavioural or neuropathological outcomes in SOD1G93A familial ALS mice. Six-week-old female SOD1G93A mice were allocated to one of four treatment groups: MT2 injection, i.m.; moderate treadmill exercise; neither MT2 nor exercise; or both MT2 and exercise. MT2-treated mice survived around 3% longer than vehicle-treated mice, with this mild effect reaching statistical significance in Cox proportional hazards analysis once adjusted for potential confounders. Mixed model body weight trajectories over time indicated that MT2-treated mice, with or without exercise, reached maximum body weight at a later age, suggesting a delay in disease onset of around 4% compared to saline-treated mice. Exercise alone did not significantly increase survival or delay disease onset, and neither exercise nor MT2 substantially ameliorated gait abnormalities or muscle strength loss. We conclude that neither exercise nor MT2 treatment was detrimental in female SOD1G93A mice, and further study could determine whether the mild effect of peripheral MT2 administration on disease onset and survival could be improved via direct administration of MT2 to the central nervous system.
Collapse
Affiliation(s)
- Katherine E A Lewis
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - William Bennett
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | | | - Adrian K West
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Roger S Chung
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Meng Inn Chuah
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
A case-control study of Metallothionein-1 expression in breast cancer and breast fibroadenoma. Sci Rep 2019; 9:7407. [PMID: 31092851 PMCID: PMC6520370 DOI: 10.1038/s41598-019-43565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/27/2019] [Indexed: 11/08/2022] Open
Abstract
The overexpression of Metallothionein-1 (MT-1) may play an important role in breast cancer; however, few studies have compared MT-1 expression between breast cancer and fibroadenoma. A cross-sectional controlled study was performed in 66 premenopausal women, aged 20–49 years, who had been histologically diagnosed with breast fibroadenoma or breast cancer. The patients were divided into two groups: group A, control (fibroadenoma, n = 36) and group B, study (breast cancer, n = 30). Immunohistochemistry was performed on tissue samples of fibroadenoma and breast cancer patients to evaluate the expression of metallothionein using an anti-MT-1 polyclonal antibody (rabbit polyclonal anti-metallothionein-Catalog Number biorbyt-orb11042) at a dilution of 1:100. The data were analyzed using NOVA (p < 0.05). Microscopic analysis showed a higher concentration of anti-MT-1-stained nuclei in breast cancer tissues than in fibroadenoma tissues. The mean proportion of cells with anti-MT-1-stained nuclei was 26.93% and 9.10%, respectively, in the study and control groups (p < 0.001). Histological grade 3 tumors showed a significantly higher MT-1 expression than hitological grade 1 (p < 0.05), while breast tumors negative for estrogen-, progesterone- and HER2- receptors had a significantly higher MT-1 expression than positive breast tumors positive for these parameters (p < 0.05). MT-1 protein in women of reproductive age was significantly higher in breast cancer than in fibroadenoma in this study. Furthermore, there was higher MT-1 immunoreactivity in more aggressive tumors.
Collapse
|
15
|
Bezerra GMDR, Pontes FSC, Conte Neto N, Nascimento LSD, Souza LLD, Pinto Junior DDS, Pontes HAR. Nuclear metallothionein in oral squamous cell carcinoma: clinicopathological parameters and patient survival. Braz Oral Res 2018; 32:e105. [PMID: 30328895 DOI: 10.1590/1807-3107bor-2018.vol32.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/04/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to identify the immunoexpression of methallothionein in oral squamous cell carcinoma as well as to address the correlation with clinical features, histological grade and patient survival. Samples were collected from 93 patients with tongue squamous cell carcinoma who presented for follow-up. Immunohistochemical expression of methallothionein in all groups was performed. The scoring system has previously been published by Tsurutani in 2005, which is based on intensity and distribution of staining. We used Kappa index to evaluate the degree of observers' agreement under metallothionein immunostaining and histological grade. Associations between methallothionein expression and clinical parameters (age, gender, smoking, tumor size, lymph node metastasis and disease stage) were examined for statistical significance using the chi-squared test. The overall survival rates were estimated by the Kaplan-Meier method and the relationship between protein expression and survival was compared using the log-rank test (p < 0.05). Our results showed no statistically significant association between methallothionein immunostaining and the selected clinicopathological variables. Immunohistochemistry results showed positive nuclear immunostaining for metallothionein in 62,37% (58/93) and negative for metallothionein 37,63% (35/93). The degree of examiners agreement by Kappa varied from substantial to perfect and both metallothionein immunostaining and histological grade were explored. The present study suggests that positive methallothionein expression found in tongue squamous cell carcinoma may not help to predict survival in the analyzed samples, as well as no relation between the protein and histological grade and clinical features was observed. In conclusion, the present study suggests that metallothionein is not associated with tongue squamous cell carcinoma clinicopathological characteristics and aggressiveness.
Collapse
|
16
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
17
|
Without 1α-hydroxylation, the gene expression profile of 25(OH)D 3 treatment overlaps deeply with that of 1,25(OH) 2D 3 in prostate cancer cells. Sci Rep 2018; 8:9024. [PMID: 29899561 PMCID: PMC5998076 DOI: 10.1038/s41598-018-27441-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recently, the antiproliferative action of 1,25(OH)2D3 (1,25D3), an active metabolite of vitamin D3, in the management of prostate cancer has been argued rigorously. In this study, we found that at a physiological concentration, 25(OH)D3 (25D3), the precursor of 1,25D3 and an inactive form of vitamin D because of its much weaker binding activity to the vitamin D receptor (VDR) compared with 1,25D3, had a gene expression profile similar to that of 1,25D3 in prostate cancer LNCaP cells. By immunocytochemistry, western blotting, and CYP27B1 and/or VDR knockdown by small interfering RNAs, we found that 10−7 M 25D3, which is within its uppermost physiological concentration in the bloodstream, induced VDR nuclear import and robustly activated its target genes in the virtual absence of CYP27B1 expression. Comprehensive microarray analyses verified 25D3 bioactivity, and we found that 25D3 target gene profiles largely matched those of 1,25D3, while the presence a small subset of 25D3- or 1,25D3-specific target genes was not excluded. These results indicated that 25D3 shares bioactivity with 1,25D3 without conversion to the latter. Metallothionein 2A was identified as a 1,25D3-specific repressive target gene, which might be a prerequisite for 1,25D3, but not 25D3, to exert its anti-proliferative action in LNCaP cells.
Collapse
|
18
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes. Environ Microbiol 2018; 20:2410-2421. [PMID: 29687579 DOI: 10.1111/1462-2920.14251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Extreme stress situations can induce genetic variations including genome reorganization. In ciliates like Tetrahymena thermophila, the approximately 45-fold ploidy of the somatic macronucleus may enable adaptive responses that depend on genome plasticity. To identify potential genome-level adaptations related to metal toxicity, we isolated three Tetrahymena thermophila strains after an extended adaptation period to extreme metal concentrations (Cd2+ , Cu2+ or Pb2+ ). In the Cd-adapted strain, we found a approximately five-fold copy number increase of three genes located in the same macronuclear chromosome, including two metallothionein genes, MTT1 and MTT3. The apparent amplification of this macronuclear chromosome was reversible and reproducible, depending on the presence of environmental metal. We also analysed three knockout (KO) and/or knockdown (KD) strains for MTT1 and/or MTT5. In the MTT5KD strain, we found at least two new genes arising from paralogous expansion of MTT1, which encode truncated variants of MTT1. The expansion can be explained by a model based on somatic recombination between MTT1 genes on pairs of macronuclear chromosomes. At least two of the new paralogs are transcribed and upregulated in response to Cd2+ . Altogether, we have thus identified two distinct mechanisms, both involving genomic plasticity in the polyploid macronucleus that may represent adaptive responses to metal-related stress.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| | - Ana Martín-González
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Science Center, University of Chicago. 920 East 58th Street, Chicago, IL 60637, USA
| | - Juan Carlos Gutiérrez
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| |
Collapse
|
19
|
Baltaci AK, Yuce K, Mogulkoc R. Zinc Metabolism and Metallothioneins. Biol Trace Elem Res 2018; 183:22-31. [PMID: 28812260 DOI: 10.1007/s12011-017-1119-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Among the trace elements, zinc is one of the most used elements in biological systems. Zinc is found in the structure of more than 2700 enzymes, including hydrolases, transferases, oxyreductases, ligases, isomerases, and lyases. Not surprisingly, it is present in almost all body cells. Preserving the stability and integrity of biological membranes and ion channels, zinc is also an intracellular regulator and provides structural support to proteins during molecular interactions. It acts as a structural element in nucleic acids or other gene-regulating proteins. Metallothioneins, the low molecular weight protein family rich in cysteine groups, are involved significantly in numerous physiological and pathological processes including particularly oxidative stress. A critical role of metallothioneins (MT) is to bind zinc with high affinity and to serve as an intracellular zinc reservoir. By releasing free intracellular zinc when needed, MTs mediate the unique physiological roles of zinc. MT expression is induced by zinc elevation, and thus, zinc homeostasis is maintained. That MT mediates the effects of zinc, besides having strong radical scavenging effects, points to the critical part it plays in oxidative stress. The present review aims to give information on metallothioneins, which have critical importance in the metabolism and molecular pathways of zinc.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
20
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One 2017; 12:e0189076. [PMID: 29206858 PMCID: PMC5716537 DOI: 10.1371/journal.pone.0189076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcriptional regulation of the five MT isoforms present in T. thermophila, by using several strains of this ciliate. After a laboratory evolution experiment over more than two years, three different T. thermophila strains adapted to extreme metal stress (Cd2+, Cu2+ or Pb2+) were obtained. In addition, three knockout and/or knockdown strains for different metallothionein (MT) genes were generated. These strains were then analyzed for expression of the individual MT isoforms. Our results provide a strong basis for assigning differential roles to the set of MT isoforms. MTT1 appears to have a key role in adaptation to Cd. In contrast, MTT2/4 are crucial for Cu-adaptation and MTT5 appears to be important for Pb-adaptation and might be considered as an “alarm” MT gene for responding to metal stress. Moreover, results indicate that likely a coordinated transcriptional regulation exists between the MT genes, particularly among MTT1, MTT5 and MTT2/4. MTT5 appears to be an essential gene, a first such report in any organism of an essential MT gene.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Martín-González
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois, United States of America
| | - Juan Carlos Gutiérrez
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Nielsen AE, Bohr A, Penkowa M. The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark Insights 2017. [DOI: 10.1177/117727190600100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins. This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified. The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.
Collapse
Affiliation(s)
- Allan Evald Nielsen
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adam Bohr
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Milena Penkowa
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, Ramm G, Stanley EG, Elefanty AG, Wilkinson-Berka JL, Petratos S. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine 2017; 25:122-135. [PMID: 29111262 PMCID: PMC5704066 DOI: 10.1016/j.ebiom.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Cell membrane thyroid hormone (TH) transport can be facilitated by the monocarboxylate transporter 8 (MCT8), encoded by the solute carrier family 16 member 2 (SLC16A2) gene. Human mutations of the gene, SLC16A2, result in the X-linked-inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). We posited that abrogating MCT8-dependent TH transport limits oligodendrogenesis and myelination. We show that human oligodendrocytes (OL), derived from the NKX2.1-GFP human embryonic stem cell (hESC) reporter line, express MCT8. Moreover, treatment of these cultures with DITPA (an MCT8-independent TH analog), up-regulates OL differentiation transcription factors and myelin gene expression. DITPA promotes hESC-derived OL myelination of retinal ganglion axons in co-culture. Pharmacological and genetic blockade of MCT8 induces significant OL apoptosis, impairing myelination. DITPA treatment limits OL apoptosis mediated by SLC16A2 down-regulation primarily signaling through AKT phosphorylation, driving myelination. Our results highlight the potential role of MCT8 in TH transport for human OL development and may implicate DITPA as a promising treatment for developmentally-regulated myelination in AHDS. NKX2.1-based sorting enhances OL derivation from hESC MCT8 is required for the survival of OL precursor cells DITPA promotes OL differentiation and myelination DITPA overrides SLC16A2 (MCT8) down-regulation to potentiate myelination
Thyroid hormone is vital for oligodendrocyte differentiation and myelination. Lee and colleagues show that MCT8 is an integral thyroid hormone transporter for oligodendrocytes derived from human embryonic stem cells. Knockdown of this transporter induces apoptosis of OLs, which could be prevented by the provision of DITPA.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Devy Deliyanti
- Department of Diabetes, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Michael F Azari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Fernando Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Adam Costin
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- The Clive & Vera Ramaciotti Centre for Cryo Electron Microscopy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
23
|
|
24
|
Ghazi T, Nagiah S, Tiloke C, Sheik Abdul N, Chuturgoon AA. Fusaric Acid Induces DNA Damage and Post-Translational Modifications of p53 in Human Hepatocellular Carcinoma (HepG 2 ) Cells. J Cell Biochem 2017; 118:3866-3874. [PMID: 28387973 DOI: 10.1002/jcb.26037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 11/06/2022]
Abstract
Fusaric acid (FA), a common fungal contaminant of maize, is known to mediate toxicity in plants and animals; however, its mechanism of action is unclear. p53 is a tumor suppressor protein that is activated in response to cellular stress. The function of p53 is regulated by post-translational modifications-ubiquitination, phosphorylation, and acetylation. This study investigated a possible mechanism of FA induced toxicity in the human hepatocellular carcinoma (HepG2 ) cell line. The effect of FA on DNA integrity and post-translational modifications of p53 were investigated. Methods included: (a) culture and treatment of HepG2 cells with FA (IC50 : 580.32 μM, 24 h); (b) comet assay (DNA damage); (c) Western blots (protein expression of p53, MDM2, p-Ser-15-p53, a-K382-p53, a-CBP (K1535)/p300 (K1499), HDAC1 and p-Ser-47-Sirt1); and (d) Hoechst 33342 assay (apoptosis analysis). FA caused DNA damage in HepG2 cells relative to the control (P < 0.0001). FA decreased the protein expression of p53 (0.24-fold, P = 0.0004) and increased the expression of p-Ser-15-p53 (12.74-fold, P = 0.0126) and a-K382-p53 (2.24-fold, P = 0.0096). This occurred despite the significant decrease in the histone acetyltransferase, a-CBP (K1535)/p300 (K1499) (0.42-fold, P = 0.0023) and increase in the histone deacetylase, p-Ser-47-Sirt1 (1.22-fold, P = 0.0020). The expression of MDM2, a negative regulator of p53, was elevated in the FA treatment compared to the control (1.83-fold, P < 0.0001). FA also inhibited cell proliferation and induced apoptosis in HepG2 cells as evidenced by the Hoechst assay. Together, these results indicate that FA is genotoxic and post-translationally modified p53 leading to HepG2 cell death. J. Cell. Biochem. 118: 3866-3874, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Congella, Durban, 4013, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Congella, Durban, 4013, South Africa
| | - Charlette Tiloke
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Congella, Durban, 4013, South Africa
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Congella, Durban, 4013, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of Kwa-Zulu Natal, Congella, Durban, 4013, South Africa
| |
Collapse
|
25
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
26
|
Cosset E, Petty T, Dutoit V, Tirefort D, Otten-Hernandez P, Farinelli L, Dietrich PY, Preynat-Seauve O. Human tissue engineering allows the identification of active miRNA regulators of glioblastoma aggressiveness. Biomaterials 2016; 107:74-87. [PMID: 27614160 DOI: 10.1016/j.biomaterials.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive cancers associated with massive infiltration of peritumoral parenchyma by migrating tumor cells. The infiltrative nature of GBM cells, the intratumoral heterogeneity concomitant with redundant signaling pathways likely underlie the inability of conventional and targeted therapies to achieve long-term remissions. In this respect, microRNAs (miRNAs), which are endogenous small non-coding RNAs that play a role in cancer aggressiveness, emerge as possible relevant prognostic biomarkers or therapeutic targets for treatment of malignant gliomas. We previously described a tissue model of GBM developing into a stem cell-derived human Engineered Neural Tissue (ENT) that allows the study of tumor/host tissue interaction. Combined with high throughput sequencing analysis, we took advantage of this human and integrated tissue model to understand miRNAs regulation. Three miRNAs (miR-340, -494 and -1293) active on cell proliferation, adhesion to extracellular matrix and tumor cell invasion were identified in GBM cells developing within ENT, and also confirmed in GBM biopsies. The components of miRNAs regulatory network at the transcriptional and the protein level have been also revealed by whole transcriptome analysis and Tandem Mass Tag in transfected GBM cells. Notably, miR-340 has a clinical relevance and modulates the expression of miR-494 and -1293, emphasizing its biological significance. Altogether, these findings demonstrate that human tissue engineering modeling GBM development in neural host tissue is a suitable tool to identify active miRNAs. Collectively, our study identified miR-340 as a strong modulator of GBM aggressiveness which may constitute a therapeutic target for treatment of malignant gliomas.
Collapse
Affiliation(s)
- E Cosset
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| | - T Petty
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - V Dutoit
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Switzerland
| | - D Tirefort
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | - P-Y Dietrich
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Switzerland
| | - O Preynat-Seauve
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland; Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
27
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. METALLOTHIONEINS IN NORMAL AND CANCER CELLS 2016. [DOI: 10.1007/978-3-319-27472-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Polanska H, Heger Z, Gumulec J, Raudenska M, Svobodova M, Balvan J, Fojtu M, Binkova H, Horakova Z, Kostrica R, Adam V, Kizek R, Masarik M. Effect of HPV on tumor expression levels of the most commonly used markers in HNSCC. Tumour Biol 2015; 37:7193-201. [PMID: 26666815 DOI: 10.1007/s13277-015-4569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023] Open
Abstract
Approximately 90 % of head and neck cancers are squamous cell carcinomas (HNSCC), and the overall 5-year survival rate is not higher than 50 %. There is much evidence that human papillomavirus (HPV) infection may influence the expression of commonly studied HNSCC markers. Our study was focused on the possible HPV-specificity of molecular markers that could be key players in important steps of cancerogenesis (MKI67, EGF, EGFR, BCL-2, BAX, FOS, JUN, TP53, MT1A, MT2A, VEGFA, FLT1, MMP2, MMP9, and POU5F). qRT-PCR analysis of these selected genes was performed on 74 biopsy samples of tumors from patients with histologically verified HNSCC (22 HPV-, 52 HPV+). Kaplan-Meier analysis was done to determine the relevance of these selected markers for HNSCC prognosis. In conclusion, our study confirms the impact of HPV infection on commonly studied HNSCC markers MT2A, MMP9, FLT1, VEGFA, and POU5F that were more highly expressed in HPV-negative HNSCC patients and also shows the relevance of studied markers in HPV-positive and HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Marketa Svobodova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Hana Binkova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
| |
Collapse
|
29
|
Mehrian-Shai R, Yalon M, Simon AJ, Eyal E, Pismenyuk T, Moshe I, Constantini S, Toren A. High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genomics 2015; 8:68. [PMID: 26493598 PMCID: PMC4618994 DOI: 10.1186/s12920-015-0137-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor. Even with vigorous surgery, radiation and chemotherapy treatment, survival rates of GBM are very poor and predictive markers for prognosis are currently lacking. Methods We performed whole genome expression studies of 67 fresh frozen untreated GBM tumors and validated results by 210 GBM samples’ expression data from The Cancer Genome Atlas. Results and discussion Here we show that in GBM patients, high metallothionein (MT) expression is associated with poor survival whereas low MT levels correspond to good prognosis. Furthermore we show that in U87 GBM cell line, p53 is found to be in an inactive mutant-like conformation concurrently with more than 4 times higher MT3 expression level than normal astrocytes and U251GBM cell line. We then show that U87- p53 inactivity can be rescued by zinc (Zn). Conclusions Taken together, these data suggest that MT expression may be a potential novel prognostic biomarker for GBM, and that U87 cells may be a good model for patients with non active WT p53 resulting from high levels of MTs.
Collapse
Affiliation(s)
- Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Amos J Simon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Eran Eyal
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Tatyana Pismenyuk
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Itai Moshe
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Tel-Aviv, Israel.
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer affiliated to the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97:55-74. [PMID: 25942353 DOI: 10.1016/j.ejmech.2015.04.040] [Citation(s) in RCA: 1425] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 02/07/2023]
Abstract
This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
Collapse
|
31
|
Density functional calculations of molecular structures of arsenic-binding β-domain of metallothioneins-2. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Zalewska M, Trefon J, Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics 2014; 14:1343-56. [DOI: 10.1002/pmic.201300496] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Marta Zalewska
- Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| | - Jagoda Trefon
- Students Scientific Association; Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analysis; Faculty of Pharmacy; Wroclaw Medical University; Wroclaw Poland
| |
Collapse
|
33
|
Alkamal I, Ikromov O, Tölle A, Fuller TF, Magheli A, Miller K, Krause H, Kempkensteffen C. An epigenetic screen unmasks metallothioneins as putative contributors to renal cell carcinogenesis. Urol Int 2014; 94:99-110. [PMID: 24662736 DOI: 10.1159/000357282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Functional epigenetic studies aimed to re-express transcriptionally silenced genes in renal cell carcinoma (RCC) may facilitate the ongoing search for appropriate markers supporting clinical decision-making. METHODS The RCC cell line A-498 was treated with the DNA methyltransferase inhibitor zebularine under low-cytotoxicity conditions. RNA chip analyses revealed several upregulated transcripts that were further validated by qPCR on 49 matched pairs of human kidney tissues to identify suitable marker candidates. RESULTS Members of the metallothionein (MT) group were remarkably downregulated in tumor tissues. MT1G and MT1H expression was decreased in 98% of cases, whereas MT2A expression was downregulated in 73% of all cases. Comparison of 308 reactivated transcripts upregulated more than 1.5-fold to published data revealed a high number of shared candidates, which supports the consistency of this experimental approach. CONCLUSION MTs were found to be transcriptionally inactivated in human RCC. Our observations support the hypothesis of a possible involvement of these metalloproteins in renal cell carcinogenesis. Additional functional studies of these genes may provide clues for understanding renal cancers as essentially metabolic diseases.
Collapse
Affiliation(s)
- Imad Alkamal
- Klinik für Urologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Habel N, Hamidouche Z, Girault I, Patiño-García A, Lecanda F, Marie PJ, Fromigué O. Zinc chelation: a metallothionein 2A's mechanism of action involved in osteosarcoma cell death and chemotherapy resistance. Cell Death Dis 2013; 4:e874. [PMID: 24157868 PMCID: PMC3920934 DOI: 10.1038/cddis.2013.405] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 01/01/2023]
Abstract
Osteosarcoma is the most common primary tumor of bone occurring in children and adolescents. The histological response to chemotherapy represents a key clinical factor related to survival. We previously showed that statins exhibit antitumor effects in vitro, inducing apoptotic cell death, reducing cell migration and invasion capacities and strengthening cytotoxic effects in combination with standard drugs. Comparative transcriptomic analysis between control and statin-treated cells revealed strong expression of several genes, including metallothionein (MT) 2A. MT2A overexpression by lentiviral transduction reduced bioavailable zinc levels, an effect associated with reduced osteosarcoma cell viability and enhanced cell differentiation. In contrast, MT2A silencing did not modify cell viability but strongly inhibited expression of osteoblastic markers and differentiation process. MT2A overexpression induced chemoresistance to cytotoxic drugs through direct chelation of platinum-containing drugs and indirect action on p53 zinc-dependent activity. In contrast, abrogation of MT2A enhanced cytotoxic action of chemotherapeutic drugs on osteosarcoma cells. Finally, clinical samples derived from chemonaive biopsies revealed that tumor cells expressing low MT2A levels correspond to good prognostic (good responder patients with longer survival rate), whereas high MT2A levels were associated with adverse prognosis (poor responder patients). Taken together, these data show that MT2A contributes to chemotherapy resistance in osteosarcoma, an effect partially mediated by zinc chelation. The data also suggest that MT2A may be a potential new prognostic marker for osteosarcoma sensitivity to chemotherapy.
Collapse
Affiliation(s)
- N Habel
- 1] INSERM, U606, Paris F-75010, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] INSERM, U981, Villejuif F-94805, France [4] Gustave Roussy, Villejuif F-94805, France [5] Université Paris-Sud XI, Kremlin-Bicêtre F-94270, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Kruseova J, Hynek D, Adam V, Kizek R, Prusa R, Hrabeta J, Eckschlager T. Serum metallothioneins in childhood tumours-a potential prognostic marker. Int J Mol Sci 2013; 14:12170-85. [PMID: 23743828 PMCID: PMC3709780 DOI: 10.3390/ijms140612170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 12/13/2022] Open
Abstract
Metallothioneins (MT) are low molecular weight, cysteine-rich proteins maintaining metal ions homeostasis. They play a role in carcinogenesis and may also cause chemoresistance. The aim of the study was to explore the importance of MT serum levels in children suffering from malignant tumours. This prospective study involves examination of 865 samples from 172 patients with malignant tumours treated from 2008 to 2011 at University Hospital Motol. MT serum levels were determined using differential pulse voltammetry-Brdicka reaction. Mean MT level was 2.7 ± 0.5 μM. There was no statistically significant difference between MT levels in different tumours. We also did not find any correlation between MT levels and response to therapy or clinical stages. However, we found a positive correlation between MT levels and age (p = 0.009) and a negative correlation with absolute lymphocyte number (p = 0.001). The fact that patients who had early disease recurrence had lower MT levels during the treatment (complete remission 2.67 vs. recurring 2.34, p = 0.001) seems to be important for clinical practice. Accordingly we believe that there is benefit in further studies of serum MT levels in tumours.
Collapse
Affiliation(s)
- Jarmila Kruseova
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mail:
| | - Jan Hrabeta
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| |
Collapse
|
36
|
Aure MR, Steinfeld I, Baumbusch LO, Liestøl K, Lipson D, Nyberg S, Naume B, Sahlberg KK, Kristensen VN, Børresen-Dale AL, Lingjærde OC, Yakhini Z. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One 2013; 8:e53014. [PMID: 23382830 PMCID: PMC3559658 DOI: 10.1371/journal.pone.0053014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022] Open
Abstract
Genomic copy number alterations are common in cancer. Finding the genes causally implicated in oncogenesis is challenging because the gain or loss of a chromosomal region may affect a few key driver genes and many passengers. Integrative analyses have opened new vistas for addressing this issue. One approach is to identify genes with frequent copy number alterations and corresponding changes in expression. Several methods also analyse effects of transcriptional changes on known pathways. Here, we propose a method that analyses in-cis correlated genes for evidence of in-trans association to biological processes, with no bias towards processes of a particular type or function. The method aims to identify cis-regulated genes for which the expression correlation to other genes provides further evidence of a network-perturbing role in cancer. The proposed unsupervised approach involves a sequence of statistical tests to systematically narrow down the list of relevant genes, based on integrative analysis of copy number and gene expression data. A novel adjustment method handles confounding effects of co-occurring copy number aberrations, potentially a large source of false positives in such studies. Applying the method to whole-genome copy number and expression data from 100 primary breast carcinomas, 6373 genes were identified as commonly aberrant, 578 were highly in-cis correlated, and 56 were in addition associated in-trans to biological processes. Among these in-trans process associated and cis-correlated (iPAC) genes, 28% have previously been reported as breast cancer associated, and 64% as cancer associated. By combining statistical evidence from three separate subanalyses that focus respectively on copy number, gene expression and the combination of the two, the proposed method identifies several known and novel cancer driver candidates. Validation in an independent data set supports the conclusion that the method identifies genes implicated in cancer.
Collapse
Affiliation(s)
- Miriam Ragle Aure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Israel Steinfeld
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Lars Oliver Baumbusch
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Knut Liestøl
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Doron Lipson
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
| | - Sandra Nyberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Naume
- Division of Cancer Medicine and Radiotherapy, Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kristine Kleivi Sahlberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Clinical Epidemiology and Molecular Biology (EpiGen) Akershus University Hospital, Akershus, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Biomedical Informatics Lab, Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- * E-mail: (OCL); (ZY)
| | - Zohar Yakhini
- Laboratory of Computational Biology, Computer Science Department, Israel Institute of Technology, Haifa, Israel
- Agilent Laboratories, Tel Aviv, Israel
- * E-mail: (OCL); (ZY)
| |
Collapse
|
37
|
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 2012; 44:287-301. [PMID: 23050852 DOI: 10.3109/03602532.2012.725414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²⁺ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arriaga JM, Bravo IA, Bruno L, Morales Bayo S, Hannois A, Sanchez Loria F, Pairola F, Huertas E, Roberti MP, Rocca YS, Aris M, Barrio MM, Baffa Trasci S, Levy EM, Mordoh J, Bianchini M. Combined metallothioneins and p53 proteins expression as a prognostic marker in patients with Dukes stage B and C colorectal cancer. Hum Pathol 2012; 43:1695-703. [PMID: 22516242 DOI: 10.1016/j.humpath.2011.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022]
Abstract
Our study aimed to evaluate metallothionein and p53 expression in colorectal cancer and to correlate their combined expression with selected clinical and pathologic variables of the disease, to define their prognostic significance. Colorectal cancer specimens from 99 patients were retrospectively analyzed by immunohistochemistry for metallothionein and p53 expression. Survival curves were generated according to the Kaplan-Meier method, and univariate survival distributions were compared with the use of the log-rank test. Multivariate models were computed using Cox proportional hazards regression. This research was approved by the institutional review boards of all centers. Tumors showing concomitant high metallothionein expression and negative p53 (metallothionein(H)/p53(-)) were significantly inversely related to depth of invasion, frequency of nodal metastasis, and Dukes stage (P < .01). In univariate analysis, patients with metallothionein(H)/p53(-) phenotype showed a better overall survival (hazard ratio [HR], 2.83; P < .05) and disease-free survival (HR, 2.03; P < .05). In multivariate analysis, considering staging, metallothionein, and metallothionein + p53 variables, in 83 patients with Dukes stages B and C, metallothionein(H)/p53(-) combination was the sole factor showing an independent prognostic value for overall survival (HR, 3.88; P < .1) and disease-free survival (HR, 2.56; P < .1). In conclusion, the combined analysis of metallothionein and p53 may enhance the prognostic power of each individual marker by predicting the progression of the disease and contributing to a better identification of patients at low risk for mortality, especially for those with Dukes stage B and C colorectal cancer.
Collapse
Affiliation(s)
- J M Arriaga
- Instituto Médico Especializado Alexander Fleming, Centro de Investigaciones Oncológicas de la Fundación Cáncer, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Darling MR, McCord C, Jackson-Boeters L, Copete M. Markers of potential malignancy in chronic hyperplastic candidiasis. ACTA ACUST UNITED AC 2012; 3:176-81. [DOI: 10.1111/j.2041-1626.2012.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Yan DW, Fan JW, Yu ZH, Li MX, Wen YG, Li DW, Zhou CZ, Wang XL, Wang Q, Tang HM, Peng ZH. Downregulation of metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim Biophys Acta Mol Basis Dis 2012; 1822:918-26. [PMID: 22426038 DOI: 10.1016/j.bbadis.2012.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Downregulation of metallothionein (MT) genes has been reported in several tumors with discrepant results. This study is to investigate molecular mechanism of MT gene regulation in colon cancer which is characterized by tumor suppressor gene alterations. EXPERIMENTAL DESIGN Integral analysis of microarray data with loss of heterozygosity (LOH) information was employed. Quantitative real-time PCR and immunohistochemistry were used to validate MT isoform expression in colon cancer tissues and cell lines. The effects of MT1F expression on RKO cell survival and tumorigenesis was analyzed. Bisulphite sequencing PCR (BSP) and methylation-specific PCR were employed to detect the methylation status of the MT1F gene in colon cancer tissues and cell lines. DNA sequencing was used to examine the LOH at the MT1F locus. RESULTS MT1F, MT1G, MT1X, and MT2A gene expression was significantly downregulated in colon cancer tissue (p<0.05). Exogenous MT1F expression increased RKO cell apoptosis and inhibited RKO cell migration, invasion and adhesion as well as in vivo tumorigenicity. Downregulation of MT1F gene in majority of human colon tumor tissues is mainly through mechanism by loss of heterozygosity (p=0.001) while CpG island methylation of MT1F gene promoter region was only observed in poorly differentiated, MSI-positive RKO and LoVo colon cancer cell lines. CONCLUSIONS MT1F is a putative tumor suppressor gene in colon carcinogenesis that is downregulated mainly by LOH in colon cancer tissue. Further studies are required to elucidate a possible role for MT1F downregulation in colon cancer initiation and/or progression.
Collapse
Affiliation(s)
- Dong-Wang Yan
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, 85 Wujin Road, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Capdevila M, Bofill R, Palacios Ò, Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Nzengue Y, Candéias SM, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P. The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. J Trace Elem Med Biol 2011; 25:171-80. [PMID: 21820296 DOI: 10.1016/j.jtemb.2011.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 05/01/2011] [Accepted: 06/29/2011] [Indexed: 12/27/2022]
Abstract
Cadmium (Cd) is a toxic metal and can induce and/or promote diseases in humans (cancer, aging diseases, kidney and bone diseases, etc.). Its toxicity involves many mechanisms including the alteration of copper (Cu) and zinc (Zn) homeostasis leading to reactive oxygen species (ROS) production, either directly or through the inhibition of antioxidant activities. Importantly, ROS can induce oxidative damages in cells. Cadmium, Cu and Zn are also able to induce glutathione (GSH) and metallothioneins (MT) synthesis in a cell-type-dependent manner. As a consequence, the effects induced by these three metals result simultaneously from the inhibition of antioxidant activities and the induction of other factors such as GSH and MT synthesis. MT levels are regulated not only by the p53 protein in a cell-type-dependent manner, or by transcription factors such as metal-responsive transcription factor 1 (MTF-1) and cellular Zn levels but also by cellular GSH level. As described in the literature, DNA damage, GSH and MT levels are sensitive biomarkers used to identify Cd-induced toxicity alone or together with Cu and Zn homeostasis alteration.
Collapse
Affiliation(s)
- Yves Nzengue
- INAC/SCIB UMR-E3 CEA/UJF, Laboratoire Lésions des Acides Nucléiques, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Correlation between metallothionein (MT) expression and selected prognostic factors in ductal breast cancers. Folia Histochem Cytobiol 2010; 48:242-8. [DOI: 10.2478/v10042-010-0011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Manso Y, Serra M, Comes G, Giralt M, Carrasco J, Cols N, Vasák M, González-Duarte P, Hidalgo J. The comparison of mouse full metallothionein-1 versus alpha and beta domains and metallothionein-1-to-3 mutation following traumatic brain injury reveals different biological motifs. J Neurosci Res 2010; 88:1708-18. [PMID: 20127815 DOI: 10.1002/jnr.22342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice. We herewith report the results comparing full mouse MT-1 with the independent alpha and beta domains, alone or together, in a cryoinjury model. The lesion of the cortex caused the mice to perform worse in the horizontal ladder beam and the rota-rod tests; all the proteins showed a modest effect in the former test, while only full MT-1 improved the performance of animals in the rota-rod, and the alpha domain showed a rather detrimental effect. Gene expression analysis by RNA protection assay demonstrated that all proteins may alter the expression of host-response genes such as GFAP, Mac1 and ICAM, in some cases being the beta domain more effective than the alpha domain or even the full MT-1. A MT-1-to-MT-3 mutation blunted some but not all the effects caused by the normal MT-1, and in some cases increased its potency. Thus, splitting the two MT-1 domains do not seem to eliminate all MT functions but certainly modifies them, and different motifs seem to be present in the protein underlying such functions.
Collapse
Affiliation(s)
- Yasmina Manso
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McGee HM, Woods GM, Bennett B, Chung RS. The two faces of metallothionein in carcinogenesis: photoprotection against UVR-induced cancer and promotion of tumour survival. Photochem Photobiol Sci 2010; 9:586-96. [PMID: 20354655 DOI: 10.1039/b9pp00155g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallothionein is a multi-functional protein that protects the host against toxic heavy metals. Under stressful situations it can protect against oxidative damage, contribute to tissue repair, modulate immune responses and limit inflammatory processes. Recently, metallothionein's role in ultraviolet radiation (UVR)-induced injury has been investigated. These studies have shown that when metallothionein is upregulated following exposure to UVR, it can protect against UVR-induced damage and the subsequent development of skin cancer. We propose that this initial protection is achieved through its anti-oxidant role resulting in reduced oxidative stress, reduced apoptosis, reduced NFkappaB activation and enhanced repair of DNA damage. However, once UVR-induced neoplasia has occurred, the cancer cells can hijack metallothionein's protective functions, resulting in increased tumour progression and malignancy. These two discordant sets of attributes are context-dependent, and represent the two faces of metallothionein.
Collapse
Affiliation(s)
- Heather M McGee
- Menzies Research Institute, University of Tasmania, Australia.
| | | | | | | |
Collapse
|
47
|
Abstract
The p53 tumor suppressor is a transcription factor that contains a single zinc ion near its DNA binding interface. Zn(2+) is required for site-specific DNA binding and proper transcriptional activation. In addition to its functional significance, zinc plays a dominant role in determining whether p53 folds productively or misfolds. Insufficient zinc and excess zinc cause p53 to misfold by distinct mechanisms which both result in functional loss. The zinc-binding status of p53 in the cell is impacted significantly by the presence of tumorigenic mutations and by metal ion homeostasis. This review discusses mechanisms by which zinc modulates folding and misfolding of p53, how improper metal binding and release leads to loss of function and cancer, and how misfolding can be rescued by metallochaperones.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
48
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
49
|
Pedersen MØ, Hansen PB, Nielsen SL, Penkowa M. Metallothionein-I + II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas. Leuk Lymphoma 2009; 51:314-28. [DOI: 10.3109/10428190903518329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Xia N, Liu L, Yi X, Wang J. Studies of interaction of tumor suppressor p53 with apo-MT using surface plasmon resonance. Anal Bioanal Chem 2009; 395:2569-75. [DOI: 10.1007/s00216-009-3174-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 11/24/2022]
|