1
|
Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules. BMC Evol Biol 2018; 18:25. [PMID: 29471808 PMCID: PMC5824609 DOI: 10.1186/s12862-018-1138-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
Background In sharks, chickens, rats, frogs, medaka and zebrafish there is haplotypic variation in MHC class I and closely linked genes involved in antigen processing, peptide translocation and peptide loading. At least in chicken, such MHCIa haplotypes of MHCIa, TAP2 and Tapasin are shown to influence the repertoire of pathogen epitopes being presented to CD8+ T-cells with subsequent effect on cell-mediated immune responses. Results Examining MHCI haplotype variation in Atlantic salmon using transcriptome and genome resources we found little evidence for polymorphism in antigen processing genes closely linked to the classical MHCIa genes. Looking at other genes involved in MHCI assembly and antigen processing we found retention of functional gene duplicates originating from the second vertebrate genome duplication event providing cyprinids, salmonids, and neoteleosts with the potential of several different peptide-loading complexes. One of these gene duplications has also been retained in the tetrapod lineage with orthologs in frogs, birds and opossum. Conclusion We postulate that the unique salmonid whole genome duplication (SGD) is responsible for eliminating haplotypic content in the paralog MHCIa regions possibly due to frequent recombination and reorganization events at early stages after the SGD. In return, multiple rounds of whole genome duplications has provided Atlantic salmon, other teleosts and even lower vertebrates with alternative peptide loading complexes. How this affects antigen presentation remains to be established. Electronic supplementary material The online version of this article (10.1186/s12862-018-1138-9) contains supplementary material, which is available to authorized users.
Collapse
|
2
|
A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci Rep 2017; 7:2933. [PMID: 28592828 PMCID: PMC5462769 DOI: 10.1038/s41598-017-02994-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides into the endoplasmic reticulum (ER) lumen for loading onto MHC class I molecules. This is a key step in the control of viral infections through CD8+ T-cells. The herpes simplex virus type-1 encodes an 88 amino acid long species-specific TAP inhibitor, ICP47, that functions as a high affinity competitor for the peptide binding site on TAP. It has previously been suggested that the inhibitory function of ICP47 resides within the N-terminal region (residues 1–35). Here we show that mutation of the highly conserved 50PLL52 motif within the central region of ICP47 attenuates its inhibitory capacity. Taking advantage of the human cytomegalovirus-encoded TAP inhibitor US6 as a luminal sensor for conformational changes of TAP, we demonstrated that the 50PLL52 motif is essential for freezing of the TAP conformation. Moreover, hierarchical functional interaction sites on TAP dependent on 50PLL52 could be defined using a comprehensive set of human-rat TAP chimeras. This data broadens our understanding of the molecular mechanism underpinning TAP inhibition by ICP47, to include the 50PLL52 sequence as a stabilizer that tethers the TAP-ICP47 complex in an inward-facing conformation.
Collapse
|
3
|
Lehnert E, Tampé R. Structure and Dynamics of Antigenic Peptides in Complex with TAP. Front Immunol 2017; 8:10. [PMID: 28194151 PMCID: PMC5277011 DOI: 10.3389/fimmu.2017.00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
The transporter associated with antigen processing (TAP) selectively translocates antigenic peptides into the endoplasmic reticulum. Loading onto major histocompatibility complex class I molecules and proofreading of these bound epitopes are orchestrated within the macromolecular peptide-loading complex, which assembles on TAP. This heterodimeric ABC-binding cassette (ABC) transport complex is therefore a major component in the adaptive immune response against virally or malignantly transformed cells. Its pivotal role predestines TAP as a target for infectious diseases and malignant disorders. The development of therapies or drugs therefore requires a detailed comprehension of structure and function of this ABC transporter, but our knowledge about various aspects is still insufficient. This review highlights recent achievements on the structure and dynamics of antigenic peptides in complex with TAP. Understanding the binding mode of antigenic peptides in the TAP complex will crucially impact rational design of inhibitors, drug development, or vaccination strategies.
Collapse
Affiliation(s)
- Elisa Lehnert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
4
|
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R. Antigenic Peptide Recognition on the Human ABC Transporter TAP Resolved by DNP-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:13967-13974. [DOI: 10.1021/jacs.6b07426] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ahmad Reza Mehdipour
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | | | | | | |
Collapse
|
5
|
Blees A, Reichel K, Trowitzsch S, Fisette O, Bock C, Abele R, Hummer G, Schäfer LV, Tampé R. Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch. Sci Rep 2015; 5:17341. [PMID: 26611325 PMCID: PMC4661472 DOI: 10.1038/srep17341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.
Collapse
Affiliation(s)
- Andreas Blees
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Katrin Reichel
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Olivier Fisette
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Bock
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Lars V. Schäfer
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Cluster of Excellence–Macromolecular Complexes, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJHJ. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 2015; 11:e1004743. [PMID: 25880312 PMCID: PMC4399834 DOI: 10.1371/journal.ppat.1004743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bryan D. Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Eggensperger S, Fisette O, Parcej D, Schäfer LV, Tampé R. An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J Biol Chem 2014; 289:33098-108. [PMID: 25305015 DOI: 10.1074/jbc.m114.592832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery.
Collapse
Affiliation(s)
- Sabine Eggensperger
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Olivier Fisette
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - David Parcej
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M
| | - Lars V Schäfer
- the Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum, 44780 Bochum, and
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., the Cluster of Excellence-Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
8
|
ABC transporters in adaptive immunity. Biochim Biophys Acta Gen Subj 2014; 1850:449-60. [PMID: 24923865 DOI: 10.1016/j.bbagen.2014.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
9
|
Leonhardt RM, Abrahimi P, Mitchell SM, Cresswell P. Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization. THE JOURNAL OF IMMUNOLOGY 2014; 192:2480-94. [PMID: 24501197 DOI: 10.4049/jimmunol.1302637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.
Collapse
|
10
|
Abstract
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Collapse
Affiliation(s)
- Andreas Hinz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|
11
|
Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 2012; 69:3317-27. [PMID: 22638925 PMCID: PMC3437018 DOI: 10.1007/s00018-012-1005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Collapse
|
12
|
Horst D, Favaloro V, Vilardi F, van Leeuwen HC, Garstka MA, Hislop AD, Rabu C, Kremmer E, Rickinson AB, High S, Dobberstein B, Ressing ME, Wiertz EJHJ. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. THE JOURNAL OF IMMUNOLOGY 2011; 186:3594-605. [PMID: 21296983 DOI: 10.4049/jimmunol.1002656] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
EBV, the prototypic human γ(1)-herpesvirus, persists for life in infected individuals, despite the presence of vigorous antiviral immunity. CTLs play an important role in the protection against viral infections, which they detect through recognition of virus-encoded peptides presented in the context of HLA class I molecules at the cell surface. The viral peptides are generated in the cytosol and are transported into the endoplasmic reticulum (ER) by TAP. The EBV-encoded lytic-phase protein BNLF2a acts as a powerful inhibitor of TAP. Consequently, loading of antigenic peptides onto HLA class I molecules is hampered, and recognition of BNLF2a-expressing cells by cytotoxic T cells is avoided. In this study, we characterize BNLF2a as a tail-anchored (TA) protein and elucidate its mode of action. Its hydrophilic N-terminal domain is located in the cytosol, whereas its hydrophobic C-terminal domain is inserted into membranes posttranslationally. TAP has no role in membrane insertion of BNLF2a. Instead, Asna1 (also named TRC40), a cellular protein involved in posttranslational membrane insertion of TA proteins, is responsible for integration of BNLF2a into the ER membrane. Asna1 is thereby required for efficient BNLF2a-mediated HLA class I downregulation. To optimally accomplish immune evasion, BNLF2a is composed of two specialized domains: its C-terminal tail anchor ensures membrane integration and ER retention, whereas its cytosolic N terminus accomplishes inhibition of TAP function. These results illustrate how EBV exploits a cellular pathway for TA protein biogenesis to achieve immune evasion, and they highlight the exquisite adaptation of this virus to its host.
Collapse
Affiliation(s)
- Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schölz C, Tampé R. The peptide-loading complex--antigen translocation and MHC class I loading. Biol Chem 2009; 390:783-94. [PMID: 19426129 DOI: 10.1515/bc.2009.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP) and Cluster of Excellence (CEF)-Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
14
|
Theodoratos A, Whittle B, Enders A, Tscharke DC, Roots CM, Goodnow CC, Fahrer AM. Mouse strains with point mutations in TAP1 and TAP2. Immunol Cell Biol 2009; 88:72-8. [PMID: 19721454 DOI: 10.1038/icb.2009.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report two new mouse strains: Jasmine (C57BL/6J/Apb-Tap2jas/Apb), with a point mutation in the transporter associated with antigen processing (TAP)2 ; and Rose, (C57BL/6J/Apb-Tap1rose/Apb), with a point mutation in TAP1. These strains were detected as the result of ethyl nitroso urea (ENU) screens for recessive point mutations affecting the immune system. As expected in cases of defective TAP expression, the mice have very low major histocompatibility complex (MHC)-I cell-surface expression, and few CD8(+) T cells. The Rose strain has an A to T substitution in exon 10 of TAP1, resulting in an asparagine to valine substitution at position 643. Jasmine has an A to C transversion in exon 5 of TAP2, resulting in a threonine to proline substitution at position 293 of the protein. The mutation does not affect mRNA levels, but results in a very severe reduction in TAP2 protein. TAP1 protein levels are also decreased in Jasmine mice, demonstrating a new role for mouse TAP2 in stabilizing TAP1 protein expression. Jasmine is the first strain available with defective TAP2. The two mouse strains provide additional animal models for the human condition Bare Lymphocyte syndrome type 1, and identify new residues important for TAP function.
Collapse
Affiliation(s)
- Angelo Theodoratos
- Biochemistry and Molecular Biology, Research School of Biology, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
16
|
Simone LC, Wang X, Solheim JC. A transmembrane tail: interaction of tapasin with TAP and the MHC class I molecule. Mol Immunol 2009; 46:2147-50. [PMID: 19361863 DOI: 10.1016/j.molimm.2009.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
The transmembrane protein tapasin has an essential role in the assembly of stable major histocompatibility (MHC) class I/peptide complexes. Within the endoplasmic reticulum, tapasin associates with both the transporter associated with antigen processing (TAP) and the MHC class I molecule. The tapasin/TAP association has been clearly shown to involve the transmembrane domains (TMDs) of both molecules and to result in the stable expression of TAP. Although the influence of tapasin on MHC class I molecule folding and surface expression has been extensively studied, relatively little is known at the structural level regarding the interaction between tapasin and the MHC class I molecule. Here we summarize our current understanding of functions involving the tapasin TMD and propose that, beyond stabilizing TAP, the tapasin TMD may also interact with the MHC class I heavy chain.
Collapse
Affiliation(s)
- Laura C Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | |
Collapse
|
17
|
Procko E, Gaudet R. Antigen processing and presentation: TAPping into ABC transporters. Curr Opin Immunol 2009; 21:84-91. [PMID: 19261456 DOI: 10.1016/j.coi.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/11/2009] [Indexed: 01/08/2023]
Abstract
Adaptive, cell-mediated immunity involves the presentation of antigenic peptides on class I MHC molecules at the cell surface. This requires an ABC transporter associated with antigen processing (TAP) to transport antigenic peptides generated in the cytosol into the endoplasmic reticulum (ER) for loading onto class I MHC. Recent crystal structures of bacterial ABC transporters suggest how the transmembrane domains of TAP form a peptide-binding cavity that acquires peptides from the cytosol, and following ATP-induced conformational changes, the peptide-binding cavity closes to the cytosol and instead opens to the ER lumen for peptide release. Extensive biochemical studies show how transport is driven by ATP binding and hydrolysis on an asymmetric pair of cytosolic nucleotide-binding domains, which are physically coupled to the peptide-binding site to propagate conformational changes through the protein.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
18
|
Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampé R, Koch J, Ressing ME, Wiertz EJHJ. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. THE JOURNAL OF IMMUNOLOGY 2008; 181:4894-907. [PMID: 18802093 DOI: 10.4049/jimmunol.181.7.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The quality control of MHC class I peptide loading. Curr Opin Cell Biol 2008; 20:624-31. [PMID: 18926908 DOI: 10.1016/j.ceb.2008.09.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022]
Abstract
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.
Collapse
|
20
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Nikles D, Tampé R. Targeted degradation of ABC transporters in health and disease. J Bioenerg Biomembr 2008; 39:489-97. [PMID: 17972020 DOI: 10.1007/s10863-007-9120-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or 'dead-end' state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.
Collapse
Affiliation(s)
- Daphne Nikles
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60348 Frankfurt am Main, Germany
| | | |
Collapse
|
22
|
Structural and Functional Dissection of the Human Cytomegalovirus Immune Evasion Protein US6. J Virol 2008; 82:3271-82. [PMID: 18199642 DOI: 10.1128/jvi.01705-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) protein US6 inhibits the transporter associated with antigen processing (TAP). Since TAP transports antigenic peptides into the endoplasmic reticulum for binding to major histocompatibility class I molecules, inhibition of the transporter by HCMV US6 impairs the presentation of viral antigens to cytotoxic T lymphocytes. HCMV US6 inhibits ATP binding by TAP, hence depriving TAP of the energy source it requires for peptide translocation, yet the molecular basis for the interaction between US6 and TAP is poorly understood. In this study we demonstrate that residues 89 to 108 of the HCMV US6 luminal domain are required for TAP inhibition, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. In parallel, we demonstrate that chimpanzee cytomegalovirus (CCMV) US6 binds, but does not inhibit, human TAP. The sequence of CCMV US6 differs from that of HCMV US6 in the region corresponding to residues 89 to 108 of the HCMV protein. The substitution of this region of CCMV US6 with the corresponding residues from HCMV US6 generates a chimeric protein that inhibits human TAP and provides further evidence for the pivotal role of residues 89 to 108 of HCMV US6 in the inhibition of TAP. On the basis of these observations, we propose that there is a hierarchy of interactions between HCMV US6 and TAP, in which residues 89 to 108 of HCMV US6 interact with and inhibit TAP, whereas other parts of the viral protein also bind to TAP and stabilize this inhibitory interaction.
Collapse
|
23
|
Rufer E, Leonhardt RM, Knittler MR. Molecular Architecture of the TAP-Associated MHC Class I Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2007; 179:5717-27. [DOI: 10.4049/jimmunol.179.9.5717] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Papadopoulos M, Momburg F. Multiple residues in the transmembrane helix and connecting peptide of mouse tapasin stabilize the transporter associated with the antigen-processing TAP2 subunit. J Biol Chem 2007; 282:9401-9410. [PMID: 17244610 DOI: 10.1074/jbc.m610429200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type I endoplasmic reticulum (ER) glycoprotein tapasin (Tpn) is essential for loading of major histocompatibility complex class I (MHC-I) molecules with an optimal spectrum of antigenic peptides and for stable expression of the heterodimeric, polytopic TAP peptide transporter. In a detailed mutational analysis, the transmembrane domain (TMD) and ER-luminal connecting peptide (CP) of mouse Tpn were analyzed for their capacity to stabilize the TAP2 subunit. Replacement of the TMD of Tpn by TMDs from calnexin or the Tpn-related protein, respectively, completely abolished TAP2 stabilization after transfection of Tpn-deficient cells, whereas TMDs derived from distantly related Tpn molecules (chicken and fish) were functional. A detailed mutational analysis of the TMD and adjacent residues in the ER-luminal CP of mouse Tpn was performed to elucidate amino acids that control the stabilization of TAP2. Single amino acid substitutions, including a conserved Lys residue in the center of the putative TMD, did not affect TAP2 expression levels. Mutation of this Lys plus four additional residues, predicted to be neighbors in an assumed alpha-helical TMD arrangement, abrogated the TAP2-stabilizing capacity of Tpn. In the presence of a wild-type TMD, also the substitution of a highly conserved Glu residue in the CP of Tpn strongly affected TAP2 stabilization. Defective TAP2 stabilization resulted in impaired cell surface expression of MHC-I molecules. This study thus defines a novel, spatially arranged motif in the TMD of Tpn essential for stable expression of the TAP2 protein and a novel protein interaction mode involving an ER-luminal Glu residue close to the membrane.
Collapse
Affiliation(s)
- Martina Papadopoulos
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|