1
|
Growth Hormone Improves Adipose Tissue Browning and Muscle Wasting in Mice with Chronic Kidney Disease-Associated Cachexia. Int J Mol Sci 2022; 23:ijms232315310. [PMID: 36499637 PMCID: PMC9740214 DOI: 10.3390/ijms232315310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cachexia associated with chronic kidney disease (CKD) has been linked to GH resistance. In CKD, GH treatment enhances muscular performance. We investigated the impact of GH on cachexia brought on by CKD. CKD was induced by 5/6 nephrectomy in c57BL/6J mice. After receiving GH (10 mg/kg/day) or saline treatment for six weeks, CKD mice were compared to sham-operated controls. GH normalized metabolic rate, increased food intake and weight growth, and improved in vivo muscular function (rotarod and grip strength) in CKD mice. GH decreased uncoupling proteins (UCP)s and increased muscle and adipose tissue ATP content in CKD mice. GH decreased lipolysis of adipose tissue by attenuating expression and protein content of adipose triglyceride lipase and protein content of phosphorylated hormone-sensitive lipase in CKD mice. GH reversed the increased expression of beige adipocyte markers (UCP-1, CD137, Tmem26, Tbx1, Prdm16, Pgc1α, and Cidea) and molecules implicated in adipose tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in CKD mice. Additionally, GH normalized the molecular markers of processes connected to muscle wasting in CKD, such as myogenesis and muscle regeneration. By using RNAseq, we previously determined the top 12 skeletal muscle genes differentially expressed between mice with CKD and control animals. These 12 genes' aberrant expression has been linked to increased muscle thermogenesis, fibrosis, and poor muscle and neuron regeneration. In this study, we demonstrated that GH restored 7 of the top 12 differentially elevated muscle genes in CKD mice. In conclusion, GH might be an effective treatment for muscular atrophy and browning of adipose tissue in CKD-related cachexia.
Collapse
|
2
|
Jaspers RT, Zillikens MC, Friesema ECH, Paoli G, Bloch W, Uitterlinden AG, Goglia F, Lanni A, Lange P. Exercise, fasting, and mimetics: toward beneficial combinations? FASEB J 2016; 31:14-28. [DOI: 10.1096/fj.201600652r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Richard T. Jaspers
- Laboratory for MyologyMove Research Institute Amsterdam, Faculty of Behavioral and Movement Sciences, Vrije Universiteit (VU) Amsterdam Amsterdam The Netherlands
| | | | - Edith C. H. Friesema
- Division of PharmacologyVascular and Metabolic Diseases, Department of Internal Medicine, Erasmus Medical Center Rotterdam The Netherlands
| | - Giuseppe Paoli
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport MedicineGerman Sport University Cologne Cologne Germany
| | | | - Fernando Goglia
- Department of Sciences and TechnologiesUniversity of Sannio Benevento Italy
| | - Antonia Lanni
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| | - Pieter Lange
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| |
Collapse
|
3
|
Effects of Sunphenon and Polyphenon 60 on proteolytic pathways, inflammatory cytokines and myogenic markers in H2O2-treated C2C12 cells. J Biosci 2015; 40:53-9. [PMID: 25740141 DOI: 10.1007/s12038-015-9503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12 cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF-α and NF-kB, as well as proteolytic enzymes, such as μ-calpain and m-calpain. The pre-treatment of Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of μ-calpain and m-calpain were significantly(p<0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely μ-calpain and m-calpain. Furthermore, the mRNA expression of TNF-α and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) significantly (p<0.05) down-regulated it when compared to the untreated control group.Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 μg/mL)/Polyphenon 60 (50 μg/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, μ-calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of μ-calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.
Collapse
|
4
|
Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 2014; 289:9710-29. [PMID: 24523404 DOI: 10.1074/jbc.m113.544726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming.
Collapse
|
5
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
6
|
Drosophila as a lipotoxicity model organism — more than a promise? Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:215-21. [DOI: 10.1016/j.bbalip.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 12/13/2022]
|
7
|
McClung JM, Judge AR, Talbert EE, Powers SK. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol 2008; 296:C363-71. [PMID: 19109522 DOI: 10.1152/ajpcell.00497.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress.
Collapse
Affiliation(s)
- J M McClung
- Dept. of Applied Physiology and Kinesiology, Univ. of Florida, Rm. 25 Florida Gym, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
8
|
Mazzatti DJ, Smith MA, Oita RC, Lim FL, White AJ, Reid MB. Muscle unloading-induced metabolic remodeling is associated with acute alterations in PPARδ and UCP-3 expression. Physiol Genomics 2008; 34:149-61. [DOI: 10.1152/physiolgenomics.00281.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A number of physiological changes follow prolonged skeletal muscle unloading as occurs in spaceflight, bed rest, and hindlimb suspension (HLS) and also in aging. These include muscle atrophy, fiber type switching, and loss of the ability to switch between lipid and glucose usage, or metabolic inflexibility. The signaling and genomic events that precede these physiological manifestations have not been investigated in detail, particularly in regard to loss of metabolic flexibility. Here we used gene arrays to determine the effects of 24-h HLS on metabolic remodeling in mouse muscle. Acute unloading resulted in differential expression of a number of transcripts in soleus and gastrocnemius muscle, including many involved in lipid and glucose metabolism. These include the peroxisome proliferator-activated receptors (PPARs). In contrast to Ppar-α and Ppar-γ, which were downregulated by acute HLS, Ppar-δ was upregulated concomitant with increased expression of its downstream target, uncoupling protein-3 ( Ucp-3). However, differential expression of Ppar-δ was both acute and transient in nature, suggesting that regulation of PPARδ may represent an adaptive, compensatory response aimed at regulating fuel utilization and maintaining metabolic flexibility.
Collapse
Affiliation(s)
- Dawn J. Mazzatti
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Melissa A. Smith
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Radu C. Oita
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Fei-Ling Lim
- Unilever Measurement Sciences, Colworth Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Andrew J. White
- Unilever Measurement Sciences, Colworth Park, Sharnbrook, Bedfordshire, United Kingdom
| | - Michael B. Reid
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
Laurent D, Didier L, Yerby B, Yerby B, Deacon R, Gao J. Diet-induced modulation of mitochondrial activity in rat muscle. Am J Physiol Endocrinol Metab 2007; 293:E1169-77. [PMID: 17711988 DOI: 10.1152/ajpendo.00263.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Growing evidence supports the theory that mitochondrial dysfunction is an underlying cause of intramyocellular lipid (IMCL) accumulation and insulin resistance. Here, we hypothesized that high dietary fat (HF) intake could trigger changes in mitochondrial activity such that fatty acid oxidation is impaired in muscle and contributes to an elevation in intramyocellular lipid (IMCL) levels. Muscle mitochondrial activity was determined in vivo through measurement of the F(1)F(0) ATP synthase flux, the terminal step in the oxidative phosphorylation process. An initial study comparing rats on normal chow diet with rats on an HF diet revealed strong correlations between muscle ATP synthesis rates, IMCL levels and whole body glucose tolerance. Results obtained from two latter studies showed multiphasic responses to dietary intervention. Initially, the ATP synthesis rates decreased as much as 50% within 24 h of raising the fat content in the diet to 60% of the caloric intake. These rates eventually returned to normal values after 2-3 wk on the HF regimen, seemingly to prevent further IMCL accumulation. Only beyond 1 mo on the HF diet did results consistently show ATP synthesis rates to diminish by 30-50% accompanied by steadily augmenting IMCL levels. Interestingly, switching back to a chow diet after 3 wk of HF feeding reversed the initial diet-induced changes. Although the muscle mitochondrial system may initially offer enough compliance to counteract lipid surplus, these in vivo data suggest a vicious long-term cycle among mitochondrial dysfunction, IMCL accumulation, and glucose intolerance in the rat.
Collapse
Affiliation(s)
- Didier Laurent
- Discovery Technologies/Diabetes and Metabolism, Novartis Institutes for BioMedical Research Inc, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Anderson EJ, Yamazaki H, Neufer PD. Induction of Endogenous Uncoupling Protein 3 Suppresses Mitochondrial Oxidant Emission during Fatty Acid-supported Respiration. J Biol Chem 2007; 282:31257-66. [PMID: 17761668 DOI: 10.1074/jbc.m706129200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uncoupling protein 3 (UCP3) expression increases dramatically in skeletal muscle under metabolic states associated with elevated lipid metabolism, yet the function of UCP3 in a physiological context remains controversial. Here, in situ mitochondrial H(2)O(2) emission and respiration were measured in permeabilized fiber bundles prepared from both rat and mouse (wild-type) gastrocnemius muscle after a single bout of exercise plus 18 h of recovery (Ex/R) that induced a approximately 2-4-fold increase in UCP3 protein. Elevated uncoupling activity (i.e. GDP inhibitable) was evident in Ex/R fibers only upon the addition of palmitate (known activator of UCP3) or under substrate conditions eliciting substantial rates of H(2)O(2) production (i.e. respiration supported by succinate or palmitoyl-L-carnitine/malate but not pyruvate/malate), indicative of UCP3 activation by endogenous reactive oxygen species. In mice completely lacking UCP3 (ucp3(-/-)), Ex/R failed to induce uncoupling activity. Surprisingly, when UCP3 activity was inhibited by GDP (rats) or in the absence of UCP3 (ucp3(-/-)), H(2)O(2) emission was significantly (p < 0.05) higher in Ex/R versus non-exercised control fibers. Collectively, these findings demonstrate that the oxidant emitting potential of mitochondria is increased in skeletal muscle during recovery from exercise, possibly as a consequence of prolonged reliance on lipid metabolism and/or altered mitochondrial biochemistry/morphology and that induction of UCP3 in vivo mediates an increase in uncoupling activity that restores mitochondrial H(2)O(2) emission to non-exercised, control levels.
Collapse
Affiliation(s)
- Ethan J Anderson
- John B. Pierce Laboratory and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|