1
|
Zhao X, Sun Q, Shou Y, Chen W, Wang M, Qu W, Huang X, Li Y, Wang C, Gu Y, Ji C, Shu Q, Li X. A human forebrain organoid model reveals the essential function of GTF2IRD1-TTR-ERK axis for the neurodevelopmental deficits of Williams syndrome. eLife 2024; 13:RP98081. [PMID: 39671308 PMCID: PMC11643624 DOI: 10.7554/elife.98081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25-27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.
Collapse
Affiliation(s)
- Xingsen Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yikai Shou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Weijun Chen
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ying Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Chai Ji
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, Hosono T, Maretich P, Yang Y, Ishigaki Y, Chi J, Cohen P, Koliwad SK, Kajimura S. Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metab 2018; 27:180-194.e6. [PMID: 29320702 PMCID: PMC5765755 DOI: 10.1016/j.cmet.2017.12.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/25/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
Adipose tissue fibrosis is a hallmark of malfunction that is linked to insulin resistance and type 2 diabetes; however, what regulates this process remains unclear. Here we show that the PRDM16 transcriptional complex, a dominant activator of brown/beige adipocyte development, potently represses adipose tissue fibrosis in an uncoupling protein 1 (UCP1)-independent manner. By purifying the PRDM16 complex, we identified GTF2IRD1, a member of the TFII-I family of DNA-binding proteins, as a cold-inducible transcription factor that mediates the repressive action of the PRDM16 complex on fibrosis. Adipocyte-selective expression of GTF2IRD1 represses adipose tissue fibrosis and improves systemic glucose homeostasis independent of body-weight loss, while deleting GTF2IRD1 promotes fibrosis in a cell-autonomous manner. GTF2IRD1 represses the transcription of transforming growth factor β-dependent pro-fibrosis genes by recruiting PRDM16 and EHMT1 onto their promoter/enhancer regions. These results suggest a mechanism by which repression of obesity-associated adipose tissue fibrosis through the PRDM16 complex leads to an improvement in systemic glucose homeostasis.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Kenji Ikeda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yong Chen
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana L Alba
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Stifler
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kosaku Shinoda
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Takashi Hosono
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Pema Maretich
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yangyu Yang
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, Uchimaru, Japan
| | - Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY, USA
| | - Suneil K Koliwad
- UCSF Diabetes Center, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Gtf2ird1-Dependent Mohawk Expression Regulates Mechanosensing Properties of the Tendon. Mol Cell Biol 2016; 36:1297-309. [PMID: 26884464 PMCID: PMC4836271 DOI: 10.1128/mcb.00950-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Mechanoforces experienced by an organ are translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called tenocytes orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon-specific transcription factor, is essential in mechanoresponsive tenogenesis through regulation of its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin both in vivo and in vitro Wild-type (WT) mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas in Mkx(-/-) mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of the Mkx promoter region identified several upstream transcription factors that regulate Mkx In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes translocated into the nucleus upon mechanical stretching to activate the Mkx promoter through chromatin regulation. Here, we demonstrate that Gtf2ird1 is essential for Mkx transcription, while also linking mechanical forces to Mkx-mediated tendon homeostasis and regeneration.
Collapse
|
4
|
Carmona-Mora P, Widagdo J, Tomasetig F, Canales CP, Cha Y, Lee W, Alshawaf A, Dottori M, Whan RM, Hardeman EC, Palmer SJ. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet 2015; 134:1099-115. [PMID: 26275350 DOI: 10.1007/s00439-015-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jocelyn Widagdo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Florence Tomasetig
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Yeojoon Cha
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Wei Lee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Abdullah Alshawaf
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina. J Neurosci 2015; 34:15356-68. [PMID: 25392503 DOI: 10.1523/jneurosci.2089-14.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function.
Collapse
|
6
|
A DNA-centric protein interaction map of ultraconserved elements reveals contribution of transcription factor binding hubs to conservation. Cell Rep 2013; 5:531-45. [PMID: 24139795 DOI: 10.1016/j.celrep.2013.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/06/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
Ultraconserved elements (UCEs) have been the subject of great interest because of their extreme sequence identity and their seemingly cryptic and largely uncharacterized functions. Although in vivo studies of UCE sequences have demonstrated regulatory activity, protein interactors at UCEs have not been systematically identified. Here, we combined high-throughput affinity purification, high-resolution mass spectrometry, and SILAC quantification to map intrinsic protein interactions for 193 UCE sequences. The interactome contains over 400 proteins, including transcription factors with known developmental roles. We demonstrate based on our data that UCEs consist of strongly conserved overlapping binding sites. We also generated a fine-resolution interactome of a UCE, confirming the hub-like nature of the element. The intrinsic interactions mapped here are reflected in open chromatin, as indicated by comparison with existing ChIP data. Our study argues for a strong contribution of protein-DNA interactions to UCE conservation and provides a basis for further functional characterization of UCEs.
Collapse
|
7
|
Smaller and larger deletions of the Williams Beuren syndrome region implicate genes involved in mild facial phenotype, epilepsy and autistic traits. Eur J Hum Genet 2013; 22:64-70. [PMID: 23756441 DOI: 10.1038/ejhg.2013.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 04/10/2013] [Indexed: 11/08/2022] Open
Abstract
Williams Beuren syndrome (WBS) is a multisystemic disorder caused by a hemizygous deletion of 1.5 Mb on chromosome 7q11.23 spanning 28 genes. A few patients with larger and smaller WBS deletion have been reported. They show clinical features that vary between isolated SVAS to the full spectrum of WBS phenotype, associated with epilepsy or autism spectrum behavior. Here we describe four patients with atypical WBS 7q11.23 deletions. Two carry ~3.5 Mb larger deletion towards the telomere that includes Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma (YWHAG) genes. Other two carry a shorter deletion of ~1.2 Mb at centromeric side that excludes the distal WBS genes BAZ1B and FZD9. Along with previously reported cases, genotype-phenotype correlation in the patients described here further suggests that haploinsufficiency of HIP1 and YWHAG might cause the severe neurological and neuropsychological deficits including epilepsy and autistic traits, and that the preservation of BAZ1B and FZD9 genes may be related to mild facial features and moderate neuropsychological deficits. This report highlights the importance to characterize additional patients with 7q11.23 atypical deletions comparing neuropsychological and clinical features between these individuals to shed light on the pathogenic role of genes within and flanking the WBS region.
Collapse
|
8
|
O'Leary J, Osborne LR. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice. PLoS One 2011; 6:e23868. [PMID: 21909369 PMCID: PMC3166129 DOI: 10.1371/journal.pone.0023868] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/27/2011] [Indexed: 01/24/2023] Open
Abstract
Background Williams-Beuren Syndrome (WBS) is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. Methodology/Principal Findings We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold) and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. Conclusions/Significance We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.
Collapse
Affiliation(s)
- Jennifer O'Leary
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucy R. Osborne
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Proulx É, Young EJ, Osborne LR, Lambe EK. Enhanced prefrontal serotonin 5-HT(1A) currents in a mouse model of Williams-Beuren syndrome with low innate anxiety. J Neurodev Disord 2010; 2:99-108. [PMID: 20585377 PMCID: PMC2882561 DOI: 10.1007/s11689-010-9044-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/24/2010] [Indexed: 12/01/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1(+/-)) or homozygously (Gtf2ird1(-/-)) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1(-/-) mice and their wildtype (WT) siblings. Prefrontal 5-HT receptors are known to modulate anxiety-like behaviors, and the Gtf2ird1(-/-) mice have altered 5-HT metabolism in prefrontal cortex. Using whole cell recording from layer V neurons in acute brain slices of prefrontal cortex, we found that 5-HT elicited significantly larger inhibitory, outward currents in Gtf2ird1(-/-) mice than in WT controls. In both genotypes, these currents were resistant to action potential blockade with TTX and were suppressed by the selective 5-HT(1A) receptor antagonist WAY-100635, suggesting that they are mediated directly by 5-HT(1A) receptors on the recorded neurons. Control experiments suggest a degree of layer and receptor specificity in this enhancement since 5-HT(1A) receptor-mediated responses in layer II/III pyramidal neurons were unchanged as were responses mediated by two other inhibitory receptors in layer V pyramidal neurons. Furthermore, we demonstrate GTF2IRD1 protein expression by neurons in layer V of the prefrontal cortex. Our finding that 5-HT(1A)-mediated responses are selectively enhanced in layer V pyramidal neurons of Gtf2ird1(-/-) mice gives insight into the cellular mechanisms that underlie reduced innate anxiety and increased sociability in these mice, and may be relevant to the low social anxiety and disinhibition in patients with WBS and their sensitivity to serotonergic medicines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11689-010-9044-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Éliane Proulx
- Department of Physiology, University of Toronto, 1 King’s College Circle, Room 3358, Toronto, ON M5S 1A8 Canada
| | - Edwin J. Young
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Lucy R. Osborne
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, 1 King’s College Circle, Room 3358, Toronto, ON M5S 1A8 Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
10
|
Merla G, Brunetti-Pierri N, Micale L, Fusco C. Copy number variants at Williams–Beuren syndrome 7q11.23 region. Hum Genet 2010; 128:3-26. [DOI: 10.1007/s00439-010-0827-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/13/2010] [Indexed: 01/06/2023]
|
11
|
Ferrero GB, Howald C, Micale L, Biamino E, Augello B, Fusco C, Turturo MG, Forzano S, Reymond A, Merla G. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur J Hum Genet 2010; 18:33-8. [PMID: 19568270 DOI: 10.1038/ejhg.2009.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Williams-Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype-phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.
Collapse
|
12
|
Palmer SJ, Santucci N, Widagdo J, Bontempo SJ, Taylor KM, Tay ESE, Hook J, Lemckert F, Gunning PW, Hardeman EC. Negative autoregulation of GTF2IRD1 in Williams-Beuren syndrome via a novel DNA binding mechanism. J Biol Chem 2010; 285:4715-24. [PMID: 20007321 PMCID: PMC2836076 DOI: 10.1074/jbc.m109.086660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/07/2009] [Indexed: 11/06/2022] Open
Abstract
The GTF2IRD1 gene is of principal interest to the study of Williams-Beuren syndrome (WBS). This neurodevelopmental disorder results from the hemizygous deletion of a region of chromosome 7q11.23 containing 28 genes including GTF2IRD1. WBS is thought to be caused by haploinsufficiency of certain dosage-sensitive genes within the deleted region, and the feature of supravalvular aortic stenosis (SVAS) has been attributed to reduced elastin caused by deletion of ELN. Human genetic mapping data have implicated two related genes GTF2IRD1 and GTF2I in the cause of some the key features of WBS, including craniofacial dysmorphology, hypersociability, and visuospatial deficits. Mice with mutations of the Gtf2ird1 allele show evidence of craniofacial abnormalities and behavioral changes. Here we show the existence of a negative autoregulatory mechanism that controls the level of GTF2IRD1 transcription via direct binding of the GTF2IRD1 protein to a highly conserved region of the GTF2IRD1 promoter containing an array of three binding sites. The affinity for this protein-DNA interaction is critically dependent upon multiple interactions between separate domains of the protein and at least two of the DNA binding sites. This autoregulatory mechanism leads to dosage compensation of GTF2IRD1 transcription in WBS patients. The GTF2IRD1 promoter represents the first established in vivo gene target of the GTF2IRD1 protein, and we use it to model its DNA interaction capabilities.
Collapse
Affiliation(s)
- Stephen J Palmer
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Malcolm T, Kam J, Pour PS, Sadowski I. Specific interaction of TFII-I with an upstream element on the HIV-1 LTR regulates induction of latent provirus. FEBS Lett 2008; 582:3903-8. [PMID: 18976654 DOI: 10.1016/j.febslet.2008.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/19/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022]
Abstract
RBF-2 is a factor comprised of a USF1/2 heterodimer, whose association with a highly conserved upstream element (RBEIII) on the HIV-1 LTR requires a co-factor TFII-I. We have identified specific nucleotides, immediately 3' of RBEIII that are required for stable association of TFII-I with this region of the LTR. Mutations that inhibit interaction of TFII-I with DNA also prevent stimulation of USF binding to RBEIII, and render the integrated LTR unresponsive to T cell signaling. These results demonstrate an essential role of TFII-I bound at an upstream LTR element for viral replication.
Collapse
Affiliation(s)
- Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics, LSI, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|