1
|
Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int J Mol Sci 2020; 21:ijms21145098. [PMID: 32707690 PMCID: PMC7403987 DOI: 10.3390/ijms21145098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan–Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs’ potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.
Collapse
|
2
|
Wu ZK, Cao L, Zhang XY, Song WT, Xia XB. Promotion on the differentiation of retinal Müller cells into retinal ganglion cells by Brn-3b. Int J Ophthalmol 2016; 9:948-54. [PMID: 27500099 DOI: 10.18240/ijo.2016.07.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/24/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the role of Brn-3b in differentiation process of stem cells derived from retinal Müller cells into the ganglion cell. METHODS The passage culture method of Müller cells from retina of newborn Sprague Dawley rats was carried out by repeated incomplete pancreatic enzyme digestion method. The cells were detected by fluorescence-activated cell sorter (FACS), immunohistochemistry technology and reverse transcription-polymerase chain reaction (RT-PCR) to determine the purity. The third passage of cells was induced in the serum-free dedifferentiation medium. The expression of the specific markers Ki-67 and nestin of retinal stem cells was measured by RT-PCR and Western blot. The cell proliferation of retinal stem cells was detected by 5-ethynyl-2'-deoxyuridine (Edu) staining. The cells were randomly divided into 5 groups as follows: group A: Brn-3bsiRNA group; group B: Brn-3b control siRNA group; group C: pGC-Brn-3b-green fluorescent protein (GFP) group; group D: pGC-GFP group; group E: control group (without any handling). The purified Müller cells were cultured for 3-7d, then, the percentage of ganglion cells was counted by immunofluorescence staining. RESULTS FACS demonstrated the purity of retinal Müller cells was more 97.44%. A few spherical cell spheres appeared. Immunofluorescence staining showed that stem cells within the spheres were positive for retinal stem cell-specific markers nestin (red fluorescence, 92.94%±6.48%) and Ki-67 (green fluorescence, 85.96%±6.04%). Meanwhile, RT-PCR analysis showed cell spheres in the culture to have expressed a battery of transcripts characteristic of stem cells such as nestin and Ki-67, which were absent in the Müller cells. Western blot analysis further confirmed the expression of nestin and Ki-67 in the cell spheres but not in the Müller cells. Edu staining showed most of the nuclei within the cell spheres were stained red (82.80%±6.65%), suggesting the new cell spheres had the capacity for effective proliferation. The statistics result showed the difference between Brn-3bsiRNA group and Brn-3b control siRNA group or the control group was significant (F=15, P<0.05), while the difference between Brn-3b control siRNA group or the control group was not statistically significant (P>0.05). CONCLUSION The repeated incomplete pancreatic enzyme digestion method is an efficient and practical method to purify retinal Müller cells. Retinal stem cells were successfully cloned in the dedifferentiational medium. Retinal Müller cells are accessible sources of retinal stem cells. Brn-3b is an important regulatory gene in stem cells differentiated into retinal ganglion cell.
Collapse
Affiliation(s)
- Zhen-Kai Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Lan Cao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xue-Yong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
3
|
Rasheed VA, Sreekanth S, Dhanesh SB, Divya MS, Divya TS, Akhila PK, Subashini C, Chandrika Sivakumar K, Das AV, James J. Developmental wave of Brn3b expression leading to RGC fate specification is synergistically maintained by miR-23a and miR-374. Dev Neurobiol 2014; 74:1155-71. [PMID: 24838392 DOI: 10.1002/dneu.22191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 12/18/2022]
Abstract
Differential regulation of Brn3b is essential for the Retinal Ganglion Cell (RGC) development in the two phases of retinal histogenesis. This biphasic Brn3b regulation is required first, during early retinal histogenesis for RGC fate specification and secondly, during late histogenesis, where Brn3b is needed for RGC axon guidance and survival. Here, we have looked into how the regulation of Brn3b at these two stages happens. We identified two miRNAs, miR-23a and miR-374, as regulators of Brn3b expression, during the early stage of RGC development. Temporal expression pattern of miR-23a during E10-19, PN1-7, and adult retina revealed an inverse relation with Brn3b expression. Though miR-374 did not show such a pattern, its co-expression with miR-23a evidently inhibited Brn3b. We further substantiated these findings by ex vivo overexpression of these miRNAs in E14 mice retina and found that miR-23a and miR-374 together brings about a change in Brn3b expression pattern in ganglion cell layer (GCL) of the developing retina. From our results, it appears that the combined expression of these miRNAs could be regulating the timing of the wave of Brn3b expression required for early ganglion cell fate specification and later for its survival and maturation into RGCs. Taken together, here we provide convincing evidences for the existence of a co-ordinated mechanism by miRNAs to down regulate Brn3b that will ultimately regulate the development of RGCs from their precursors.
Collapse
Affiliation(s)
- Vazhanthodi A Rasheed
- Department of Neurobiology, Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A. Upregulation of proapoptotic microRNA mir-125a after massive small bowel resection in rats. Ann Surg 2012; 255:747-53. [PMID: 22418008 PMCID: PMC4116096 DOI: 10.1097/sla.0b013e31824b485a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Short bowel syndrome remains a condition of high morbidity and mortality, and current therapeutic options carry significant side effects. To identify new treatments we focused on postresection changes in microRNAs--short noncoding RNAs, which suppress target genes--and suggest a previously undiscovered role for microRNA-125a (mir-125a) in intestinal adaptation. METHODS Rats underwent either 80% massive small bowel resection or transection and were harvested after 48 hours. Jejunum was harvested for microRNA microarrays, laser capture microdissection, and RNA and protein analysis. Mir-125a was overexpressed in intestinal epithelium-6 (crypt-derived) cells (IEC-6) and effects on proliferation and apoptosis determined using MTS and flow cytometry. Expression of potential targets of mir-125a in rat jejunum and IEC-6 cells was determined using quantitative real-time polymerase chain reaction (RNA) and Western blotting (protein). RESULTS Resection upregulated mir-125a and mir-214 by 2.4-folds and 3.2-folds, respectively. Highest levels of expression were noted in the crypt fraction. Mir-125a overexpression induced apoptosis and resultant growth arrest in IEC-6 cells. The expression of the prosurvival Bcl-2 family member Mcl-1 was downregulated in both mir-125a-overexpressing IEC-6 cells and in jejunum of resected rats, confirming Mcl-1 as a previously undiscovered target of mir-125a. CONCLUSIONS Upregulation of mir-125a suppresses the prosurvival protein Mcl1, producing the increase in apoptosis known to accompany the proliferative changes characteristic of intestinal adaptation. Our data highlight a potential role for microRNAs as mediators of the adaptive process and may facilitate the development of new therapeutic options for short bowel syndrome.
Collapse
Affiliation(s)
- Anita Balakrishnan
- Departments of Surgery, Brigham and Women’s Hospital, Boston, MA
- School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool, United Kingdom
| | - Adam T. Stearns
- Departments of Surgery, Brigham and Women’s Hospital, Boston, MA
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA
| | | | | | - David B. Rhoads
- Departments of Surgery, Brigham and Women’s Hospital, Boston, MA
- Pediatric Endocrine Unit, Mass-General Hospital for Children, Boston, MA
| | | |
Collapse
|
5
|
Corrada D, Viti F, Merelli I, Battaglia C, Milanesi L. myMIR: a genome-wide microRNA targets identification and annotation tool. Brief Bioinform 2011; 12:588-600. [PMID: 22021901 DOI: 10.1093/bib/bbr062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
miRNA target genes prediction represents a crucial step in miRNAs functional characterization. In this context, the challenging issue remains predictions accuracy and recognition of false positive results. In this article myMIR, a web based system for increasing reliability of miRNAs predicted targets lists, is presented. myMIR implements an integrated pipeline for computing ranked miRNA::target lists and provides annotations for narrowing them down. The system relies on knowledge base data, suitably integrated in order to extend the functional characterization of targeted genes to miRNAs, by highlighting the search on over-represented annotation terms. Validation results show a dramatic reduction in the quantity of predictions and an increase in the sensitivity, when compared to other methods. This improves the predictions accuracy and allows the formulation of novel hypotheses on miRNAs functional involvement.
Collapse
Affiliation(s)
- Dario Corrada
- Institute for Biomedical Technologies - National Research Council (ITB-CNR), Segrate, Italy.
| | | | | | | | | |
Collapse
|
6
|
Gross J, Angerstein M, Fuchs J, Stute K, Mazurek B. Expression analysis of prestin and selected transcription factors in newborn rats. Cell Mol Neurobiol 2011; 31:1089-101. [PMID: 21614551 DOI: 10.1007/s10571-011-9708-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/11/2011] [Indexed: 01/16/2023]
Abstract
Transcription factors (TFs) have a central role to play in regulating gene expression. To analyze the co-expression patterns of selected TFs with the motor protein prestin of the outer hair cells, we applied an real-time PCR approach combining several kinds of information: (i) expression changes during postnatal development, (ii) expression changes by exposure of organotypic cultures of the organ of Corti to factors which significantly affect prestin expression [thyroid hormone (T4), retinoic acid (RA), butyric acid (BA), increased KCl concentration] and (iii) changes along the apical-basal gradient. We found that the mRNA levels of the TF Brn-3c (Pou4f3), a member of the POU family, are significantly associated with the regulation of prestin during postnatal development and in cultures supplemented with T4 (0.5 μM), BA (0.5-2.0 mM), and high KCl (50 mM) concentration. The mRNA level of the constitutively active TF C/ebpb (CCAAT/enhancer binding protein beta) correlates positively with the prestin expression during postnatal development and in cultures exposed to T4 and RA (50-100 μM). The mRNA levels of the calcium-dependent TF CaRF correlates significantly with the prestin expression in cultures exposed to T4 and high KCl concentration. The observed coexpression patterns may suggest that the TFs Brn-3c, C/ebpb, and Carf contribute to regulating the expression of prestin under the investigated conditions.
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
7
|
O'Quin KE, Smith D, Naseer Z, Schulte J, Engel SD, Loh YHE, Streelman JT, Boore JL, Carleton KL. Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evol Biol 2011; 11:120. [PMID: 21554730 PMCID: PMC3116502 DOI: 10.1186/1471-2148-11-120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Background Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. Results We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. Conclusions This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.
Collapse
Affiliation(s)
- Kelly E O'Quin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Calissano M, Latchman DS. Cell-specific regulation of the pro-survival Brn-3b transcription factor by microRNAs. Mol Cell Neurosci 2010; 45:317-23. [PMID: 20609388 DOI: 10.1016/j.mcn.2010.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 06/03/2010] [Accepted: 06/24/2010] [Indexed: 11/27/2022] Open
Abstract
We have previously shown that the Brn-3b transcription factor is subjected to post-transcriptional gene regulation by specific microRNAs (mir-23 and mir-214) in the ND7 and SHSY-5Y neuronal cell lines (Calissano et al., 2007). As Brn-3b plays an essential role in the survival of retinal ganglion cells in the rat (Erkman et al., 1996; Gan et al., 1996; Gan et al., 1999; Erkman et al., 2000), we wanted to investigate whether mir-23 and mir-214 are expressed and target Brn-3b mRNA in a retinal ganglion cell line (RGC-5) thus potentially killing the cells expressing it. Here we show that, possibly due to its pro-survival role, Brn-3b is protected from degradation by microRNAs in RGC-5 cells in contrast to its fate in other cell types. This seems to be accomplished by i) the lack of expression of one of the two microRNAs targeting its 3'UTR and by ii) the requirement of at least two distinct microRNAs to mediate its down-regulation in retinal ganglion cells. We speculate that this mechanism could have a widespread role in the regulation of mRNAs encoding for essential proteins.
Collapse
Affiliation(s)
- Mattia Calissano
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, WC1N 1EH London, UK.
| | | |
Collapse
|
9
|
Tsalavouta M, Astudillo O, Byrnes L, Nolan CM. Regulation of expression of zebrafish(Danio rerio) insulin-like growth factor 2 receptor: implications for evolution at theIGF2Rlocus. Evol Dev 2009; 11:546-58. [DOI: 10.1111/j.1525-142x.2009.00361.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Thorell K, Bergman A, Carén H, Nilsson S, Kogner P, Martinsson T, Abel F. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genomics 2009; 2:53. [PMID: 19686582 PMCID: PMC2743704 DOI: 10.1186/1755-8794-2-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified. METHODS In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples. RESULTS By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, ATBF1, CACNA2D3, CNTNAP2, FUSIP1, GNB1, SLC35E2, and TFAP2B. The gene that showed the highest fold change in the TLDA analysis, POU4F2, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene CNTNAP2 that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of POU4F2 and CNTNAP2 showed no genetic alterations that could explain a lower expression in unfavourable NB tumours. CONCLUSION Through two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, CACNA2D3, GNB1, SLC35E2, and TFAP2B, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Clinical Genetics, Gothenburg University, S-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|