1
|
Kim H, Jung YJ, Kim Y, Bae MK, Yoo KH, Yoon SY, Park HR, Kim IR, Kim YI. Long-term hybrid stability and matrix metalloproteinase inhibition by fucosterol in resin-dentin bonding biomechanics. Sci Rep 2024; 14:20415. [PMID: 39223241 PMCID: PMC11369231 DOI: 10.1038/s41598-024-71715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fucosterols have been widely studied for their antioxidant, anticancer, and anti-inflammatory properties. However, they have not yet been studied in the field of dentistry. This study aimed to determine whether pretreatment of dentin with fucosterol before resin restoration enhances bond stability in resin-dentin hybrid layers. After applying 0.1, 0.5, and 1.0 wt% fucosterol to demineralized dentin, microtensile bond strength (MTBS) and nanoleakage tests were performed before and after collagenase aging, and the surface was observed using scanning electron microscope (SEM). The fucosterol-treated group showed better bond strength and less nanoleakage both before and after collagenase aging, and the corresponding structures were confirmed using SEM. MMP zymography confirmed that the activity of MMPs was relatively low along the concentration gradient of fucosterol, and the FTIR analysis confirmed the production of collagen crosslinks. In addition, fucosterol exhibits cytotoxicity against Streptococcus mutans, the main cause of dental decay. The results of this study suggest that fucosterol pretreatment improves bond strength and reduces nanoleakage at the resin-dentin interface, possibly through a mechanism involving collagen cross-link formation via the inhibition of endogenous and exogenous MMP activity. This study demonstrates the potential of fucosterol as an MMP inhibitor in dentin, which contributes to long-term resin-dentin bond stability and can be used as a restorative material.
Collapse
Affiliation(s)
- Hyeryeong Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea
| | - Yu-Jung Jung
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Kyung-Hyeon Yoo
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, South Korea
| | - Hae Ryoun Park
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Geumoro 20, Mulgeumeup, Yangsan, 50612, South Korea.
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
2
|
Helicobacter pylori Infection Acts Synergistically with a High-Fat Diet in the Development of a Proinflammatory and Potentially Proatherogenic Endothelial Cell Environment in an Experimental Model. Int J Mol Sci 2021; 22:ijms22073394. [PMID: 33806236 PMCID: PMC8037564 DOI: 10.3390/ijms22073394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Classic atherosclerosis risk factors do not explain all cases of chronic heart disease. There is significant evidence that gut microbiota may influence the development of atherosclerosis. The widespread prevalence of chronic Helicobacter pylori (H. pylori, HP) infections suggests that HP can be the source of components that stimulate local and systemic inflammatory responses. Elevated production of reactive oxygen species during HP infection leads to cholesterol oxidation, which drives atherogenesis. The aim of this study is to explore the link between persistent HP infection and a high-fat diet in the development of proinflammatory conditions that are potentially proatherogenic. An in vivo model of Caviae porcellus infected with HP and exposed to an experimental diet was investigated for the occurrence of a proinflammatory and proatherogenic endothelial environment. Vascular endothelial primary cells exposed to HP components were tested in vitro for oxidative stress, cell activation and apoptosis. The infiltration of inflammatory cells into the vascular endothelium of animals infected with HP and exposed to a high-fat diet was observed in conjunction with an increased level of inflammatory markers systemically. The arteries of such animals were the least elastic, suggesting the role of HP in arterial stiffness. Soluble HP components induced transformation of macrophages to foam cells in vitro and influenced the endothelial life span, which was correlated with Collagen I upregulation. These preliminary results support the hypothesis that HP antigens act synergistically with a high-fat diet in the development of proatherogenic conditions.
Collapse
|
3
|
Shin MH, Lee Y, Kim MK, Lee DH, Chung JH. UV increases skin-derived 1α,25-dihydroxyvitamin D 3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. J Steroid Biochem Mol Biol 2019; 195:105449. [PMID: 31470109 DOI: 10.1016/j.jsbmb.2019.105449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022]
Abstract
The skin is a unique site in the human body that has the capacity to synthesize the active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), from 7-dehydrocholesterol (7DHC) upon UV irradiation. Keratinocytes express both 25-hydroxylase (CYP27A1 and CYP2R1) and 1α-hydroxylase (CYP27B1), critical enzymes involved in active vitamin D synthesis. Here, we investigated the effect of skin-derived 1α,25(OH)2D3, synthesized purely within the keratinocytes, on MMP-1 expression. Treatment of human epidermal keratinocytes with 1α,25(OH)2D3, but not 7DHC or 25OHD3, significantly increased MMP-1 expression. UV irradiation increases 1α,25(OH)2D3 levels, and ketoconazole inhibits UV-induced production of 1α,25(OH)2D3. Upregulation of MMP-1 by UV was reversed by inhibition of 1α,25(OH)2D3 synthesis using ketoconazole or CYP27B1 siRNA. In keratinocytes, 7DHC is a substrate for both cholesterol and 1α,25(OH)2D3 synthesis. We demonstrated that UV irradiation leads to decreased expression of DHCR7 (7-dehydrocholesterol reductase), the enzyme that converts 7DHC to cholesterol. Inhibition of DHCR7 with its inhibitor BM15766 decreased cholesterol synthesis and increased UV-induced MMP-1 expression, which was attenuated by ketoconazole. These findings suggest that UV-induced reduction of DHCR7 leads to a decrease in cholesterol synthesis, thereby increasing 7DHC availability for 1α,25(OH)2D3 production, which enhances MMP-1 expression. Finally, UV irradiation in human skin in vivo significantly increased CYP27B1 mRNA and decreased DHCR7 mRNA expression. Taken together, we demonstrate here that skin-derived 1α,25(OH)2D3 significantly increases MMP-1 expression in human keratinocytes, a previously unappreciated function of 1α,25(OH)2D3. Moreover, UV irradiation upregulates the enzyme CYP27B1, which leads to 1α,25(OH)2D3 synthesis, but downregulates the cholesterol-producing enzyme DHCR7, both of which collectively lead to increased MMP-1 expression in human keratinocytes. This pathway may be exploited to develop a novel cutaneous anti-aging agent that blocks local cutaneous 1α,25(OH)2D3 synthesis.
Collapse
Affiliation(s)
- Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Jiang XP, Zhang DX, Teng M, Zhang Q, Zhang JP, Huang YS. Downregulation of CD9 in keratinocyte contributes to cell migration via upregulation of matrix metalloproteinase-9. PLoS One 2013; 8:e77806. [PMID: 24147081 PMCID: PMC3797697 DOI: 10.1371/journal.pone.0077806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/04/2013] [Indexed: 12/17/2022] Open
Abstract
Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role.
Collapse
Affiliation(s)
- Xu-pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Dong-xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Jia-ping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (Y-sH); (J-pZ)
| | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (Y-sH); (J-pZ)
| |
Collapse
|
5
|
Nakamura T, Noma A, Shimada S, Ishii N, Bando N, Kawai Y, Terao J. Non-selective distribution of isomeric cholesterol hydroperoxides to microdomains in cell membranes and activation of matrix metalloproteinase activity in a model of dermal cells. Chem Phys Lipids 2013; 174:17-23. [PMID: 23751409 DOI: 10.1016/j.chemphyslip.2013.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Cholesterol hydroperoxides (ChOOHs) are included as lipid peroxidation products in the skin exposed to ultraviolet (UV) light irradiation. They may exert physicochemical actions affecting biomembrane rigidity because cholesterol is one of the major components of cell membranes. We investigated the distribution of isomeric ChOOHs in heterogeneous cell membranes with different lipid profiles using mouse fibroblast NIH-3T3 cells as a model of the dermis. Before and after UVA irradiation in the presence of hematoporphyrin, cell membranes were partitioned to microdomains (lipid rafts and caveolae) containing a higher amount of cholesterol and non-microdomains (containing a lower amount of cholesterol) by ultracentrifugation. By a combination of diphenylpyrenylphosphine-thin-layer chromatography blotting analyses and gas chromatography-electron ionization-mass spectrometry/selected ion monitoring analyses, ChOOH isomers were determined as their trimethylsilyloxyl derivatives. Cholesterol 5α-, 7α- and 7β-hydroperoxide were found as isomeric ChOOHs before irradiation. The amounts of the three ChOOH isomers increased significantly after photoirradiation for 2h. No difference was observed between microdomains and non-microdomains with regard to the ratio of the amounts of isomeric ChOOHs to that of cholesterol, suggesting that these ChOOH isomers were distributed equally in both parts depending on cholesterol content. When cells were treated with a purified mixture of ChOOH isomers, cell membranes incorporated ChOOHs into microdomains as well as non-microdomains evenly. Cellular matrix metalloproteinase-9 (MMP-9) activity was elevated by treatment with the purified mixture of ChOOH isomers. These results strongly suggest that ChOOHs accumulate in cell membranes irrespective of the heterogeneous microstructure and promote MMP activity if dermal cells are exposed to photodynamic actions.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Department of Food Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Hwang IS, Kim JE, Choi SI, Lee HR, Lee YJ, Jang MJ, Son HJ, Lee HS, Oh CH, Kim BH, Lee SH, Hwang DY. UV radiation-induced skin aging in hairless mice is effectively prevented by oral intake of sea buckthorn (Hippophae rhamnoides L.) fruit blend for 6 weeks through MMP suppression and increase of SOD activity. Int J Mol Med 2012; 30:392-400. [PMID: 22641502 DOI: 10.3892/ijmm.2012.1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/27/2012] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress and oxidative photodamage induced by UV radiation can cause serious skin damage that is characterized by wrinkling, roughness, laxity and pigmentation. The effects of a sea buckthorn (Hippophae rhamnoides L.) fruit blend (SFB) containing sea buckthorn fruit extract, blueberry extract and collagen on UV-induced skin aging were examined by treating hairless mice for 6 weeks with UV irradiation and SFB administered orally. The effects of SFB were measured in the skin of these mice by phenotypical and histological analysis and western blotting. According to wrinkle formation analysis, the oral intake of SFB induced a decrease in wrinkle formation in the damaged skin of UV-irradiated mice. The thickness of the epidermis and dermis in the vitamin extracts (Vit)- and SFB-treated group was lower than that in the vehicle-treated group, but the group treated with SFB50 was the most effective group. The mice treated with the Vit- or SFB solution maintained a normal moisture content through the inhibition of transdermal water loss (TEWL) and an increase in skin moisture content. Furthermore, the levels of matrix metalloproteinase (MMP) and collagen protein expression were assessed in five groups to examine the mechanisms underlying the effects of SFB oral intake. The application of SFB induced a decrease in MMP-1 and -9 expression to the levels observed in the vehicle-treated group, but MMP-9 expression showed a much larger decrease than MMP-1. Furthermore, the expression of collagen-1 in the skin corresponded to MMP expression except for the SFB30-treated group, whereas the superoxide dismutase (SOD) activity was increased dramatically in the SFB50-treated group. These results suggest that SFB has potential as a protective and therapeutic drug candidate against skin aging that functions by regulating the moisture content, MMP expression levels and SOD activity.
Collapse
Affiliation(s)
- In Sik Hwang
- College of Natural Resources and Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Byun HJ, Cho KH, Eun HC, Lee MJ, Lee Y, Lee S, Chung JH. Lipid ingredients in moisturizers can modulate skin responses to UV in barrier-disrupted human skin in vivo. J Dermatol Sci 2012; 65:110-7. [PMID: 22209282 DOI: 10.1016/j.jdermsci.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/07/2011] [Accepted: 12/03/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemicals with a molecular weight <500 and adequate lipid solubility can penetrate the intact human skin. As many lipid ingredients in moisturizers have molecular weights <500, the lipid ingredients may penetrate into the skin and affect skin responses to UV; however, little is known about this phenomenon. OBJECTIVE To evaluate the effects of major lipid ingredients in moisturizers on skin responses to UV in tape-stripped human skin in vivo. METHODS We evaluated the effects of three major lipid ingredients in moisturizers (cholesterol, linoleic acid, and a synthetic ceramide, N-oleoyl-phytosphingosine) on skin responses to UV in the tape-stripped skin of healthy volunteers. After 2 days of lipid-application, the areas were irradiated with UV, and skin samples were obtained 24h after irradiation. Histologic features and the expression of the markers of collagen metabolism and inflammatory mediators were evaluated. RESULTS Compared to vehicle, topical cholesterol significantly decreased the degree of dermal inflammatory infiltrates and exocytosis, and also decreased the expression of MMP-1, IL-6, and IL-1ß mRNA. In contrast, topical linoleic acid increased the induction of apoptotic cells, and the expression of MMP-1 and IL-6 mRNA. N-oleoyl-phytosphingosine increased the expression of MMP-1 and IL-6 mRNA, while decreasing the expression of COX-2 mRNA. CONCLUSIONS Topical cholesterol can protect the barrier-disrupted skin against UV-induced damage, while linoleic acid or N-oleoyl-phytosphingosine alone has the potential to aggravate the damage.
Collapse
Affiliation(s)
- Hee Jin Byun
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Yang H, Dai Y, Dong H, Zang D, Liu Q, Duan H, Niu Y, Bin P, Zheng Y. Trichloroethanol up-regulates matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in HaCaT cells. Toxicol In Vitro 2011; 25:1638-43. [DOI: 10.1016/j.tiv.2011.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/22/2011] [Indexed: 11/25/2022]
|
9
|
Lee J, Lim KT. Inhibitory effect of plant-originated glycoprotein (27 kDa) on expression of matrix metalloproteinase-9 in cadmium chloride-induced BNL CL.2 cells. J Trace Elem Med Biol 2011; 25:239-46. [PMID: 21924884 DOI: 10.1016/j.jtemb.2011.08.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/26/2011] [Accepted: 08/16/2011] [Indexed: 01/16/2023]
Abstract
Cadmium is very harmful to the environment and to human beings because of its long lifetime. The toxicity of cadmium as an industrial pollutant and a food contaminant, and as one of the major components in cigarette smoke is well known. Cadmium can cause a number of lesions in many organs, such as the kidney, the lung, the liver, the brain, the blood system. However, the mechanism of toxicity of cadmium is not yet clear. Also, it has been well known as human carcinogen which is indirectly caused inflammation-mediated hepatocarcinoma. In the present study it was demonstrated that glycoprotein (27 kDa) isolated from Gardenia jasminoides Ellis (GJE) protects BNL CL.2 cells from expression of inflammation-related factors stimulated by cadmium chloride (10 μM). Intracellular ROS and intracellular Ca(2+) using fluorescence, activities of activator protein (AP)-1, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and arachidonic acid (AA) using immunoblot analysis or radioactivity were evaluated. The results obtained from this experiment indicated that GJE glycoprotein (100 μg/mL) inhibits the production of intracellular ROS, and intracellular Ca(2+) mobilization. Also, it significantly suppressed inflammatory factors [expression of AP-1 (c-Jun and c-Fos), arachidonic acid, COX-2, and MMP-9]. Taken together, these findings suggest that GJE glycoprotein might be used for protection of inflammation caused by cadmium ion as one of natural compounds.
Collapse
Affiliation(s)
- Jin Lee
- Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju, South Korea
| | | |
Collapse
|
10
|
Raghu H, Sodadasu PK, Malla RR, Gondi CS, Estes N, Rao JS. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 2010; 10:647. [PMID: 21106094 PMCID: PMC3002355 DOI: 10.1186/1471-2407-10-647] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/24/2010] [Indexed: 12/13/2022] Open
Abstract
Background uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts. Methods To investigate whether cholesterol could regulate uPAR and MMP-9 in breast carcinoma, we used MβCD (methyl beta cyclodextrin, which extracts cholesterol from lipid rafts) to disrupt lipid rafts and studied its effect on breast cancer cell migration, invasion, angiogenesis and signaling. Results Morphological evidence showed the association of uPAR with lipid rafts in breast carcinoma cells. MβCD treatment significantly reduced the colocalization of uPAR and MMP-9 with lipid raft markers and also significantly reduced uPAR and MMP-9 at both the protein and mRNA levels. Spheroid migration and invasion assays showed inhibition of breast carcinoma cell migration and invasion after MβCD treatment. In vitro angiogenesis studies showed a significant decrease in the angiogenic potential of cells pretreated with MβCD. MβCD treatment significantly reduced the levels of MMP-9 and uPAR in raft fractions of MDA-MB-231 and ZR 751 cells. Phosphorylated forms of Src, FAK, Cav, Akt and ERK were significantly inhibited upon MβCD treatment. Increased levels of soluble uPAR were observed upon MβCD treatment. Cholesterol supplementation restored uPAR expression to basal levels in breast carcinoma cell lines. Increased colocalization of uPAR with the lysosomal marker LAMP1 was observed in MβCD-treated cells when compared with untreated cells. Conclusion Taken together, our results suggest that cholesterol levels in lipid rafts are critical for the migration, invasion, and angiogenesis of breast carcinoma cells and could be a critical regulatory factor in these cancer cell processes mediated by uPAR and MMP-9.
Collapse
Affiliation(s)
- Hari Raghu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kim S, Oh JH, Lee Y, Lee J, Cho KH, Chung JH. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts. Exp Mol Med 2010; 42:38-46. [PMID: 19887895 DOI: 10.3858/emm.2010.42.1.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (>or=200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation. J Biosci Bioeng 2010; 109:291-6. [DOI: 10.1016/j.jbiosc.2009.08.478] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 11/19/2022]
|
13
|
Kim EJ, Jin XJ, Kim YK, Oh IK, Kim JE, Park CH, Chung JH. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J Dermatol Sci 2009; 57:19-26. [PMID: 19932008 DOI: 10.1016/j.jdermsci.2009.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/06/2009] [Accepted: 10/19/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although fatty acids are known to be important in various skin functions, their roles on photoaging in human skin are poorly understood. OBJECTIVE We investigated the alteration of lipid metabolism in the epidermis by photoaging and acute UV irradiation in human skin. METHODS UV irradiated young volunteers (21-33 years, n=6) and elderly volunteers (70-75 years, n=7) skin samples were obtained by punch biopsy. Then the epidermis was separated from dermis and lipid metabolism was investigated. RESULTS We observed that the amounts of free fatty acids (FFA) and triglycerides (TG) in the epidermis of photoaged or acutely UV irradiated human skin were significantly decreased. The expressions of genes related to lipid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), sterol regulatory element binding proteins (SREBPs), and peroxisome proliferator-activated receptors (PPARgamma) were also markedly decreased. To elucidate the significance of these changes of epidermal lipids in human skin, we investigated the effects of TG or various inhibitors for the enzymes involved in TG synthesis on the expression of matrix metalloproteinase-1 (MMP-1) in cultured human epidermal keratinocytes. We demonstrated that triolein (TG) reduced basal and UV-induced MMP-1 mRNA expression. In addition, each inhibitor for various lipid synthesis enzymes, such as TOFA (ACC inhibitor), cerulenin (FAS inhibitor) and trans-10, cis-12-CLA (SCD inhibitor), increased the MMP-1 expression significantly in a dose-dependent manner. We also demonstrated that triolein could inhibit cerulenin-induced MMP-1 expression. Furthermore, topical application of triolein (10%) significantly prevented UV-induced MMP-13, COX-2, and IL-1beta expression in hairless mice. CONCLUSION Our results suggest that TG and FFA may play important roles in photoaging of human skin.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Kim S, Kim SH, Hur SM, Lee SK, Kim WW, Kim JS, Kim JH, Choe JH, Nam SJ, Lee JE, Yang JH. Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:252-7. [PMID: 19715751 DOI: 10.1016/j.jep.2009.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 07/27/2009] [Accepted: 08/19/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The expression of matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2) are pivotal steps in breast cancer pathogenesis. In a previous study, we reported that silibinin suppresses TPA-induced MMP-9 expression through the Raf/MEK/ERK pathway. AIMS OF THE STUDY Herein we determined the co-relationship between MMP-9 and COX-2, as well as the effect of silibinin on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 and COX-2 expression in the human breast cancer cells, MCF-7 and MDA-MB231. METHODS The toxicity of silibinin was evaluated by Quick Cell Proliferation Assay Kit II. MMP-9 and COX-2 expression were analyzed by Zymography and Western blotting, respectively. Adenoviral constitutively active (CA)-MEK was used to activate MEK/ERK pathway. RESULTS The expression of MMP-9 and COX-2 in response to TPA was increased, whereas TPA-induced MMP-9 and COX-2 expression was decreased by silibinin. Our results showed that TPA-induced MMP-9 expression was inhibited by celecoxib in a dose-dependent fashion, but not MMP-1-expression. Both MMP-9 and COX-2 expression were significantly increased by CA-MEK overexpression. In contrast, TPA-induced MMP-9 and COX-2 expression was decreased by UO126 (MEK 1/2 inhibitor). CONCLUSION Silibinin down-regulates TPA-induced MMP-9 expression through inhibition of COX-2 expression in breast cancer cells.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Kangnam-gu, Seoul 135-710, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules 2009; 14:4300-11. [PMID: 19924065 PMCID: PMC6255431 DOI: 10.3390/molecules14114300] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/10/2009] [Accepted: 10/19/2009] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is one of the pro-inflammatory cytokines highly expressed in Helicobacter pylori that inhibits gastric acid secretion. In this study we determined the effect of silibinin on TNF-α-induced MMP-9 expression in gastric cancer cell lines. MMP-9 mRNA and protein expression was dose-dependently increased by TNF-α in SNU216 and SNU668 gastric cancer cells. On the other hand, TNF-α-induced MMP-9 expression was dose-dependently suppressed by silibinin. To verify the regulatory mechanism of silibinin on TNF-α-induced MMP-9 expression, the gastric cancer cell lines were pretreated with silibinin prior to TNF-α. TNF-α-induced MMP-9 expression was inhibited by the MEK1/2 specific inhibitor, UO126. Finally, we investigated the effect of adenoviral constitutively active (CA)-MEK and CA-Akt on MMP-9 expression. The expression of MMP-9 was significantly increased by CA-MEK overexpression, but not by CA-Akt overexpression. Taken together, we suggest that silibinin down-regulates TNF-α-induced MMP-9 expression through inhibition of the MEK/ERK pathway in gastric cancer cells.
Collapse
|
16
|
Casas E, Barron C, Francis SA, McCormack JM, McCarthy KM, Schneeberger EE, Lynch RD. Cholesterol efflux stimulates metalloproteinase-mediated cleavage of occludin and release of extracellular membrane particles containing its C-terminal fragments. Exp Cell Res 2009; 316:353-65. [PMID: 19854171 DOI: 10.1016/j.yexcr.2009.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/25/2022]
Abstract
That changes in membrane lipid composition alter the barrier function of tight junctions illustrates the importance of the interactions between tetraspan integral tight junction proteins and lipids of the plasma membrane. Application of methyl-beta-cyclodextrin to both apical and basolateral surfaces of MDCK cell monolayers for 2 h, results in an approximately 80% decrease in cell cholesterol, a fall in transepithelial electrical resistance, and a 30% reduction in cell content of occludin, with a smaller reduction in levels of claudins-2, -3, and -7. There were negligible changes in levels of actin and the two non-tight junction membrane proteins GP-135 and caveolin-1. While in untreated control cells breakdown of occludin, and probably other tight junction proteins, is mediated by intracellular proteolysis, our current data suggest an alternative pathway whereby in a cholesterol-depleted membrane, levels of tight junction proteins are decreased via direct release into the intercellular space as components of membrane-bound particles. Occludin, along with two of its degradation products and several claudins, increases in the basolateral medium after incubation with methyl-beta-cyclodextrin for 30 min. In contrast caveolin-1 is detected only in the apical medium after adding methyl-beta-cyclodextrin. Release of occludin and its proteolytic fragments continues even after removal of methyl-beta-cyclodextrin. Sedimentation and ultrastructural studies indicate that the extracellular tight junction proteins are associated with the membrane-bound particles that accumulate between adjacent cells. Disruption of the actin filament network by cytochalasin D did not diminish methyl-beta-cyclodextrin-induced release of tight junction proteins into the medium, suggesting that the mechanism underlying their formation is not actin-dependent. The 41- and 48-kDa C-terminal occludin fragments formed during cholesterol depletion result from the action of a GM6001-sensitive metalloproteinase(s) at some point in the path leading to release of the membrane particles.
Collapse
Affiliation(s)
- Elizabeth Casas
- Department of Biological Science, University of Massachusetts-Lowell, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Calleros L, Sánchez-Hernández I, Baquero P, Toro MJ, Chiloeches A. Oncogenic Ras, but not (V600E)B-RAF, protects from cholesterol depletion-induced apoptosis through the PI3K/AKT pathway in colorectal cancer cells. Carcinogenesis 2009; 30:1670-7. [PMID: 19700418 DOI: 10.1093/carcin/bgp188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cholesterol is necessary for proliferation and survival of transformed cells. Here we analyse the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in colorectal cancer cells carrying oncogenic Ras or (V600E)B-RAF mutations. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment results in a significant increase in apoptosis in HT-29 and Colo-205 cells containing the (V600E)B-RAF mutation, but not in HCT-116 and LoVo cells harbouring the (G13D)Ras mutation, or BE cells, which possess two mutations, (G13D)Ras and (G463V)B-RAF. We also demonstrate that oncogenic Ras protects from apoptosis induced by cholesterol depletion through constitutive activation of the phosphatidylinositol-3 kinase (PI3K)/AKT pathway. The specific activation of the PI3K/AKT pathway by overexpression of the (V12)RasC40 mutant or a constitutively active AKT decreases the LPDS plus 25-HC-induced apoptosis in HT-29 cells, whereas PI3K inhibition or abrogation of AKT expression renders HCT-116 sensitive to cholesterol depletion-induced apoptosis. Moreover, our data show that LPDS plus 25-HC increases the activity of c-Jun N-terminal kinase proteins only in HT-29 cells and that the inhibition of this kinase blocks the apoptosis induced by LPDS plus 25-HC. Finally, we demonstrate that AKT hyperactivation by oncogenic Ras protects from apoptosis, preventing the activation of c-Jun N-terminal kinase by cholesterol depletion. Thus, our data demonstrate that low levels of cholesterol induce apoptosis in colorectal cancer cells without oncogenic Ras mutations. These results reveal a novel molecular characteristic of colon tumours containing Ras or B-RAF mutations and should help in defining new targets for cancer therapy.
Collapse
Affiliation(s)
- Laura Calleros
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Alcalá, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Kim JS, Kim JH, Choe JH, Yang JH, Nam SJ, Lee JE. Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:573-580. [PMID: 19181503 DOI: 10.1016/j.phymed.2008.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression are pivotal steps in cancer metastasis. Herein, we investigated the effect of silibinin, a major constituent (flavanolignan) of the fruits of Silybum marianum, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 and VEGF expression in MCF-7 human breast cancer cells. The expression of MMP-9 and VEGF in response to TPA was increased, whereas TPA-induced MMP-9 and VEGF expression was decreased by silibinin. To investigate the regulatory mechanism of silibinin on TPA-induced MMP-9 and VEGF expression, we pretreated cells with various inhibitors, such as UO126 (MEK1/2 inhibitor), SP600125 (JNK inhibitor), and SB203580 (p38 inhibitor). Interestingly, TPA-induced MMP-9 expression was significantly inhibited by UO126, but not by SP600125 and SB203580. In addition, we pretreated cells with 100 microM silibinin prior to TPA treatment. TPA-induced MEK and ERK phosphorylation was significantly decreased by silibinin in MCF7 cells. TPA-induced VEGF expression was also suppressed by UO126. On the other hand, we found that adenoviral constitutive active-MEK (Ad-CA-MEK) significantly increased MMP-9 and VEGF expression. Taken together, we suggest that the inhibition of TPA-induced MMP-9 and VEGF expression by silibinin is mediated by the suppression of the Raf/MEK/ERK pathway in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Menschikowski M, Hagelgans A, Eisenhofer G, Siegert G. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Exp Cell Res 2009; 315:2673-82. [PMID: 19467228 DOI: 10.1016/j.yexcr.2009.05.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022]
Abstract
The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), but not interferon-gamma and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1beta and TNF-alpha correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-l-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1beta and TNF-alpha, and downstream by MAP kinase signaling pathways and metalloproteinases.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, Dresden, Germany
| | | | | | | |
Collapse
|
20
|
Minami Y, Kawabata K, Kubo Y, Arase S, Hirasaka K, Nikawa T, Bando N, Kawai Y, Terao J. Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary β-carotene in photoaging of hairless mouse skin. J Nutr Biochem 2009; 20:389-98. [DOI: 10.1016/j.jnutbio.2008.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 11/25/2022]
|
21
|
Kim S, Choi JH, Kim JB, Nam SJ, Yang JH, Kim JH, Lee JE. Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules 2008; 13:2975-85. [PMID: 19052522 PMCID: PMC6244848 DOI: 10.3390/molecules13122975] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/02/2023] Open
Abstract
Invasion of cancer cell induced by matrix metalloproteinase-9 (MMP-9) is one of pivotal steps in cancer metastasis. Herein, we investigated how cell invasion was regulated by berberine (BBR), an isoquinoline derivative alkaloid compound, in MDA-MB-231 human breast cancer cells. The basal level of MMP-9 activity and expression was dose-dependently increased by TNF-α, while TNF-α-induced MMP-9 gelatinase activity and expression was decreased by BBR. To investigate regulatory mechanism of TNF-α-induced MMP-9 expression, we pretreated cells with UO126 (MEK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor), respectively. Interestingly, TNF-α-induced MMP-9 activity and expression was decreased by UO126 and SB203580, but not by SP600125. Therefore, we further examined the effects of BBR on TNF-α-induced AP-1 DNA binding activity which is a downstream target of ERK and p38. Our data showed that TNF-α-induced AP-1 DNA binding activity was inhibited by BBR. Finally, we investigated the effect of BBR on TNF-α-induced cell invasion. TNF-α-induced cell invasion was significantly decreased by BBR treatment. Taken together, we suggest that TNF-α-induced MMP-9 expression and cell invasion are decreased by BBR through the suppression of AP-1 DNA binding activity in MDA-MB-231 human breast cancer cells.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
| | - Jae Hyuck Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
| | - Jong Bin Kim
- Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, South Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
| | - Jung-Hyun Yang
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
| | - Jung-Han Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
- Authors to whom correspondence should be addressed; E-Mail: (J-H. K.); (J-E. L.); Tel: +82-2-3410-0286(J-H. K.), +82-2-3410-0260 (J-E. L.); Fax: +82-2-3410-6982(J-H. K.), Fax: +82-2-3410-6982(J-E. L.)
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul, South Korea, 135-710
- Authors to whom correspondence should be addressed; E-Mail: (J-H. K.); (J-E. L.); Tel: +82-2-3410-0286(J-H. K.), +82-2-3410-0260 (J-E. L.); Fax: +82-2-3410-6982(J-H. K.), Fax: +82-2-3410-6982(J-E. L.)
| |
Collapse
|
22
|
Kim S, Kim Y, Lee Y, Chung JH. Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. J Lipid Res 2008; 49:2571-81. [DOI: 10.1194/jlr.m800112-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Methyl-β-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. Arch Dermatol Res 2008; 300:451-4. [DOI: 10.1007/s00403-008-0864-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/07/2008] [Accepted: 04/29/2008] [Indexed: 12/19/2022]
|