1
|
Banerjee S, Tumminakatti S, Ghosh S, Voora VK, Prabhakaran EN. cisPro stabilization in prolyl carbamates influenced by tetrel bonding interactions. Org Biomol Chem 2024. [PMID: 39465330 DOI: 10.1039/d4ob01539h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
NMR spectral and theoretical analyses of homologous prolyl carbamates reveal subtle charge transfer tetrel bonding interactions (TBIs), selectively stabilizing their cisPro rotamers. These TBIs involve C-terminal-amide to N-terminal carbamate carbonyl-carbonyl (n → π* type) followed by intra-carbamate (n → σ* type) charge transfer interactions exclusively in the cisPro motif. The number of TBIs and hence the cisPro stability increase with increasing number of Cβ groups at the carbamate alcohol. Increasing solvent polarities also increase the relative cisPro carbamate stabilities.
Collapse
Affiliation(s)
- Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Shama Tumminakatti
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Sudip Ghosh
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Erode N Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| |
Collapse
|
2
|
Ramans-Harborough S, Kalverda AP, Manfield IW, Thompson GS, Kieffer M, Uzunova V, Quareshy M, Prusinska JM, Roychoudhry S, Hayashi KI, Napier R, del Genio C, Kepinski S. Intrinsic disorder and conformational coexistence in auxin coreceptors. Proc Natl Acad Sci U S A 2023; 120:e2221286120. [PMID: 37756337 PMCID: PMC10556615 DOI: 10.1073/pnas.2221286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 09/29/2023] Open
Abstract
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
Collapse
Affiliation(s)
- Sigurd Ramans-Harborough
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Gary S. Thompson
- Wellcome Biological Nuclear Magnetic Resonance Facility, Division of Natural Sciences, University of Kent, CanterburyCT2 7NJ, United Kingdom
| | - Martin Kieffer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Veselina Uzunova
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Suruchi Roychoudhry
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama700-0005, Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Charo del Genio
- Centre for Fluid and Complex Systems, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Stefan Kepinski
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
3
|
Homma T, Terui S, Yokoyama F, Okino S, Ohta S, Kato C, Haraguchi N, Fujisawa I, Itsuno S, Ang LZP. Simple production of resilin-like protein hydrogels using the Brevibacillus secretory expression system and column-free purification. Biotechnol Bioeng 2023; 120:194-202. [PMID: 36253915 DOI: 10.1002/bit.28267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.
Collapse
Affiliation(s)
- Toshimasa Homma
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Shu Terui
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Fuki Yokoyama
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Saki Okino
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Sora Ohta
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Chihiro Kato
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Shinichi Itsuno
- Department of Applied Chemistry & Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan.,National Institute of Technology, Gifu College, Motosu, Gifu, Japan
| | - Lily Zuin Ping Ang
- Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan
| |
Collapse
|
4
|
Gupta SK, Banerjee S, Prabhakaran EN. Understanding the anomaly of cis-trans isomerism in Pro-His sequence. Bioorg Med Chem Lett 2022; 76:128985. [PMID: 36165914 DOI: 10.1016/j.bmcl.2022.128985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
The anomalous absence of cisPro stabilizing CαHαXaa···πAro interactions at Xaa-Pro-Aro exclusively when Aro is His, is understood by NMR structural analyses of model peptides, as due to i → i backbone-side chain C6 H-bond that forms uniquely when Aro is His, which significantly decreases its χ1-g- population essential for CαHαXaa···πAro formation.
Collapse
Affiliation(s)
- Sunil K Gupta
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Erode N Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
5
|
Gupta SK, Banerjee S, Prabhakaran EN. van der Waals interactions to control amide cis– trans isomerism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discover the presence of local van der Waals (vdW) interactions at the cis amide bond in crystals of isobutyroyl–Pro–Val–OMe.
Collapse
Affiliation(s)
- Sunil K. Gupta
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka–560012, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka–560012, India
| | - Erode N. Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka–560012, India
| |
Collapse
|
6
|
Ilmjärv S, Abdul F, Acosta-Gutiérrez S, Estarellas C, Galdadas I, Casimir M, Alessandrini M, Gervasio FL, Krause KH. Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant. Sci Rep 2021; 11:13705. [PMID: 34210996 PMCID: PMC8249556 DOI: 10.1038/s41598-021-91662-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/25/2021] [Indexed: 01/18/2023] Open
Abstract
The D614G mutation in the Spike protein of the SARS-CoV-2 has effectively replaced the early pandemic-causing variant. Using pseudotyped lentivectors, we confirmed that the aspartate replacement by glycine in position 614 is markedly more infectious. Molecular modelling suggests that the G614 mutation facilitates transition towards an open state of the Spike protein. To explain the epidemiological success of D614G, we analysed the evolution of 27,086 high-quality SARS-CoV-2 genome sequences from GISAID. We observed striking coevolution of D614G with the P323L mutation in the viral polymerase. Importantly, the exclusive presence of G614 or L323 did not become epidemiologically relevant. In contrast, the combination of the two mutations gave rise to a viral G/L variant that has all but replaced the initial D/P variant. Our results suggest that the P323L mutation, located in the interface domain of the RNA-dependent RNA polymerase, is a necessary alteration that led to the epidemiological success of the present variant of SARS-CoV-2. However, we did not observe a significant correlation between reported COVID-19 mortality in different countries and the prevalence of the Wuhan versus G/L variant. Nevertheless, when comparing the speed of emergence and the ultimate predominance in individual countries, it is clear that the G/L variant displays major epidemiological supremacy over the original variant.
Collapse
Affiliation(s)
- Sten Ilmjärv
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Silvia Acosta-Gutiérrez
- Department of Chemistry, University College London, London, UK.,Institute for the Physics of Living Systems, University College London, London, UK.,Institute of Structural and Molecular Biology, University College London, London, UK
| | | | | | | | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London, UK.,Institute of Structural and Molecular Biology, University College London, London, UK.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Division of Infectious Disease and Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
7
|
Do Kwon Y, Wang XE, Bender MF, Yang R, Li Y, McKee K, Rawi R, O’Dell S, Schneck NA, Shaddeau A, Zhang B, Arnold FJ, Connors M, Doria-Rose NA, Kwong PD, Lei QP. Structures of HIV-1 Neutralizing Antibody 10E8 Delineate the Mechanistic Basis of Its Multi-Peak Behavior on Size-Exclusion Chromatography. Antibodies (Basel) 2021; 10:antib10020023. [PMID: 34200826 PMCID: PMC8293163 DOI: 10.3390/antib10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody 10E8 is capable of effectively neutralizing HIV through its recognition of the membrane-proximal external region (MPER), and a suitably optimized version of 10E8 might have utility in HIV therapy and prophylaxis. However, 10E8 displays a three-peak profile on size-exclusion chromatography (SEC), complicating its manufacture. Here we show cis-trans conformational isomerization of the Tyr-Pro-Pro (YPP) motif in the heavy chain 3rd complementarity-determining region (CDR H3) of antibody 10E8 to be the mechanistic basis of its multipeak behavior. We observed 10E8 to undergo slow conformational isomerization and delineate a mechanistic explanation for effective comodifiers that were able to resolve its SEC heterogeneity and to allow an evaluation of the critical quality attribute of aggregation. We determined crystal structures of single and double alanine mutants of a key di-proline motif and of a light chain variant, revealing alternative conformations of the CDR H3. We also replicated both multi-peak and delayed SEC behavior with MPER-antibodies 4E10 and VRC42, by introducing a Tyr-Pro (YP) motif into their CDR H3s. Our results show how a conformationally dynamic CDR H3 can provide the requisite structural plasticity needed for a highly hydrophobic paratope to recognize its membrane-proximal epitope.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Xiangchun E. Wang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Michael F. Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Rong Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Yile Li
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Nicole A. Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Andrew Shaddeau
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Frank J. Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
| | - Mark Connors
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.D.K.); (M.F.B.); (K.M.); (R.R.); (S.O.); (B.Z.); (N.A.D.-R.)
- Correspondence: (P.D.K.); (Q.P.L.)
| | - Q. Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, USA; (X.E.W.); (R.Y.); (Y.L.); (N.A.S.); (A.S.); (F.J.A.)
- Correspondence: (P.D.K.); (Q.P.L.)
| |
Collapse
|
8
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
9
|
Yoon J, Ferrie JJ, Petersson EJ. Improved Modeling of Thioamide FRET Quenching by Including Conformational Restriction and Coulomb Coupling. J Phys Chem B 2020; 124:10653-10662. [PMID: 33196192 DOI: 10.1021/acs.jpcb.0c06865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioamide-containing amino acids have been shown to quench a wide range of fluorophores through distinct mechanisms. Here, we quantitatively analyze the mechanism through which the thioamide functional group quenches the fluorescence of p-cyanophenylalanine (Cnf), tyrosine (Tyr), and tryptophan (Trp). By comparing PyRosetta simulations to published experiments performed on polyproline ruler peptides, we corroborate previous findings that both Cnf and Tyr quenching occurs via Förster resonance energy transfer (FRET), while Trp quenching occurs through an alternate mechanism such as Dexter transfer. Additionally, optimization of the peptide sampling scheme and comparison of thioamides attached to the peptide backbone and side chain revealed that the significant conformational restriction associated with the thioamide moiety results in a high sensitivity of the apparent FRET efficiency to underlying conformational differences. Moreover, by computing FRET efficiencies from structural models using a variety of approaches, we find that quantitative accuracy in the role of Coulomb coupling is required to explain contributions to the observed quenching efficiency from individual structures on a detailed level. Last, we demonstrate that these additional considerations improve our ability to predict thioamide quenching efficiencies observed during binding of thioamide-labeled peptides to fluorophore-labeled variants of calmodulin.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Sci Rep 2020; 10:14313. [PMID: 32868832 PMCID: PMC7458915 DOI: 10.1038/s41598-020-71184-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibody (mAb) 10E8 recognizes a highly conserved epitope on HIV and is capable of neutralizing > 95% of circulating viral isolates making it one of the most promising Abs against HIV. Solution instability and biochemical heterogeneity of 10E8 has hampered its development for clinical use. We identify the source of 10E8 heterogeneity being linked to cis/trans isomerization at two prolines within the YPP motif in the CRD3 loop that exists as two predominant conformers that interconvert on a slow timescale. The YtransP conformation conformer can bind the HIV gp41 epitope, while the YcisP is not binding competent and shows a higher aggregation propensity. The high barrier of isomerization and propensity to adopt non-binding competent proline conformers provides novel insight into the slow binding kinetics, low potency, and poor solubility of 10E8. This study highlights how proline isomerization should be considered a critical quality attribute for biotherapeutics with paratopes containing potential cis proline amide bonds.
Collapse
|
11
|
Ganguly HK, Basu G. Conformational landscape of substituted prolines. Biophys Rev 2020; 12:25-39. [PMID: 31953795 PMCID: PMC7040156 DOI: 10.1007/s12551-020-00621-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The cyclic side chain of the amino acid proline confers unique conformational restraints on its backbone and side chain dihedral angles. This affects two equilibria-one at the backbone (cis/trans) and the other at the side chain (endo/exo). Substitutions on the proline ring impose additional steric and stereoelectronic effects that can further modulate both these equilibria, which in turn can also affect the backbone dihedral angle (ϕ, ψ) preferences. In this review, we have explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases. The impact of incorporating these derivatives within model peptides and proteins are also discussed for selected cases. Several of these substituents have been used to introduce bioorthogonal functionality and modulate structure-specific ligand recognition or used as spectroscopic probes. The incorporation of these diversely applicable functional groups, coupled with their ability to define an amino acid conformation via stereoelectronic effects, have a broad appeal among chemical biologists, molecular biophysicists, and medicinal chemists.
Collapse
Affiliation(s)
- Himal Kanti Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
12
|
Jędrzejczak K, Hrynczyszyn P, Szczesio M, Artym J, Jastrząbek T, Kocięba M, Główka M, Huben K, Kochanowska I, Zimecki M, Zabrocki J, Jankowski S, Kolesińska B. Synthesis and biological activity of cyclolinopeptide A analogues modified with γ 4-bis(homo-phenylalanine). Bioorg Med Chem 2017; 25:4265-4276. [PMID: 28662964 DOI: 10.1016/j.bmc.2017.05.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Abstract
Cyclolinopeptide A (CLA), an immunosuppressive nonapeptide derived from linen seeds, was modified with S or R-γ4-bis(homo-phenylalanine) in positions 3 or 4, or both 3 and 4. These modifications changed the flexibility of new analogues and distribution of intramolecular hydrogen bonds. Analogues 11 c(Pro1-Pro2-Phe3-S-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9), 13 c(Pro1-Pro2-S-γ4-hhPhe3-R-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9) and 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) existed as a mixture of stable cis/trans isomers of Pro-Pro peptide bond. The comparison of the relative spatial orientations in crystal state of the two carbonyl groups, neighboring γ-amino acids, revealed conformational similarities to α-peptides. The addition of two -CH2- groups in γ-amino acids led to a more rigid conformation, although a more flexible one was expected. A significant difference in the relative orientation of the carbonyl groups was found for cyclic γ-peptides with a dominance of an antiparallel arrangement. As carbonyl groups may be engaged in the interactions with plausible receptors through hydrogen bonds, a similar biological activity of the modified peptides was expected. Our biological studies showed that certain cyclic, but not the corresponding linear peptides, lowered the viability of peripheral blood mononuclear cells (PBMC) at 100μg/mL concentration. The proliferation of PBMC induced by phytohemagglutinin A (PHA) was strongly inhibited by cyclic peptides only, in a dose-dependant manner. On the other hand, lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) production in whole blood cell cultures was inhibited by both linear and cyclic peptides. Peptide 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) blocked the expression of caspase-3, inhibited the expression of caspases-8 and -9 in 24h culture of Jurkat cells, and caused DNA fragmentation in these cells, as an indicator of apoptosis. Thus, we revealed a new mechanism of immunosuppressive action of a nonapeptide.
Collapse
Affiliation(s)
- Karol Jędrzejczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Paweł Hrynczyszyn
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Jolanta Artym
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, R. Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz Jastrząbek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Maja Kocięba
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, R. Weigla 12, 53-114 Wrocław, Poland
| | - Marek Główka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Krzysztof Huben
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Iwona Kochanowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, R. Weigla 12, 53-114 Wrocław, Poland
| | - Michał Zimecki
- Institute of Immunology and Experimental Therapy, Polish Academy of Science, R. Weigla 12, 53-114 Wrocław, Poland
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Stefan Jankowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
13
|
Dasgupta R, Ganguly HK, Modugula EK, Basu G. Type VIa β-turn-fused helix N-termini: A novel helix N-cap motif containing cis proline. Biopolymers 2016; 108. [PMID: 27428516 DOI: 10.1002/bip.22919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022]
Abstract
Helix N-capping motifs often form hydrogen bonds with terminal amide groups which otherwise would be free. Also, without an amide hydrogen, proline (trans) is over-represented at helix N-termini (N1 position) because this naturally removes the need to hydrogen bond one terminal amide. However, the preference of cisPro, vis-à-vis helix N-termini, is not known. We show that cisPro (αR or PPII ) often appears at the N-cap position (N0) of helices. The N-cap cisPro(αR ) is associated with a six-residue sequence motif - X(-2) -X(-1) -cisPro-X(1) -X(2) -X(3) - with preference for Glu/Gln at X(-1) , Phe/Tyr/Trp at X(1) and Ser/Thr at X(3) . The motif, formed by the fusion of a helix and a type VIa β-turn, contains a hydrogen bond between the side chain of X(-1) and the side chain/backbone of X(3) , a α-helical hydrogen bond between X(-2) and X(2) and stacking interaction between cisPro and an aromatic residue at X(1) . NMR experiments on peptides containing the motif and its variants showed that local interactions associated with the motif, as found in folded proteins, were not enough to significantly tilt the cis/trans equilibrium towards cisPro. This suggests that some other evolutionary pressure must select the cisPro motif (over transPro) at helix N-termini. Database analysis showed that >C = O of the pre-cisPro(αR ) residue at the helix N-cap, directed opposite to the N→C helical axis, participates in long-range interactions. We hypothesize that the cisPro(αR ) motif is preferred at helix N-termini because it allows the helix to participate in long-range interactions that may be structurally and functionally important.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - E K Modugula
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
14
|
Caporale A, Mascanzoni F, Farina B, Sturlese M, Di Sorbo G, Fattorusso R, Ruvo M, Doti N. FRET-Protease-Coupled Peptidyl-Prolyl cis-trans Isomerase Assay: New Internally Quenched Fluorogenic Substrates for High-Throughput Screening. ACTA ACUST UNITED AC 2016; 21:701-12. [PMID: 27185744 DOI: 10.1177/1087057116650402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 11/15/2022]
Abstract
In this work, a sensitive and convenient protease-based fluorimetric high-throughput screening (HTS) assay for determining peptidyl-prolyl cis-trans isomerase activity was developed. The assay was based on a new intramolecularly quenched substrate, whose fluorescence and structural properties were examined together with kinetic constants and the effects of solvents on its isomerization process. Pilot screens performed using the Library of Pharmacologically Active Compounds (LOPAC) and cyclophilin A (CypA), as isomerase model enzyme, indicated that the assay was robust for HTS, and that comparable results were obtained with a CypA inhibitor tested both manually and automatically. Moreover, a new compound that inhibits CypA activity with an IC50 in the low micromolar range was identified. Molecular docking studies revealed that the molecule shows a notable shape complementarity with the catalytic pocket confirming the experimental observations. Due to its simplicity and precision in the determination of extent of inhibition and reaction rates required for kinetic analysis, this assay offers many advantages over other commonly used assays.
Collapse
Affiliation(s)
- Andrea Caporale
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Farmacia, Università di Napoli "Federico II", Napoli, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Farmacia, Università di Napoli "Federico II", Napoli, Italy
| | | | - Mattia Sturlese
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Gianluigi Di Sorbo
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Napoli, Italy
| |
Collapse
|
15
|
Vertesaljai P, Lebedyeva IO, Oliferenko AA, Qi X, Fu J, Ostrov DA, Asiri AM, Dennis Hall C, Katritzky A. Mimicking a proline tripeptide with pyrazolidines and a cyclopentane linker. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015; 16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is a sequel to the previous Perspective "The CH-π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates", which featured in a PCCP themed issue on "Weak Hydrogen Bonds - Strong Effects?": Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH-π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH-π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH-π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338, Minamioya, Machida-shi, Tokyo 194-0031, Japan.
| | | | | | | | | |
Collapse
|
17
|
Ganguly HK, Kaur H, Basu G. Local control of cis-peptidyl-prolyl bonds mediated by CH···π interactions: the Xaa-Pro-Tyr motif. Biochemistry 2013; 52:6348-57. [PMID: 23941357 DOI: 10.1021/bi4007918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to generic peptide bonds, the peptidyl-prolyl bond shows a strong propensity for the cis conformer. The presence of a sequence-contiguous aromatic (Aro) residue can further stabilize the cis conformer, as observed for the Aro-Pro motif. The cis propensity of the reverse sequence motif, Pro-Aro, is not so well understood, especially the effect of N-capping the Pro-Aro motif with different amino acid residues. From a comparative nuclear magnetic resonance study of two peptide series with the general sequences Ac-Xaa-Pro-Tyr-NH2 and Ac-Xaa-Pro-Ala-NH2, we present a relative thermodynamic scale that reflects how the nature of the Xaa side chain influences the cis propensity of the Xaa-Pro-Tyr motif, with Gly, Pro, and Ala at position Xaa giving the greatest enhancement of the cis-peptidyl-prolyl population. We also show that CH···π interaction between Xaa and Tyr is responsible for the enhanced cis population. However, the mere presence of the CH···π interaction does not guarantee that the peptidyl-prolyl bond will have a higher cis content in Xaa-Pro-Tyr than in Xaa-Pro-Ala. Xaa-dependent intramolecular interactions present in Xaa-trans-Pro-Tyr can nullify favorable CH···π interactions in Xaa-cis-Pro-Tyr. The relative cis-peptidyl-prolyl stabilizing propensities of Xaa (Xaa-Pro-Tyr) in proteins and in our peptide series show strong linear correlation except when Xaa is aromatic. We also explore the Xaa-Pro-Gly-Tyr sequence motif and show that mediated by a Pro-Tyr CH···π interaction, the cis-peptidyl-prolyl bond in the motif is stabilized when Xaa is Pro.
Collapse
Affiliation(s)
- Himal K Ganguly
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | | | | |
Collapse
|
18
|
Wernisch S, Trapp O, Lindner W. Application of cinchona-sulfonate-based chiral zwitterionic ion exchangers for the separation of proline-containing dipeptide rotamers and determination of on-column isomerization parameters from dynamic elution profiles. Anal Chim Acta 2013; 795:88-98. [DOI: 10.1016/j.aca.2013.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/28/2023]
|
19
|
Abstract
Proline residues have unique roles in protein folding, structure, and function. Proline and the aromatic amino acids comprise the encoded cyclic protein residues. Aromatic protein side chains are defined by their negatively charged π faces, while the faces of the proline ring are partially positively charged. This polarity results from their two-point connection of the side chain to the electron-withdrawing protein backbone, and the lower electronegativity of hydrogen compared to carbon, nitrogen, and oxygen. The hydrogens adjacent to the carbonyl and amide nitrogen, Hα and Hδ, respectively, are the most partially positive. Proline's side chain is also conformationally restricted, allowing for interaction with aromatic residues with minimal entropic or steric penalty. Proline and aromatic residues can interact favorably with each other, due to both the hydrophobic effect and the interaction between the π aromatic face and the polarized C-H bonds, called a CH/π interaction. Aromatic-proline interactions can occur locally, for example, to stabilize cis-amide bonds, and over larger distances, in the tertiary structures of proteins, and intermolecularly in protein-protein interactions. In peptides and proteins, aromatic-proline sequences more readily adopt cis-prolyl amide bonds, where the aromatic ring interacts with the proline ring in the cis conformation. In aromatic-proline sequences, Trp and Tyr are more likely to induce cis-amide bonds than Phe, suggesting an aromatic electronic effect. This result would be expected for a CH/π interaction, in which a more electron-rich aromatic would have a stronger (more cis-stabilizing) interaction with partial positive charges on prolyl hydrogens. In this Account, we describe our investigations into the nature of local aromatic-proline interactions, using peptide models. We synthesized a series of 26 peptides, TXPN, varying X from electron-rich to electron poor aromatic amino acids, and found that the population of cis-amide bond (Ktrans/cis) is tunable by aromatic electronics. With 4-substituted phenylalanines, we observed a Hammett correlation between aromatic electronics and Ktrans/cis, with cis-trans isomerism electronically controllable by 1.0 kcal/mol. All aromatic residues exhibit a higher cis population than Ala or cyclohexylalanine, with Trp showing the strongest aromatic-proline interaction. In addition, proline stereoelectronic effects can modulate cis-trans isomerism by an additional 1.0 kcal/mol. The aromatic-proline interaction is enthalpic, consistent with its description as a CH/π interaction. Proline-aromatic sequences can also promote cis-prolyl bonds, either through interactions of the aromatic ring with the preceding cis-proline or with the Hα prior to cis-proline. Within proline-rich peptides, sequences commonly found in natively disordered proteins, aromatic residues promote multiple cis-amide bonds due to multiple favorable aromatic-proline interactions. Collectively, we found aromatic-proline interactions to be significantly CH/π in nature, tunable by aromatic electronics. We discuss these data in the context of aromatic-proline and aromatic-glycine interactions in local structure, in tertiary structure, in protein-protein interactions, and in protein assemblies.
Collapse
Affiliation(s)
- Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Elam WA, Schrank TP, Campagnolo AJ, Hilser VJ. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites. Protein Sci 2013; 22:405-17. [PMID: 23341186 DOI: 10.1002/pro.2217] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/06/2022]
Abstract
Intrinsically disordered (ID) proteins function in the absence of a unique stable structure and appear to challenge the classic structure-function paradigm. The extent to which ID proteins take advantage of subtle conformational biases to perform functions, and whether signals for such mechanism can be identified in proteome-wide studies is not well understood. Of particular interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded proteins. We experimentally determine a complete calorimetric propensity scale for the PII conformation. Projection of the scale into representative eukaryotic proteomes reveals significant PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded and universally detectable regardless of the method of PII propensity determination. Gene ontology (GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular functions performed by high PII proteins across the proteome. Perhaps the most striking result of the GO analysis is conserved enrichment (P < 10(-8) ) of phosphorylation sites in high PII regions found by all PII scales. Subsequent conformational analysis reveals a phosphorylation-dependent modulation of PII, suggestive of a conserved "tunability" within these regions. In summary, the application of an experimentally determined polyproline II (PII) propensity scale to proteome-wide sequence analysis and gene ontology reveals an enrichment of PII bias near disordered phosphorylation sites that is conserved throughout eukaryotes.
Collapse
Affiliation(s)
- W Austin Elam
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
21
|
Brown AM, Zondlo NJ. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry 2012; 51:5041-51. [PMID: 22667692 DOI: 10.1021/bi3002924] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II polyproline helices (PPII) are a fundamental secondary structure of proteins, common in globular and nonglobular regions and important in cellular signaling. We developed a propensity scale for PPII using a host-guest system with sequence Ac-GPPXPPGY-NH(2), where X represents any amino acid. We found that proline has the highest PPII propensity, but most other amino acids display significant PPII propensities. The PPII propensity of leucine was the highest of all propensities of non-proline residues. Alanine and residues with linear side chains displayed the next highest PPII propensities. Three classes of residues displayed lower PPII propensities: β-branched amino acids (Thr, Val, and Ile), short amino acids with polar side chains (Asn, protonated Asp, Ser, Thr, and Cys), and aromatic amino acids (Phe, Tyr, and Trp). tert-Leucine particularly disfavored PPII. The basis of the low PPII propensities of aromatic amino acids in this context was significant cis-trans isomerism, with proline-rich peptides containing aromatic residues exhibiting 45-60% cis amide bonds, due to Pro-cis-Pro-aromatic and aromatic-cis-Pro amide bonds.
Collapse
Affiliation(s)
- Alaina M Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
22
|
Ganguly HK, Majumder B, Chattopadhyay S, Chakrabarti P, Basu G. Direct Evidence for CH···π Interaction Mediated Stabilization of Pro-cisPro Bond in Peptides with Pro-Pro-Aromatic motifs. J Am Chem Soc 2012; 134:4661-9. [DOI: 10.1021/ja209334v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Himal K. Ganguly
- Department
of Biophysics and ‡Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Barun Majumder
- Department
of Biophysics and ‡Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Sarbani Chattopadhyay
- Department
of Biophysics and ‡Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Pinak Chakrabarti
- Department
of Biophysics and ‡Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Gautam Basu
- Department
of Biophysics and ‡Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
23
|
Lee BL, Li X, Liu Y, Sykes BD, Fliegel L. Structural and functional analysis of extracellular loop 2 of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2481-8. [DOI: 10.1016/j.bbamem.2009.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|