1
|
Cheng CH, Luo SW, Wang AL, Guo ZX. Molecular and immune response characterizations of a novel Bax inhibitor-1 gene in pufferfish, Takifugu obscurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:965-975. [PMID: 28553691 DOI: 10.1007/s10695-016-0337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 06/07/2023]
Abstract
Apoptosis plays a crucial role in many biological processes, including development, cellular homeostasis, and immune responses. Bax inhibitor-1 (BI-1) is an anti-apoptotic protein that protects cells from endoplasmic reticulum stress-induced apoptosis. In this study, a BI-1 gene from the pufferfish Takifugu obscurus (Pf-BI-1) was identified and characterized. The full length of Pf-BI-1 cDNA was 1387 bp, including a 5'-UTR of 82 bp, a 3'-UTR of 591 bp containing a poly-(A) tail, and an open reading frame (ORF) of 714 bp that encodes a polypeptide of 237 amino acids. Pf-BI-1 was ubiquitously expressed in various tissues, with the highest expression levels in the blood, brain, and gill. The expression of Pf-BI-1 was up-regulated in a time-dependent manner after heat shock stress, ammonia stress, and bacterial challenge. Intracellular localization revealed that Pf-BI-1 was primarily localized in the cell cytoplasm. Furthermore, over-expression of Pf-BI-1 could active NF-кB reporter genes in HeLa cells. These results indicated that Pf-BI-1 may be involved in the apoptosis and immunity process against ambient stressors in pufferfish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science of Guangdong, Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong, Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China.
| |
Collapse
|
2
|
Çakır B, Tumer NE. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 2:43-56. [PMID: 28357275 PMCID: PMC5354556 DOI: 10.15698/mic2015.02.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition.
Collapse
Affiliation(s)
- Birsen Çakır
- Biotechnology Center for Agriculture and the Environment and the Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA. ; Department of Horticulture, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nilgun E Tumer
- Biotechnology Center for Agriculture and the Environment and the Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
3
|
Lee GH, Lee HY, Li B, Kim HR, Chae HJ. Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep 2014; 4:5194. [PMID: 24899098 PMCID: PMC4046133 DOI: 10.1038/srep05194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
A recently studied endoplasmic reticulum (ER) stress regulator, Bax inhibitor-1 (BI-1) plays a regulatory role in mitochondrial Ca2+ levels. In this study, we identified ER-resident and mitochondria-associated ER membrane (MAM)-resident populations of BI-1. ER stress increased mitochondrial Ca2+ to a lesser extent in BI-1–overexpressing cells (HT1080/BI-1) than in control cells, most likely as a result of impaired mitochondrial Ca2+ intake ability and lower basal levels of intra-ER Ca2+. Moreover, opening of the Ca2+-induced mitochondrial permeability transition pore (PTP) and cytochrome c release were regulated by BI-1. In HT1080/BI-1, the basal mitochondrial membrane potential was low and also resistant to Ca2+ compared with control cells. The activity of the mitochondrial membrane potential-dependent mitochondrial Ca2+ intake pore, the Ca2+ uniporter, was reduced in the presence of BI-1. This study also showed that instead of Ca2+, other cations including K+ enter the mitochondria of HT1080/BI-1 through mitochondrial Ca2+-dependent ion channels, providing a possible mechanism by which mitochondrial Ca2+ intake is reduced, leading to cell protection. We propose a model in which BI-1–mediated sequential regulation of the mitochondrial Ca2+ uniporter and Ca2+-dependent K+ channel opening inhibits mitochondrial Ca2+ intake, thereby inhibiting PTP function and leading to cell protection.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Bo Li
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
4
|
Kawai-Yamada M, Hori Z, Ogawa T, Ihara-Ohori Y, Tamura K, Nagano M, Ishikawa T, Uchimiya H. Loss of calmodulin binding to Bax inhibitor-1 affects Pseudomonas-mediated hypersensitive response-associated cell death in Arabidopsis thaliana. J Biol Chem 2009; 284:27998-28003. [PMID: 19674971 PMCID: PMC2788852 DOI: 10.1074/jbc.m109.037234] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/05/2009] [Indexed: 12/18/2022] Open
Abstract
Bax inhibitor-1 (BI-1) is a cell death suppressor protein conserved across a variety of organisms. The Arabidopsis atbi1-1 plant is a mutant in which the C-terminal 6 amino acids of the expressed BI-1 protein have been replaced by T-DNA insertion. This mutant BI-1 protein (AtBI-CM) produced in Escherichia coli can no longer bind to calmodulin. A promoter-reporter assay demonstrated compartmentalized expression of BI-1 during hypersensitive response, introduced by the inoculation of Pseudomonas syringae possessing the avrRTP2 gene, Pst(avrRPT2). In addition, both BI-1 knockdown plants and atbi1-1 showed increased sensitivity to Pst(avrRPT2)-induced cell death. The results indicated that the loss of calmodulin binding reduces the cell death suppressor activity of BI-1 in planta.
Collapse
Affiliation(s)
- Maki Kawai-Yamada
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570; Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570.
| | - Zenta Hori
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Taro Ogawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Yuri Ihara-Ohori
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Katsunori Tamura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Minoru Nagano
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Toshiki Ishikawa
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570; Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hirofumi Uchimiya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032; Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003
| |
Collapse
|
5
|
Bax Inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 2009; 10:3149-3167. [PMID: 19742129 PMCID: PMC2738916 DOI: 10.3390/ijms10073149] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 02/03/2023] Open
Abstract
In Nature plants are constantly challenged by a variety of environmental stresses that could lead to disruptions in cellular homeostasis. Programmed cell death (PCD) is a fundamental cellular process that is often associated with defense responses to pathogens, during development and in response to abiotic stresses in fungi, animals and plants. Although there are many characteristics shared between different types of PCD events, it remains unknown whether a common mechanism drives various types of PCD in eukaryotes. One candidate regulator for such a mechanism is Bax Inhibitor-1 (BI-1), an evolutionary conserved, endoplasmic reticulum (ER)-resident protein that represents an ancient cell death regulator that potentially regulates PCD in all eukaryotes. Recent findings strongly suggested that BI-1 plays an important role in the conserved ER stress response pathway to modulate cell death induction in response to multiple types of cell death signals. As ER stress signaling pathways has been suggested to play important roles not only in the control of ER homeostasis but also in other biological processes such as the response to pathogens and abiotic stress in plants, BI-1 might function to control the convergence point that modulates the level of the “pro-survival and pro-death” signals under multiple stress conditions.
Collapse
|
6
|
Jiang H, Yin Y, Zhang X, Hu S, Wang Q. Chasing relationships between nutrition and reproduction: A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:227-34. [PMID: 20403758 DOI: 10.1016/j.cbd.2009.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
There is a delicate relationship between nutrition and reproduction of mitten crab (Eriocheir sinensis). The crabs store significant amounts of energy in hepatopancreas, which is prepared for significant energy output and expenditure during reproduction, but the internal molecular mechanism has never been known. Here we present the first relationship between hepatopancreas and testis of E. sinensis. We acquired 6287 high quality expressed sequence tags (EST), representing 3829 unigenes totally, from healthy male mitten crabs of first grade. We investigated the Gene Ontology and the main metabolism processes of hepatopancreas and testis from E. sinensis. Genes most likely expressed more frequently and localized in hepatopancreas, and abundant genes from testis for multiple functions. Many genes important for the nutrition regulation are in the EST resource, including arginine kinase, leptin receptor-like protein, seminal plasma glycoprotein 120, and many kinds of zinc finger proteins. The EST data also revealed genes such as heat shock protein 70, testis enhanced gene transcript (TEGT), Cyclin K, etc. predicted to play important roles in regulation of reproduction mechanisms. Among these genes, alignment of leptin receptor-like protein and vasa-like protein from E. sinensis and other species showed even more genomic information on E. sinensis. We identified seventeen genes relevant to control of nutrition mechanisms and eleven genes involved in regulation of reproduction. And this study provides insights into the genetic and molecular mechanisms of nutrition and reproduction in the crab. Such information would facilitate the optimization of breeding in the aquaculture of mitten crabs.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Biology, East China Normal University, Shanghai, China
| | | | | | | | | |
Collapse
|
7
|
The caspase-independent algorithm of programmed cell death in Leishmania induced by baicalein: the role of LdEndoG, LdFEN-1 and LdTatD as a DNA ‘degradesome’. Cell Death Differ 2008; 15:1629-40. [DOI: 10.1038/cdd.2008.85] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|