1
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
2
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Christensen C, Þorsteinsson H, Maier VH, Karlsson KÆ. Multi-parameter Behavioral Phenotyping of the MPP+ Model of Parkinson's Disease in Zebrafish. Front Behav Neurosci 2021; 14:623924. [PMID: 33390914 PMCID: PMC7775599 DOI: 10.3389/fnbeh.2020.623924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) has been modeled in several animal species using the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its oxidized product 1-methyl-4-phenylpyridinium (MPP+). MPP+ selectively kills dopaminergic neurons in pars compacta of the substantia nigra, inducing parkinsonian symptoms in animals. Typically, neurotoxicity models of PD in zebrafish assess acute drug effects on locomotion. In the present study, we examined the lasting effects of MPP+ exposure and drug treatment in zebrafish larvae. Larvae were incubated in 500 μM MPP+, from 1 to 5 days post fertilization (dpf), followed by 24 h drug-free acclimation. At 6 dpf, the behavior was analyzed for locomotion, thigmotaxis, and sleep. Next, in separate assays we assessed the drug effects of brain injected glial cell-derived neurotrophic factor (GDNF) and 4-phenylbutyrate (PBA), co-incubated with MPP+. We show that MPP+ exposure consistently reduces swim distance, movement frequency, and cumulative time of movement; thus mimicking a parkinsonian phenotype of reduced movement. In contrast, MPP+ exposed larvae demonstrate reduced anxiety-like behavior and exhibit a sleep phenotype inconsistent with human PD: the larvae display longer sleep bouts, less sleep fragmentation, and more sleep. Previously reported rescuing effects of PBA were not replicated in this study. Moreover, whereas GDNF attenuated the sleep phenotype induced by MPP+, PBA augmented it. The current data suggest that MPP+ exposure generates a multifaceted phenotype in zebrafish and highlights that analyzing a narrow window of data can reveal effects that may be inconsistent with longer multi-parameter approaches. It further indicates that the model generally captures motor symptoms more faithfully than non-motor symptoms.
Collapse
Affiliation(s)
| | | | | | - Karl Ægir Karlsson
- 3Z Ehf, Reykjavik, Iceland.,Biomedical Center, University of Iceland, Reykjavik, Iceland.,Department of Engineering, School of Technology, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
4
|
Zhang C, Wu Y, Li J, Yang GX, Su L, Huang Y, Wang R, Ma L. Synthesis and biological evaluation of 3-carbamate smilagenin derivatives as potential neuroprotective agents. Bioorg Med Chem Lett 2019; 29:126622. [PMID: 31444084 DOI: 10.1016/j.bmcl.2019.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Studies indicated that smilagenin, isolated from Anemarrhena asphodeloides Bunge, could improve cognitive impairment and exhibit neuroprotective activity. On the basis of the structure of smilagenin, a series of derivatives were synthesized and evaluated for their neuroprotective effects of H2O2-induced, oxygen glucose deprivation-induced neurotoxicity in SH-SY5Y cells and LPS-induced NO production in RAW264.7 cells. Structure activity relationship of derivatives revealed that benzyl-substituted piperazine formate derivatives showed the potent neuroprotective activity such as A12. These findings may provide new insights for the development of neuroprotective agents against Alzheimer's disease.
Collapse
Affiliation(s)
- Cong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lin Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
5
|
He X, Yang S, Zhang R, Hou L, Xu J, Hu Y, Xu R, Wang H, Zhang Y. Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid-Lesioned Parkinson's Disease Models. Front Cell Neurosci 2019; 13:18. [PMID: 30804756 PMCID: PMC6371654 DOI: 10.3389/fncel.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Current therapies for Parkinson’s disease (PD) only offer limited symptomatic alleviation but fail to hamper the progress of the disease. Thus, it is imperative to establish new approaches aiming at protecting or reversing neurodegeneration in PD. Recent work elucidates whether smilagenin (abbreviated SMI), a steroidal sapogenin from traditional Chinese medicinal herbs, can take neuroprotective effect on dopaminergic neurons in a chronic model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) conjuncted with probenecid mice. We reported for the first time that SMI significantly improved the locomotor ability of chronic MPTP/probenecid–lesioned mice. SMI increased the tyrosine hydroxylase (TH) positive and Nissl positive neuron number in the substantia nigra pars compacta (SNpc), augmented striatal DA and its metabolites concentration and elevated striatal dopamine transporter density (DAT). In addition, dopamine receptor D2R not D1R was down-regulated by MPTP/probenecid and slightly raised by SMI prevention. What’s more, we discovered that SMI markedly elevated striatal glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) protein levels in SMI prevented mice. And we found that SMI increased GDNF and BDNF mRNA level by promoting CREB phosphorylation in 1-methyl-4-phenylpyridimium (MPP+) treated SH-SY5Y cells. The results illustrated that SMI could prevent the impairment of dopaminergic neurons in chronic MPTP/probenecid-induced mouse model.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Shuangshuang Yang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rui Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Lina Hou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yaer Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
6
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
7
|
Kim HK, Mendonça KM, Howson PA, Brotchie JM, Andreazza AC. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells – The potential of JNX1001 as a therapeutic agent. Eur J Pharmacol 2015; 764:379-384. [DOI: 10.1016/j.ejphar.2015.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
8
|
Li J, Xia Z, Sun X, Zhang R, Huang G, Hickling R, Xia Z, Hu Y, Zhang Y. Reversal of dopamine neurons and locomotor ability degeneration in aged rats with smilagenin. Neuroscience 2013; 245:90-8. [PMID: 23624370 DOI: 10.1016/j.neuroscience.2013.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this paper is to study the effect of smilagenin (SMI) (PYM50028), a sapogenin compound originally identified from Chinese medicinal herb, on dopamine neurons and locomotor ability in aged rats. Experiments were carried out on young and aged Sprague-Dawley rats, which were daily administered with either SMI (18mg/kg/day) or vehicle (0.5% sodium carboxymethycellulose [CMCNa]). Open-field and rotarod performance tests revealed that behavioral ability was impaired in aged rats and was improved by oral administration of smilagenin. Immunohistochemical data showed that tyrosine hydroxylase (TH)-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) were altered with aging and were increased by smilagenin treatment. Likewise, the dopamine receptor density and the striatal dopamine transporter (DAT) density ((125)I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane [(125)I-FP-CIT] autoradiography) were significantly lowered in aged rats as compared to young rats, and treatment with smilagenin significantly elevated the dopamine receptor and DAT density in aged rats. Furthermore, smilagenin enhances glial cell-derived neurotrophic factor (GDNF) release both in the striatum and midbrain. These results indicate a possible role of smilagenin in the treatment of age-related extrapyramidal disorders.
Collapse
Affiliation(s)
- J Li
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dunkel P, Chai CL, Sperlágh B, Huleatt PB, Mátyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2012; 21:1267-308. [PMID: 22741814 DOI: 10.1517/13543784.2012.703178] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION According to the definition of the Committee to Identify Neuroprotective Agents in Parkinson's Disease (CINAPS), "neuroprotection would be any intervention that favourably influences the disease process or underlying pathogenesis to produce enduring benefits for patients" [Meissner W, et al. Trends Pharmacol Sci 2004;25:249-253]. Preferably, neuroprotective agents should be used before or eventually during the prodromal phase of the diseases that could start decades before the appearance of symptoms. Although several symptomatic drugs are available, a disease-modifying agent is still elusive. AREAS COVERED The aim of the present review is to give an overview of neuroprotective agents being currently investigated for the treatment of AD, PD, HD and ALS in clinical phases. EXPERT OPINION Development of effective neuroprotective therapies resulting in clinically meaningful results is hampered by several factors in all research stages, both conceptual and methodological. Novel solutions might be offered by evaluation of new targets throughout clinical studies, therapies emerging from drug repositioning approaches, multi-target approaches and network pharmacology.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry, Budapest, Hungary
| | | | | | | | | |
Collapse
|
10
|
Zhang R, Wang Z, Howson PA, Xia Z, Zhou S, Wu E, Xia Z, Hu Y. Smilagenin attenuates beta amyloid (25-35)-induced degeneration of neuronal cells via stimulating the gene expression of brain-derived neurotrophic factor. Neuroscience 2012; 210:275-85. [PMID: 22441042 DOI: 10.1016/j.neuroscience.2012.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
The development of drugs that attenuate neurodegeneration is important for the treatment of Alzheimer's disease (AD). We previously found that smilagenin (SMI), a steroidal sapogenin from traditional Chinese medicinal herbs improves memory in animal models, is neither a cholinesterase inhibitor nor a glutamate receptor antagonist, but can significantly elevate the declined muscarinic receptor (M receptor) density. In this article, to clarify whether SMI represents a new approach for treating neurodegeneration disease, we first demonstrate that SMI pretreatment significantly attenuates the neurodegenerative changes induced by beta amyloid 25-35 (Aβ(25-35)) in cultured rat cortical neurons, including decreased cholinergic neuron number, shortened neurite outgrowth length, and declined M receptor density. Brain-derived neurotrophic factor (BDNF) protein levels in the culture medium were also decreased by Aβ(25-35) and significantly elevated by SMI. Parallel experiments revealed that when the trk receptors were inhibited by K252a or the action of BDNF was inhibited by a neutralizing anti-BDNF antibody, the effects of SMI on the Aβ(25-35)-induced neurodegeneration in rat cortical neurons were almost completely abolished. In the all-trans retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cells, the BDNF transcription rate measured by a nuclear run-on assay was significantly suppressed by Aβ(25-35) and elevated by SMI, but the BDNF degradation rate measured by half-life determination was unchanged by Aβ(25-35) and SMI. Transcript analysis of the SH-SY5Y cells using quantitative RT-PCR (qRT-PCR) showed that the IV and VI transcripts of BDNF mRNA were significantly decreased by Aβ(25-35) and elevated by SMI. Taken together, we conclude that SMI attenuates Aβ(25-35)-induced neurodegeneration in cultured rat cortical neurons and SH-SY5Y cells mainly through stimulating BDNF mRNA transcription implicating that SMI may represent a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- R Zhang
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun X, Xiong Z, Zhang Y, Meng Y, Xu G, Xia Z, Li J, Zhang R, Ke Z, Xia Z, Hu Y. Harpagoside attenuates MPTP/MPP⁺ induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor. J Neurochem 2011; 120:1072-83. [PMID: 22192054 DOI: 10.1111/j.1471-4159.2011.07635.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parkinson's disease is a chronic neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. New therapeutic approaches aiming at delaying or reversing the neurodegenerative process are under active investigations. In this work, we found that harpagoside, an iridoid purified from the Chinese medicinal herb Scrophularia ningpoensis, could not only prevent but also rescue the dopaminergic neurodegeneration in MPTP/MPP(+) intoxication with promising efficacy. Firstly, in cultured mesencephalic neurons, harpagoside significantly attenuated the loss of TH-positive neuron numbers and the shortening of axonal length. Secondly, in a chronic MPTP mouse model, harpagoside dose-dependently improved the loco-motor ability (rotarod test), increased the TH-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) and increased the striatal DAT density ((125) I-FP-CIT autoradiography). Thirdly, harpagoside markedly elevated the GDNF mRNA and GDNF protein levels in MPTP/MPP(+) lesioned models. However, the protecting effect of harpagoside on the dopaminergic degeneration disappeared when the intrinsic GDNF action was blocked by either the Ret inhibitor PP1 or the neutralizing anti-GDNF antibody. Taken together, we conclude that harpagoside attenuates the dopaminergic neurodegeneration and movement disorder mainly through elevating glial cell line-derived neurotrophic factor.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu G, Xiong Z, Yong Y, Wang Z, Ke Z, Xia Z, Hu Y. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 2010; 167:174-84. [PMID: 20123001 DOI: 10.1016/j.neuroscience.2010.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/18/2010] [Accepted: 01/23/2010] [Indexed: 11/16/2022]
Abstract
The protective effect of an iridoid catalpol extracted and purified from the traditional Chinese medicinal herb Rehmannia glutinosa on the neuronal degeneration of nigral-striatal dopaminergic pathway was studied in a chronic 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)/probenecid C57BL/6 mouse model and in 1-methyl-4-phenylpyridimium (MPP(+)) intoxicated cultured mesencephalic neurons. Rotarod performance revealed that the locomotor ability of mice was significantly impaired after completion of model production and maintained thereafter for at least 4 weeks. Catalpol orally administered for 8 weeks (starting from the second week of model production) dose dependently improved the locomotor ability. HPLC revealed that catalpol significantly elevated striatal dopamine levels without changing the metabolite/dopamine ratios. Nor did it bind to dopamine receptors. Therefore it is unlikely that catalpol resembles any of the known compounds for treating Parkinsonism. Instead, catalpol dose dependently raised the tyrosine hydroxylase (TH) neuron number in substantia nigra pars compacta (SNpc), the striatal dopamine transporter (DAT) density and the striatal glial cell derived neurotrophic factor (GDNF) protein level. Linear regression revealed that both the TH neuron number and DAT density were positively correlated to the GDNF level. In the cultured mesencephalic neurons, MPP(+) decreased the dopaminergic neuron number and shortened the neurite length, whereas catalpol showed protective effect dose dependently. Furthermore, the expression of GDNF mRNA was up-regulated by catalpol to a peak nearly double of normal control in neurons intoxicated with MPP(+) for 24 h but not in normal neurons. The GDNF receptor tyrosine kinase RET inhibitor 4-amino-5-(4-methyphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]pyrimidine (PP1) abolished the protective effect of catalpol either partially (TH positive neuron number) or completely (neurite length). Taken together, catalpol improves locomotor ability by attenuating the neuronal degeneration of nigral-striatal dopaminergic pathway, and this attenuation is at least partially through elevating the striatal GDNF expression.
Collapse
Affiliation(s)
- G Xu
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|
14
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|