1
|
Howlett LA, Stevenson-Cocks H, Colman MA, Lancaster MK, Benson AP. Ionic current changes underlying action potential repolarization responses to physiological pacing and adrenergic stimulation in adult rat ventricular myocytes. Physiol Rep 2023; 11:e15766. [PMID: 37495507 PMCID: PMC10371833 DOI: 10.14814/phy2.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD50-90 ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, ICa ; transient outward current, Ito ; slow delayed rectifier potassium current, IKs ; rapid delayed rectifier potassium current, IKr ; inward rectifier potassium current, IK1 ) to identify current influence on AP response to exercise. Simulated APD50-90 closely resembled experimental findings. Rate-dependent increases in IKs (6%-101%), IKr (141%-1339%), and ICa (0%-15%) and reductions in Ito (11%-57%) and IK1 (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except IK1 . Further analyses suggest AP plateau is most sensitive to modulations in Ito and ICa while late repolarization is most sensitive to IK1 , ICa , and IKs , with alterations in IKs predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD90 prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of ICa , Ito , IK1, and IKs in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Alan P Benson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Zhou J, Zhuang T, Ma P, Shan L, Sun XD, Gong S, Tao J, Yu XM, Jiang X. MicroRNA-547-5p-mediated interleukin-33/suppressor of tumorigenicity 2 signaling underlies the genesis and maintenance of neuropathic pain and is targeted by the therapy with bone marrow stromal cells. Mol Pain 2021; 16:1744806920931737. [PMID: 32513089 PMCID: PMC7309409 DOI: 10.1177/1744806920931737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-33 (IL-33)/suppressor of tumorigenicity 2 (ST2) signaling is known to promote inflammation and the genesis and maintenance of neuropathic pain. However, it remained mostly unknown how IL-33/ST2 signaling can be enhanced by neuropathic stimulations. Here, we report that the chronic constriction nerve injury (CCI)-induced increases in the expression of IL-33 and ST2 and a decrease in microRNA (miRNA)-547-5p not only in the dorsal root ganglia (DRG) but also in spinal dorsal horn (SDH) ipsilateral to the CCI. We found that increasing endogenous miRNA-547-5p by the intrathecal (i.t.) infusion of agomir-miR-547-5p did not produce any effect in naive rats but blocked the CCI-induced increases in the IL-33 and ST2, and pain sensitivity. The reducing endogenous miRNA-547-5p by the i.t. delivering antagomir-miR-547-5p into naive rats caused significant changes in IL-33 and ST2 expressions in both the DRG and SDH, and pain sensitivity, which were similar to those induced by the CCI. Since increasing IL-33 by the i.t. infusion of recombinant IL-33 produced no change in the expression of miR-547-5p, and the CCI still reduced miR-547-5p expression in rats with the IL-33 knockdown, we conclude that the reduction of miR-547-5p can be an upstream event leading to the enhancement of IL-33/ST2 signaling induced by the CCI. The intravenous application of bone marrow stromal cells (BMSCs) reduced the depression of miR-547-5p in both the DRG and SDH, and pain hypersensitivity produced by the CCI or antagomir-miR547-5p application. However, the BMSC effect was significantly occluded by the pretreatment with miR-547-5p agomir or the IL-33 knockdown, demonstrating a novel mechanism underlying the BMSC therapy.
Collapse
Affiliation(s)
- Ju Zhou
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Ting Zhuang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Lidong Shan
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Campostrini G, Bonzanni M, Lissoni A, Bazzini C, Milanesi R, Vezzoli E, Francolini M, Baruscotti M, Bucchi A, Rivolta I, Fantini M, Severi S, Cappato R, Crotti L, J Schwartz P, DiFrancesco D, Barbuti A. The expression of the rare caveolin-3 variant T78M alters cardiac ion channels function and membrane excitability. Cardiovasc Res 2018; 113:1256-1265. [PMID: 28898996 PMCID: PMC5852518 DOI: 10.1093/cvr/cvx122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aims Caveolinopathies are a family of genetic disorders arising from alterations of the caveolin-3 (cav-3) gene. The T78M cav-3 variant has been associated with both skeletal and cardiac muscle pathologies but its functional contribution, especially to cardiac diseases, is still controversial. Here, we evaluated the effect of the T78M cav-3 variant on cardiac ion channel function and membrane excitability. Methods and results We transfected either the wild type (WT) or T78M cav-3 in caveolin-1 knock-out mouse embryonic fibroblasts and found by immunofluorescence and electron microscopy that both are expressed at the plasma membrane and form caveolae. Two ion channels known to interact and co-immunoprecipitate with the cav-3, hKv1.5 and hHCN4, interact also with T78M cav-3 and reside in lipid rafts. Electrophysiological analysis showed that the T78M cav-3 causes hKv1.5 channels to activate and inactivate at more hyperpolarized potentials and the hHCN4 channels to activate at more depolarized potentials, in a dominant way. In spontaneously beating neonatal cardiomyocytes, the expression of the T78M cav-3 significantly increased action potential peak-to-peak variability without altering neither the mean rate nor the maximum diastolic potential. We also found that in a small cohort of patients with supraventricular arrhythmias, the T78M cav-3 variant is more frequent than in the general population. Finally, in silico analysis of both sinoatrial and atrial cell models confirmed that the T78M-dependent changes are compatible with a pro-arrhythmic effect. Conclusion This study demonstrates that the T78M cav-3 induces complex modifications in ion channel function that ultimately alter membrane excitability. The presence of the T78M cav-3 can thus generate a susceptible substrate that, in concert with other structural alterations and/or genetic mutations, may become arrhythmogenic.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Mattia Bonzanni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Alessio Lissoni
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Claudia Bazzini
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Rivolta
- Department of Health Science, Università di Milano Bicocca, Monza, Italy
| | - Matteo Fantini
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Stefano Severi
- Cellular and Molecular Engineering Laboratory 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
| | - Riccardo Cappato
- Arrhythmia & Electrophysiology Unit II, Humanitas Gavazzeni Clinics, Bergamo, Italy.,Arrhythmia & Electrophysiology Research Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab, Università degli Studi di Milano, Milano, Italy.,Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Zhao L, Cui L, Jiang X, Zhang J, Zhu M, Jia J, Zhang Q, Zhang J, Zhang D, Huang Y. Extracellular pH regulates autophagy via the AMPK-ULK1 pathway in rat cardiomyocytes. FEBS Lett 2016; 590:3202-12. [PMID: 27531309 DOI: 10.1002/1873-3468.12359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Various pathological conditions contribute to pH fluctuations and affect the functions of vital organs such as the heart. In this study, we show that in rat cardiomyocytes, acidic extracellular pH (pHe) inhibits autophagy, whereas alkaline pHe stimulates it. We also find that adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Unc-51-like kinase 1 (ULK1) are very sensitive to pHe changes. Furthermore, by interfering with AMPK, mTOR or ULK1 activity, we demonstrate that the AMPK-ULK1 pathway, but not the mTOR pathway, plays a crucial role on pHe-regulated autophagy and cardiomyocyte viability. These data provide a potential therapeutic strategy against cardiomyocyte injury triggered by pH fluctuations.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Minghua Zhu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
5
|
Hou L, Hu B, Jalife J. Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers. PLoS One 2013; 8:e55400. [PMID: 23393574 PMCID: PMC3564921 DOI: 10.1371/journal.pone.0055400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023] Open
Abstract
Rationale and Objective The use of genetic engineering of unexcitable cells to enable expression of gap junctions and inward rectifier potassium channels has suggested that cell therapies aimed at establishing electrical coupling of unexcitable donor cells to host cardiomyocytes may be arrhythmogenic. Whether similar considerations apply when the donor cells are electrically excitable has not been investigated. Here we tested the hypothesis that adenoviral transfer of genes coding Kir2.1 (IK1), NaV1.5 (INa) and connexin-43 (Cx43) proteins into neonatal rat ventricular myofibroblasts (NRVF) will convert them into fully excitable cells, rescue rapid conduction velocity (CV) and reduce the incidence of complex reentry arrhythmias in an in vitro model. Methods and Results We used adenoviral (Ad-) constructs encoding Kir2.1, NaV1.5 and Cx43 in NRVF. In single NRVF, Ad-Kir2.1 or Ad-NaV1.5 infection enabled us to regulate the densities of IK1 and INa, respectively. At varying MOI ratios of 10/10, 5/10 and 5/20, NRVF co-infected with Ad-Kir2.1+ NaV1.5 were hyperpolarized and generated action potentials (APs) with upstroke velocities >100 V/s. However, when forming monolayers only the addition of Ad-Cx43 made the excitable NRVF capable of conducting electrical impulses (CV = 20.71±0.79 cm/s). When genetically engineered excitable NRVF overexpressing Kir2.1, NaV1.5 and Cx43 were used to replace normal NRVF in heterocellular monolayers that included neonatal rat ventricular myocytes (NRVM), CV was significantly increased (27.59±0.76 cm/s vs. 21.18±0.65 cm/s, p<0.05), reaching values similar to those of pure myocytes monolayers (27.27±0.72 cm/s). Moreover, during reentry, propagation was faster and more organized, with a significantly lower number of wavebreaks in heterocellular monolayers formed by excitable compared with unexcitable NRVF. Conclusion Viral transfer of genes coding Kir2.1, NaV1.5 and Cx43 to cardiac myofibroblasts endows them with the ability to generate and propagate APs. The results provide proof of concept that cell therapies with excitable donor cells increase safety and reduce arrhythmogenic potential.
Collapse
Affiliation(s)
- Luqia Hou
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bin Hu
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - José Jalife
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hoshino S, Omatsu-Kanbe M, Nakagawa M, Matsuura H. Postnatal developmental decline in IK1 in mouse ventricular myocytes isolated by the Langendorff perfusion method: comparison with the chunk method. Pflugers Arch 2012; 463:649-68. [PMID: 22415213 DOI: 10.1007/s00424-012-1084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/18/2012] [Accepted: 02/08/2012] [Indexed: 12/01/2022]
Abstract
Expression and function of cardiac ion channels exhibit postnatal developmental changes, which, however, has not yet been proven in ventricular myocytes isolated using similar techniques. In this study, ventricular myocytes were enzymatically dissociated from mouse heart at different postnatal ages (including postnatal day 0) by similar techniques using Langendorff perfusion. Whole-cell patch-clamp experiments were performed to record action potentials, I (K1), I (Kr), I (Kur), I (ss), and I (Ca,L), in ventricular myocytes freshly isolated from postnatal days 0, 7, and 14 and adult mice. Viable ventricular myocytes of day-0 mouse heart exhibited spindle-shaped appearance having cell length of approximately 50 μm, which gradually developed to a rod-shaped one having clear cross striation with cell length of approximately 120 μm (adult). The action potential duration markedly shortened, while the resting membrane potential depolarized to a small but significant extent during postnatal development. I (K1) density was maximal in postnatal day-0 ventricular myocytes and gradually decreased during development, which was accompanied by postnatal depolarization of resting membrane potential. However, I (K1) density was markedly decreased by approximately 80% in postnatal day-0 ventricular myocytes, when isolated by the chunk method. Quantitative real-time polymerase chain reaction (PCR) and western blot analyses demonstrated higher Kir2.3 expression but lower expression levels of Kir2.1 and Kir2.2 in day-0 mouse ventricles, compared with those of day-14 and adult mouse ventricles. Whereas I (Kr) exhibited marked decrease during postnatal development, I (Kur), I (ss), and I (Ca,L) exhibited postnatal developmental increase. The present cell isolation method using the Langendorff perfusion thus found that, in mouse ventricles, I (K1) exhibited postnatal developmental decrease, associated with depolarization of resting potential.
Collapse
Affiliation(s)
- Shinsuke Hoshino
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | | | | | | |
Collapse
|