1
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Jin M, Shi R, Gao D, Wang B, Li N, Li X, Sik A, Liu K, Zhang X. ErbB2 pY -1248 as a predictive biomarker for Parkinson's disease based on research with RPPA technology and in vivo verification. CNS Neurosci Ther 2024; 30:e14407. [PMID: 37564024 PMCID: PMC10848095 DOI: 10.1111/cns.14407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS This study aims to reveal a promising biomarker for Parkinson's disease (PD) based on research with reverse phase protein array (RPPA) technology for the first time and in vivo verification, which gains time for early intervention in PD, thus increasing the effectiveness of treatment and reducing disease morbidity. METHODS AND RESULTS We employed RPPA technology which can assess both total and post-translationally modified proteins to identify biomarker candidates of PD in a cellular PD model. As a result, the phosphorylation (pY-1248) of the epidermal growth factor receptor (EGFR) ErbB2 is a promising biomarker candidate for PD. In addition, lapatinib, an ErbB2 tyrosine kinase inhibitor, was used to verify this PD biomarker candidate in vivo. We found that lapatinib-attenuated dopaminergic neuron loss and PD-like behavior in the zebrafish PD model. Accordingly, the expression of ErbB2pY-1248 significantly increased in the MPTP-induced mouse PD model. Our results suggest that ErbB2pY-1248 is a predictive biomarker for PD. CONCLUSIONS In this study, we found that ErbB2pY-1248 is a predictive biomarker of PD by using RPPA technology and in vivo verification. It offers a new perspective on PD diagnosing and treatment, which will be essential in identifying individuals at risk of PD. In addition, this study provides new ideas for digging into biomarkers of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd.Ji'nanChina
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical SchoolUniversity of PecsPécsHungary
- Institute of Clinical Sciences, Medical SchoolUniversity of BirminghamBirminghamUK
- Institute of Physiology, Medical SchoolUniversity of PecsPécsHungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xiujun Zhang
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| |
Collapse
|
3
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
4
|
Cho J, Park Y. Kahweol, a coffee diterpene, increases lifespan via insulin/insulin-like growth factor-1 and AMP-activated protein kinase signaling pathways in Caenorhabditiselegans. Curr Res Food Sci 2023; 7:100618. [PMID: 37886681 PMCID: PMC10598723 DOI: 10.1016/j.crfs.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Coffee is one of the most widely consumed beverages and is known to have many health benefits. Our previous study reported that kahweol, a diterpene found in coffee, reduced fat accumulation by reducing food intake in Caenorhabditis elegans. Based on the widely known observation of caloric restriction and lifespan, we determined if kahweol extends lifespan in C. elegans. Kahweol significantly extended the lifespan of wild-type C. elegans. However, kahweol increased the lifespan of the eat-2 null mutant that has a reduced food intake phenotype, suggesting that kahweol extends lifespan independent of reduced food intake. Therefore, we further determine the target of kahweol on lifespan extension. Kahweol had no effects on the lifespan of both daf-2 (the homolog of insulin/insulin-like growth factor-1 receptor) and daf-16 (the homolog of Forkhead box O transcription factor and a major downstream target of daf-2) null mutants, suggesting kahweol extended lifespan via insulin/insulin-like growth factor-1 signaling pathway. In addition, kahweol failed to extend lifespan in tub-1 (the homolog of TUB bipartite transcription factor) and aak-2 (the homolog of AMP-activated protein kinase) null mutants, suggesting these roles on kahweol's effect on lifespan. However, the treatment of kahweol increased the lifespan in sir-2.1 (the homolog of NAD-dependent deacetylase sirtuin-1) and skn-1 (the homolog of nuclear factor erythroid 2-related factor 2) null mutants over the control, suggesting independent functions of these genes on kahweol's lifespan extension. These results indicate that the insulin/insulin-like growth factor-1 signaling and AMPK pathways may play critical roles in extending lifespan by kahweol in C. elegans.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Belardo C, Boccella S, Perrone M, Fusco A, Morace AM, Ricciardi F, Bonsale R, ELBini-Dhouib I, Guida F, Luongo L, Bagetta G, Scuteri D, Maione S. Scopolamine-Induced Memory Impairment in Mice: Effects of PEA-OXA on Memory Retrieval and Hippocampal LTP. Int J Mol Sci 2023; 24:14399. [PMID: 37762702 PMCID: PMC10532394 DOI: 10.3390/ijms241814399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Transient global amnesia, both persistent and transient, is a very common neuropsychiatric syndrome. Among animal models for amnesia and testing new drugs, the scopolamine test is the most widely used for transient global amnesia (TGA). This study examined the scopolamine-induced deficits in working memory, discriminative memory, anxiety, and motor activity in the presence of intranasal PEA-OXA, a dual antagonist of presynaptic α2 and H3 receptors. Male C57BL/6 mice were treated with intraperitoneal scopolamine (1 mg/kg) with or without pre-treatment (15 min) or post-treatment (15 min) with intranasal PEA-OXA (10 mg/kg). It was seen that scopolamine induced deficits of discriminative and spatial memory and motor deficit. These changes were associated with a loss of synaptic plasticity in the hippocampal dentate gyrus: impaired LTP after lateral entorhinal cortex/perforant pathway tetanization. Furthermore, hippocampal Ach levels were increased while ChA-T expression was reduced following scopolamine administration. PEA-OXA either prevented or restored the scopolamine-induced cognitive deficits (discriminative and spatial memory). However, the same treatment did not affect the altered motor activity or anxiety-like behavior induced by scopolamine. Consistently, electrophysiological analysis showed LTP recovery in the DG of the hippocampus, while the Ach level and ChoA-T were normalized. This study confirms the neuroprotective and pro-cognitive activity of PEA-OXA (probably through an increase in the extracellular levels of biogenic amines) in improving transient memory disorders for which the available pharmacological tools are obsolete or inadequate and not directed on specific pathophysiological targets.
Collapse
Affiliation(s)
- Carmela Belardo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Serena Boccella
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Michela Perrone
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Antimo Fusco
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Andrea Maria Morace
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Federica Ricciardi
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Roozbe Bonsale
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Ines ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia;
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Livio Luongo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy;
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy;
| | - Sabatino Maione
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia;
| |
Collapse
|
6
|
Babylon L, Meißner J, Eckert GP. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. Int J Mol Sci 2023; 24:10029. [PMID: 37373177 PMCID: PMC10297858 DOI: 10.3390/ijms241210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive formation of beta-amyloid peptides (Aβ), mitochondrial dysfunction, enhanced production of reactive oxygen species (ROS), and altered glycolysis. Since the disease is currently not curable, preventive and supportive approaches are in the focus of science. Based on studies of promising single substances, the present study used a mixture (cocktail, SC) of compounds consisting of hesperetin (HstP), magnesium-orotate (MgOr), and folic acid (Fol), as well as the combination (KCC) of caffeine (Cof), kahweol (KW) and cafestol (CF). For all compounds, we showed positive results in SH-SY5Y-APP695 cells-a model of early AD. Thus, SH-SY5Y-APP695 cells were incubated with SC and the activity of the mitochondrial respiration chain complexes were measured, as well as levels of ATP, Aβ, ROS, lactate and pyruvate. Incubation of SH-SY5Y-APP695 cells with SC significantly increased the endogenous respiration of mitochondria and ATP levels, while Aβ1-40 levels were significantly decreased. Incubation with SC showed no significant effects on oxidative stress and glycolysis. In summary, this combination of compounds with proven effects on mitochondrial parameters has the potential to improve mitochondrial dysfunction in a cellular model of AD.
Collapse
Affiliation(s)
| | | | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University, Schubertstr. 81, 35392 Giessen, Germany; (L.B.); (J.M.)
| |
Collapse
|
7
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
8
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
9
|
Bastos RC, Vasconcelos CFM, Paiva MB, Reis TDDSD, Souza RB, Dos Santos HS, Bandeira PN, Aguiar LMV, Cunha RMSD. Assessment of antioxidant and antiparkinsonian potential of a new diterpene isolated from Croton argyrophylloides. Free Radic Res 2022; 56:760-770. [PMID: 36814389 DOI: 10.1080/10715762.2023.2176763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Oxidative stress is related to health problems including neurological and neurodegenerativedisturbs, such as Parkinson's disease. Natural compounds are reported as source of antioxidant molecules. Therefore, this study aimed to analyze the antioxidant and neuroprotective potential of a new diterpene isolated from C. argyrophylloides (MP-1). Male Wistar rats (250-300 g) were used to evaluate MP-1 antiparkinsonian potential through neurodegenerative model induced by the neurotoxin 6-hydroxydopamine (21 μg). On the 14th day, animals were submitted to behavioral tests and on the 15th day, brain areas were dissected to neurochemical analyzes. MP-1 demonstrated a high antioxidant capacity in vitro and decreased the parkinsonian effects, such as behavioral changes, motor alterations, and body weight loss. MP-1 was also able to control the upregulated levels of nitrosative stress and lipid peroxidation. These findings suggest MP-1 as a diterpene with high antioxidant capacity which might be used to development of new approach against Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Marcela Bezerra Paiva
- Biotechnology Core of Sobral, State University of Acaraú Valley, Sobral, Ceará, Brazil
| | | | - Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Exact Sciences and Technology Center, Natural Products Chemistry and Organic Synthesis Laboratory, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Exact Sciences and Technology Center, Natural Products Chemistry and Organic Synthesis Laboratory, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| | | | | |
Collapse
|
10
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
11
|
Kahweol Protects against Acetaminophen-Induced Hepatotoxicity in Mice through Inhibiting Oxidative Stress, Hepatocyte Death, and Inflammation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8121124. [PMID: 35265717 PMCID: PMC8898811 DOI: 10.1155/2022/8121124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
Abstract
Acetaminophen (APAP) can cause acute liver failure, but treatment options are still limited. Kahweol is the main diterpene compound of coffee and possesses antioxidant and anti-inflammatory properties. Emerging evidence suggests that this natural diterpene exerts favorable effects on several inflammatory diseases. However, the action of kahweol on APAP toxicity has not been addressed. The purpose of this study was to explore whether kahweol has a protective activity against APAP-induced hepatotoxicity and to investigate the mechanism. Administration of kahweol reduced serum levels of liver injury indicators and ameliorated histological abnormalities in APAP-treated mice. Kahweol inhibited lipid peroxidation and nucleic acid oxidation with restoration of glutathione content and stimulation of nuclear factor erythroid-2-related factor 2-dependent cellular defense system. Hepatocyte death was also decreased by kahweol, which was associated with inhibition of endoplasmic reticulum (ER) stress. Moreover, kahweol reduced hepatic levels of inflammatory mediators, inhibited nuclear factor-κB activation, and attenuated infiltration of neutrophils and macrophages. These findings suggest that kahweol has a protective activity against APAP-induced liver injury and this effect is related to the suppression of oxidative stress, hepatocyte death, ER stress, and inflammation.
Collapse
|
12
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
13
|
The Coffee Diterpene, Kahweol, Ameliorates Pancreatic β-Cell Function in Streptozotocin (STZ)-Treated Rat INS-1 Cells through NF-kB and p-AKT/Bcl-2 Pathways. Molecules 2021; 26:molecules26175167. [PMID: 34500601 PMCID: PMC8434527 DOI: 10.3390/molecules26175167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Kahweol is a diterpene molecule found in coffee that exhibits a wide range of biological activity, including anti-inflammatory and anticancer properties. However, the impact of kahweol on pancreatic β-cells is not known. Herein, by using clonal rat INS-1 (832/13) cells, we performed several functional experiments including; cell viability, apoptosis analysis, insulin secretion and glucose uptake measurements, reactive oxygen species (ROS) production, as well as western blotting analysis to investigate the potential role of kahweol pre-treatment on damage induced by streptozotocin (STZ) treatment. INS-1 cells pre-incubated with different concentrations of kahweol (2.5 and 5 µM) for 24 h, then exposed to STZ (3 mmol/L) for 3 h reversed the STZ-induced effect on cell viability, apoptosis, insulin content, and secretion in addition to glucose uptake and ROS production. Furthermore, Western blot analysis showed that kahweol downregulated STZ-induced nuclear factor kappa B (NF-κB), and the antioxidant proteins, Heme Oxygenase-1 (HMOX-1), and Inhibitor of DNA binding and cell differentiation (Id) proteins (ID1, ID3) while upregulated protein expression of insulin (INS), p-AKT and B-cell lymphoma 2 (BCL-2). In conclusion, our study suggested that kahweol has anti-diabetic properties on pancreatic β-cells by suppressing STZ induced apoptosis, increasing insulin secretion and glucose uptake. Targeting NF-κB, p-AKT, and BCL-2 in addition to antioxidant proteins ID1, ID3, and HMOX-1 are possible implicated mechanisms.
Collapse
|
14
|
Chun KS, Raut PK, Kim DH, Surh YJ. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans. Free Radic Biol Med 2021; 172:699-715. [PMID: 34214633 DOI: 10.1016/j.freeradbiomed.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
While functioning as a second messenger in the intracellular signaling, ROS can cause oxidative stress when produced in excess or not neutralized/eliminated properly. Excessive ROS production is implicated in multi-stage carcinogenesis. Our body is equipped with a defense system to cope with constant oxidative stress caused by the external insults, including redox-cycling chemicals, radiation, and microbial infection as well as endogenously generated ROS. The transcription factor, nuclear transcription factor erythroid 2-related factor 2 (NRF2) is a master switch in the cellular antioxidant signaling and plays a vital role in adaptive survival response to ROS-induced oxidative stress. Although NRF2 is transiently activated when cellular redox balance is challenged, this can be overwhelmed by massive oxidative stress. Therefore, it is necessary to maintain the NRF2-mediated antioxidant defense capacity at an optimal level. This review summarizes the natural NRF2 inducers/activators, especially those present in the plant-based diet, in relation to their cancer chemopreventive potential in humans. The molecular mechanisms underlying their stabilization or activation of NRF2 are also discussed.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42691, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
15
|
Qin S, Tang H, Li W, Gong Y, Li S, Huang J, Fang Y, Yuan W, Liu Y, Wang S, Guo Y, Guo Y, Xu Z. AMPK and its Activator Berberine in the Treatment of Neurodegenerative Diseases. Curr Pharm Des 2021; 26:5054-5066. [PMID: 32445451 DOI: 10.2174/1381612826666200523172334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders are heterogeneous diseases associated with either acute or progressive neurodegeneration, causing the loss of neurons and axons in the central nervous system (CNS), showing high morbidity and mortality, and there are only a few effective therapies. Here, we summarized that the energy sensor adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and its agonist berberine can combat the common underlying pathological events of neurodegeneration, including oxidative stress, neuroinflammation, mitochondrial disorder, glutamate excitotoxicity, apoptosis, autophagy disorder, and disruption of neurovascular units. The abovementioned effects of berberine may primarily depend on activating AMPK and its downstream targets, such as the mammalian target of rapamycin (mTOR), sirtuin1 (SIRT1), nuclear factor erythroid-2 related factor-2 (Nrf2), nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), nicotinamide adenine dinucleotide (NAD+), and p38 mitogen-activated protein kinase (p38 MAPK). It is hoped that this review will provide a strong basis for further scientific exploration and development of berberine's therapeutic potential against neurodegeneration.
Collapse
Affiliation(s)
- Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjuan Yuan
- The First people’s hospital of Lanzhou city, Gansu, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Ling K, Zhou W, Guo Y, Hu G, Chu J, Xie F, Li Y, Wang W. H 2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp Biol Med (Maywood) 2021; 246:226-239. [PMID: 32996350 PMCID: PMC7871122 DOI: 10.1177/1535370220961038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Restenosis after angioplasty of peripheral arteries is a clinical problem involving oxidative stress. Hydrogen sulfide (H2S) participates in oxidative stress regulation and activates nuclear factor erythroid 2-related factor 2 (Nrf2). This study investigated the effect of H2S and Nrf2 on restenosis-induced arterial injury. Using an in vivo rat model of restenosis, we investigated whether H2S inhibits restenosis after percutaneous transluminal angioplasty (PTA) and the oxidative stress-related mechanisms implicated therein. The involvement of Nrf2 was explored using Nrf2-shRNA. Neointimal formation and the deposition of elastic fibers were assessed histologically. Inflammatory cytokine secretion and the expression of proteins associated with oxidative stress and inflammation were evaluated. The artery of rats subjected to restenosis showed increased arterial intimal thickness, with prominent elastic fiber deposition. Sodium hydrosulfide (NaHS), an H2S donor, counteracted these changes in vivo. Restenosis caused a decrease in anti-oxidative stress signaling. This phenomenon was inhibited by NaHS, but Nrf2-shRNA counteracted the effects of NaHS. In terms of inflammation, inflammatory cytokines were upregulated, whereas NaHS suppressed the induced inflammatory reaction. Similarly, Nrf2 downregulation blocked the effect of NaHS. In vitro studies using aortic endothelial and vascular smooth muscle cells isolated from experimental animals showed consistent results as those of in vivo studies, and the participation of the nuclear factor-kappa B signaling pathway was demonstrated. Collectively, H2S played a role in regulating post-PTA restenosis by alleviating oxidative stress, modulating anti-oxidant defense, and targeting Nrf2-related pathways via nuclear factor-kappa B signaling.
Collapse
Affiliation(s)
- Ken Ling
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Chu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Xie
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
18
|
Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020; 13:nu13010088. [PMID: 33383958 PMCID: PMC7824117 DOI: 10.3390/nu13010088] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most popular beverages consumed worldwide. Roasted coffee is a complex mixture of thousands of bioactive compounds, and some of them have numerous potential health-promoting properties that have been extensively studied in the cardiovascular and central nervous systems, with relatively much less attention given to other body systems, such as the gastrointestinal tract and its particular connection with the brain, known as the brain–gut axis. This narrative review provides an overview of the effect of coffee brew; its by-products; and its components on the gastrointestinal mucosa (mainly involved in permeability, secretion, and proliferation), the neural and non-neural components of the gut wall responsible for its motor function, and the brain–gut axis. Despite in vitro, in vivo, and epidemiological studies having shown that coffee may exert multiple effects on the digestive tract, including antioxidant, anti-inflammatory, and antiproliferative effects on the mucosa, and pro-motility effects on the external muscle layers, much is still surprisingly unknown. Further studies are needed to understand the mechanisms of action of certain health-promoting properties of coffee on the gastrointestinal tract and to transfer this knowledge to the industry to develop functional foods to improve the gastrointestinal and brain–gut axis health.
Collapse
|
19
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
20
|
Kim JY, Jo J, Leem J, Park KK. Kahweol Ameliorates Cisplatin-Induced Acute Kidney Injury through Pleiotropic Effects in Mice. Biomedicines 2020; 8:biomedicines8120572. [PMID: 33291262 PMCID: PMC7762132 DOI: 10.3390/biomedicines8120572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jungmin Jo
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence:
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
21
|
Abstract
Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.
Collapse
|
22
|
Protective Impact of Edaravone Against ZnO NPs-induced Oxidative Stress in the Human Neuroblastoma SH-SY5Y Cell Line. Cell Mol Neurobiol 2020; 42:1189-1210. [PMID: 33222098 DOI: 10.1007/s10571-020-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce oxidative stress, inflammation, and apoptosis in neurons. Edaravone applies antioxidant agent and anti-inflammatory impacts in the different cells, as evaluated in both in vitro and in vivo experimental models. This study is designed to explore, how edaravone would avert mitochondrial impairment in human neuronal cells against ZnO NPs-induced toxicity. Accordingly, we analyzed here whether a pretreatment (for 24 h) with edaravone (10-100 μM) would enhance mitochondrial protection in the human neuroblastoma cells SH-SY5Y against ZnO NPs-induced toxicity. We found that edaravone at 25 μM averted the ZnO NPs-induced decrease in the amounts of adenosine triphosphate (ATP), just as on the activity of the complexes I and V. Also, edaravone induced an antioxidant activity by diminishing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Edaravone blocked the ZnO NPs-induced transcription factor nuclear factor-κB (NF-κB) upregulation. The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 μM) smothered the preventive impacts brought about by edaravone with respect to mitochondrial function and inflammation. After this examination, it can be concluded that edaravone caused cytoprotective impacts in an HO-1-dependent manner in SH-SY5Y cells against ZnO NPs-induced toxicity.
Collapse
|
23
|
Seo HY, Lee SH, Lee JH, Hwang JS, Kim MK, Jang BK. Kahweol activates the Nrf2/HO-1 pathway by decreasing Keap1 expression independently of p62 and autophagy pathways. PLoS One 2020; 15:e0240478. [PMID: 33044988 PMCID: PMC7549774 DOI: 10.1371/journal.pone.0240478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Kahweol is a diterpene found in coffee beans and unfiltered coffee drinks. Several studies have demonstrated that kahweol induces the nuclear factor erythroid-2 related factor 2/ hemeoxygenase-1 (Nrf2/HO-1) pathway; however, the mechanisms involved are currently unknown. Kelch-like ECH-associated protein 1 (Keap1) is a major regulator of Nrf2 expression and is degraded mostly by autophagy. The p62 protein enhances binding to Keap1 and contributes to the activation of Nrf2. Here, we examined the role of Keap1 regulation in the effect of kahweol on the Nrf2/HO-1 pathway in hepatocytes. In AML12 cells and primary mouse hepatocytes, kahweol increased the levels of Nrf2 and HO-1 protein without increasing expression of the Nrf2 mRNA. In addition, kahweol reduced Keap1 protein levels significantly without decreasing Keap1 mRNA levels. Although regulation of the Keap1-Nrf2-pathway by p62-dependent autophagy is well known, we confirmed here that the reduction of Keap1 protein levels by kahweol does not involve p62-dependent autophagy degradation or ubiquitination. In conclusion, kahweol increases the expression of Nrf2 in hepatocytes by inhibiting translation of the Keap1 mRNA.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Ji-Ha Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Jae Seok Hwang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, South Korea
| |
Collapse
|
24
|
Guo Z, Tang N, Liu FY, Yang Z, Ma SQ, An P, Wu HM, Fan D, Tang QZ. TLR9 deficiency alleviates doxorubicin-induced cardiotoxicity via the regulation of autophagy. J Cell Mol Med 2020; 24:10913-10923. [PMID: 33140921 PMCID: PMC7521247 DOI: 10.1111/jcmm.15719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin is a commonly used anthracycline chemotherapeutic drug. Its application for treatment has been impeded by its cardiotoxicity as it is detrimental and fatal. DNA damage, cardiac inflammation, oxidative stress and cell death are the critical links in DOX-induced myocardial injury. Previous studies found that TLR9-related signalling pathways are associated with the inflammatory response of cardiac myocytes, mitochondrial dysfunction and cardiomyocyte death, but it remains unclear whether TLR9 could influence DOX-induced heart injury. Our current data imply that DOX-induced cardiotoxicity is ameliorated by TLR9 deficiency both in vivo and in vitro, manifested as improved cardiac function and reduced cardiomyocyte apoptosis and oxidative stress. Furthermore, the deletion of TLR9 rescued DOX-induced abnormal autophagy flux in vivo and in vitro. However, the inhibition of autophagy by 3-MA abolished the protective effects of TLR9 deletion on DOX-induced cardiotoxicity. Moreover, TLR9 ablation suppressed the activation of p38 MAPK during DOX administration and may promote autophagy via the TLR9-p38 MAPK signalling pathway. Our study suggests that the deletion of TLR9 exhibits a protective effect on doxorubicin-induced cardiotoxicity by enhancing p38-dependent autophagy. This finding could be used as a basis for the development of a prospective therapy against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
26
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
27
|
Wang Y, Li C, Li J, Wang G, Li L. Non-Esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9060523. [PMID: 32545880 PMCID: PMC7346109 DOI: 10.3390/antiox9060523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influences follicular growth and development. However, the effect and mechanism of NEFA on granulosa cells (GCs) in vitro remains unknown. In this study, we found that NEFA dose-dependently induced apoptosis in primary cultured granulosa cells. Mechanistically, our data showed that NEFA significantly increased reactive oxygen species (ROS) levels, resulting in the activation of endoplasmic reticulum stress (ERS) and eventually cell apoptosis in GCs. Moreover, NEFA also increased the phosphorylation levels of ERK1/2 and p38MAPK pathways, upregulated the expression of p53 and potentially promoted its translocation to the nuclear, thus transcriptionally activated Bax, a downstream gene of this pathway. NEFA also promoted nuclear factor E2 (Nrf2) expression and its level in the nuclear. To elucidate the mechanism of NEFA action, N-acetyl-l-cysteine (NAC), a ROS scavenger was used to verify the role of ROS in NEFA induced apoptosis of GCs. NAC pretreatment reversed the NEFA-induced ERS-related protein and apoptosis-related protein levels. Meanwhile, NAC pretreatment also blocked the phosphorylation of ERK1/2 and p38 induced by NEFA, and the nucleation of Nrf2 and p53, suggesting that ROS plays a crucial role in regulating the NEFA-induced apoptosis of GCs. Together, these findings provide an improved understanding of the mechanisms underlying GCs apoptosis, which could potentially be useful for improving ovarian function.
Collapse
Affiliation(s)
- Yiru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (G.W.)
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China;
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (G.W.)
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (G.W.)
- Correspondence: ; Tel.: +86-25-8439-5045
| |
Collapse
|
28
|
Role of Astrocytic Dysfunction in the Pathogenesis of Parkinson's Disease Animal Models from a Molecular Signaling Perspective. Neural Plast 2020; 2020:1859431. [PMID: 32089670 PMCID: PMC7029263 DOI: 10.1155/2020/1859431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/26/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the fact that astrocytes are the most abundant glial cells, critical for brain function, few studies have dealt with their possible role in neurodegenerative diseases like Parkinson's disease (PD). This article explores relevant evidence on the involvement of astrocytes in experimental PD neurodegeneration from a molecular signaling perspective. For a long time, astrocytic proliferation was merely considered a byproduct of neuroinflammation, but by the time being, it is clear that astrocytic dysfunction plays a far more important role in PD pathophysiology. Indeed, ongoing experimental evidence suggests the importance of astrocytes and dopaminergic neurons' cross-linking signaling pathways. The Wnt-1 (wingless-type MMTV integration site family, member 1) pathway regulates several processes including neuron survival, synapse plasticity, and neurogenesis. In PD animal models, Frizzled (Fzd) neuronal receptors' activation by the Wnt-1 normally released by astrocytes following injuries leads to β-catenin-dependent gene expression, favoring neuron survival and viability. The transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor also participates in experimental PD genesis. Activation of astrocyte TRPV1 receptors by noxious stimuli results in reduced inflammatory response and increased ciliary neurotrophic factor (CNTF) synthesis, which enhances neuronal survival and differentiation. Another major pathway involves IκB kinase (IKK) downregulation by ARL6ip5 (ADP-ribosylation-like factor 6 interacting protein 5, encoded by the cell differentiation-associated, JWA, gene). Typically, IKK releases the proinflammatory NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) molecule from its inhibitor. Therefore, by downregulating NF-κB inhibitor, ARL6ip5 promotes an anti-inflammatory response. The evidence provided by neurotoxin-induced PD animal models guarantees further research on the neuroprotective potential of normalizing astrocyte function in PD.
Collapse
|
29
|
de Melo Pereira GV, de Carvalho Neto DP, Magalhães Júnior AI, do Prado FG, Pagnoncelli MGB, Karp SG, Soccol CR. Chemical composition and health properties of coffee and coffee by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 91:65-96. [PMID: 32035601 DOI: 10.1016/bs.afnr.2019.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coffee can be an ally in the fight against diseases such as type 2 diabetes, cancer, hepatic injury, cirrhosis, depression, suicidal behavior, and neurological and cardiovascular disorders. The properties of coffee also favor gastrointestinal tract and gut microbiota establishment. Coffee bioactive components include phenolic compounds (chlorogenic acids, cafestol and kahweol), alkaloids (caffeine and trigonelin), diterpenes (cafestol and kahweol) and other secondary metabolites. The image of coffee as a super functional food has helped to increase coffee consumption across the globe. This chapter addresses the main health promotion mechanisms associated with coffee consumption. Related topics on coffee production chain, world consumption and reuse of coffee by-products in the production of high-value-adding molecules with potential applications in the food industry are addressed and discussed.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Dão Pedro de Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Antonio I Magalhães Júnior
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Fernanda Guilherme do Prado
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Maria Giovana B Pagnoncelli
- Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
30
|
Fürstenau CR, de Souza ICC, de Oliveira MR. The effects of kahweol, a diterpene present in coffee, on the mitochondria of the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide. Toxicol In Vitro 2019; 61:104601. [DOI: 10.1016/j.tiv.2019.104601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
|
31
|
Lee HF, Lin JS, Chang CF. Acute Kahweol Treatment Attenuates Traumatic Brain Injury Neuroinflammation and Functional Deficits. Nutrients 2019; 11:nu11102301. [PMID: 31569604 PMCID: PMC6835740 DOI: 10.3390/nu11102301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions worldwide with devastating long-term effects on health and cognition. Emerging data suggest that targeting the immune response may offer promising strategies to alleviate TBI outcomes; kahweol, an anti-inflammatory diterpene that remains in unfiltered coffee, has been shown to be beneficial in neuronal recovery. Here, we examined whether kahweol could alleviate brain trauma-induced injury in a mouse model of TBI and its underlying mechanisms. TBI was induced by controlled cortical impact (CCI) and various doses of kahweol were intraperitoneally administered following injury. Contusion volume, brain edema, neurobehavioral deficits, and protein expression and activity were evaluated in both short-term and long-term recovery. We found that kahweol treatments significantly reduced secondary brain injury and improved neurobehavioral outcomes in TBI mice. These changes were accompanied by the attenuation of proinflammatory cytokine secretion, decreased microglia/macrophage activation, and reduction of neutrophil and leukocyte infiltration. In addition, continuous kahweol treatment further improved short-term TBI outcomes compared to single-dosage. Collectively, our data showed that kahweol protects against TBI by reducing immune responses and may serve as a potential therapeutic intervention for TBI patients.
Collapse
Affiliation(s)
- Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
| | - Jhih Syuan Lin
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan.
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Che-Feng Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
32
|
Mitochondrial Protection Promoted by the Coffee Diterpene Kahweol in Methylglyoxal-Treated Human Neuroblastoma SH-SY5Y Cells. Neurotox Res 2019; 37:100-110. [PMID: 31494842 DOI: 10.1007/s12640-019-00107-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 02/08/2023]
Abstract
The coffee diterpene kahweol (KW; C20H26O3) is a cytoprotective agent exhibiting potent antioxidant actions, as demonstrated in several experimental models. In spite of the efforts to elucidate exactly how KW promotes cytoprotection, it was not previously examined whether KW would be able to protect mitochondria of human cells undergoing redox stress. In the present work, we have treated the human neuroblastoma SH-SY5Y cell line with KW at 0.1-10 μM for 12 h prior to a challenge with methylglyoxal (MG), a reactive dicarbonyl that impairs mitochondrial function. We have found that KW at 10 μM suppressed the loss of mitochondrial membrane potential (MMP) and the bioenergetics decline (including decreased activity of the mitochondrial complexes I and V and reduced production of adenosine triphosphate, ATP) in the MG-treated SH-SY5Y cells. KW also prevented the MG-elicited generation of reactive oxygen and nitrogen species (ROS and RNS, respectively) in the SH-SY5Y cells. In this regard, KW exerted an antioxidant effect on the membranes of mitochondria obtained from the MG-treated cells. The mitochondria-related effects induced by KW were blocked by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt or of the p38 mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, silencing of the transcription factor nuclear factor E2-related factor 2 (Nrf2) suppressed the mitochondrial protection promoted by KW in the MG-challenged cells. Therefore, KW protected mitochondria by a mechanism associated with the PI3K/Akt and p38 MAPK/Nrf2 signaling pathways.
Collapse
|
33
|
Guo X, Han C, Ma K, Xia Y, Wan F, Yin S, Kou L, Sun Y, Wu J, Hu J, Huang J, Xiong N, Wang T. Hydralazine Protects Nigrostriatal Dopaminergic Neurons From MPP + and MPTP Induced Neurotoxicity: Roles of Nrf2-ARE Signaling Pathway. Front Neurol 2019; 10:271. [PMID: 30949126 PMCID: PMC6435581 DOI: 10.3389/fneur.2019.00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
Although the pathogenic mechanisms of Parkinson's disease (PD) remain unclear, ample empirical evidence suggests that oxidative stress is involved in the pathogenesis of this disease. The nuclear factor E2-related factor 2 (Nrf2) is known to activate several antioxidant response element (ARE)-driven antioxidative genes that prevents oxidative stress in vitro and in vivo. Moreover, it was documented that hydralazine is a potent Nrf2 activator. In this study, we tested whether hydralazine can attenuate 1-Methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced neurotoxicity in vitro and in vivo by activating Nrf2 and its downstream network of antioxidative genes. We found that treatment with hydralazine attenuated MPP+ or H2O2-induced loss of cell viability in human neuroblastoma cell line (SH-SY5Y). In addition, hydralazine significantly promoted the nuclear translocation of Nrf2, and upregulated the expression of its downstream antioxidative genes. Further, knockout of Nrf2 abolished the protection conferred by hydralazine on MPP+ -induced cell death. Similar findings were observed in vivo. Before, during, and after MPTP 30 mg/kg (i.p.) administration for 7 days, the mice were given hydralazine (Hyd) 51.7 mg/kg per day by oral gavage for 3 weeks. Oral administration of hydralazine ameliorated oxidative stress, MPTP-induced behavioral disorder, and loss of neurons of dopaminergic system in the substantia nigra (SN) and striatum, all of which were attributed to its ability to activate the Nrf2-ARE pathway. Hydralazine increased the migration of Nrf2 to the nucleus in dopaminergic neurons, enhanced the expression of its downstream antioxidative genes. Together, these datasets show that the Nrf2-ARE pathway mediates the protective effects of hydralazine on Parkinson's disease.
Collapse
Affiliation(s)
- Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE Pathway Modulation by Dietary Energy Regulation in Neurological Disorders. Front Pharmacol 2019; 10:33. [PMID: 30778297 PMCID: PMC6369171 DOI: 10.3389/fphar.2019.00033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of an array of enzymes with important detoxifying and antioxidant functions. Current findings support the role of high levels of oxidative stress in the pathogenesis of neurological disorders. Given the central role played by Nrf2 in counteracting oxidative damage, a number of studies have targeted the modulation of this transcription factor in order to confer neuroprotection. Nrf2 activity is tightly regulated by oxidative stress and energy-based stimuli. Thus, many dietary interventions based on energy intake regulation, such as dietary energy restriction (DER) or high-fat diet (HFD), modulate Nrf2 with consequences for a variety of cellular processes that affect brain health. DER, by either restricting calorie intake or meal frequency, activates Nrf2 thereby triggering its protective effects, whilst HFD inhibit this pathway, thereby exacerbating oxidative stress. Consequently, DER protocols can be valuable strategies in the management of central nervous system (CNS) disorders. Herein, we review current knowledge of the role of Nrf2 signaling in neurological diseases, namely Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and cerebral ischemia, as well as the potential of energy intake regulation in the management of Nrf2 signaling.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Laboratory of Neuroendocrinopharmacology and Immunomodulation, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Yoon CS, Kim MK, Kim YS, Lee SK. In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC. Maxillofac Plast Reconstr Surg 2018; 40:44. [PMID: 30613574 PMCID: PMC6308107 DOI: 10.1186/s40902-018-0183-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Coffee extract has been investigated by many authors, and many minor components of coffee are known, such as polyphenols, diterpenes (kahweol and cafestol), melanoidins, and trigonelline, to have anti-inflammatory, anti-oxidant, anti-angiogenic, anticancer, chemoprotective, and hepatoprotective effects. Therefore, it is necessary to know its pharmacological effect on hepatocytes which show the most active cellular regeneration in body. Methods In order to determine whether coffee extract has a beneficial effect on the liver, 20 C57BL/6J mice were intraperitoneally injected once with dialyzed coffee extract (DCE)-2.5 (equivalent to 2.5 cups of coffee a day in man), DCE-5, or DCE-10, or normal saline (control), and then followed by histological observation and IP-HPLC (immunoprecipitation high performance liquid chromatography) over 24 h. Results Mice treated with DCE-2.5 or DCE-5 showed markedly hypertrophic hepatocytes with eosinophilic cytoplasms, while those treated with DCE-10 showed slightly hypertrophic hepatocytes, which were well aligned in hepatic cords with increased sinusoidal spaces. DCE induced the upregulations of cellular proliferation, growth factor/RAS signaling, cellular protection, p53-mediated apoptosis, angiogenesis, and antioxidant and protection-related proteins, and the downregulations of NFkB signaling proteins, inflammatory proteins, and oncogenic proteins in mouse livers. These protein expression changes induced by DCE were usually limited to the range ± 10%, suggesting murine hepatocytes were safely reactive to DCE within the threshold of physiological homeostasis. DCE-2.5 and DCE-5 induced relatively mild dose-dependent changes in protein expressions for cellular regeneration and de novo angiogenesis as compared with non-treated controls, whereas DCE-10 induced fluctuations in protein expressions. Conclusion These observations suggested that DCE-2.5 and DCE-5 were safer and more beneficial to murine hepatocytes than DCE-10. It was also found that murine hepatocytes treated with DCE showed mild p53-mediated apoptosis, followed by cellular proliferation and growth devoid of fibrosis signaling (as determined by IP-HPLC), and subsequently progressed to rapid cellular regeneration and wound healing in the absence of any inflammatory reaction based on histologic observations. Electronic supplementary material The online version of this article (10.1186/s40902-018-0183-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheol Soo Yoon
- 1Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, 123 Chibyun-dong, Gangneung, 210-702 South Korea
| | - Min Keun Kim
- 2Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, Gangneung, South Korea
| | - Yeon Sook Kim
- 3Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju, South Korea
| | - Suk Keun Lee
- 1Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, 123 Chibyun-dong, Gangneung, 210-702 South Korea
| |
Collapse
|
36
|
Suppression of PMA-induced human fibrosarcoma HT-1080 invasion and metastasis by kahweol via inhibiting Akt/JNK1/2/p38 MAPK signal pathway and NF-κB dependent transcriptional activities. Food Chem Toxicol 2018; 125:1-9. [PMID: 30590137 DOI: 10.1016/j.fct.2018.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 01/19/2023]
Abstract
Coffee is one of the widely sales beverage worldwide and contains numerous phytochemicals that are beneficial to health. Kahweol acetate (KA), a coffee-specific diterpene, exhibits anti-tumoric properties in human tumoric cells. However, the effect of KA on the metastasis and invasion of cancer cells and the underlying mechanisms remain unclear. The objectives of this study were to estimate the anti-tumor activity of KA and reveal the possible molecular mechanisms. KA markedly inhibited the cell proliferation enhanced by phorbol 12-myristate 13-acetate (PMA) in human fibrosarcoma cells. As well as, KA attenuated PMA-induced cell migration and invasion in a concentration-dependent manner. KA suppressed PMA-enhanced activation of matrix metalloproteinase-9 (MMP-9) through suppression of nuclear factor kappa B (NF-κB) activation. KA repressed the PMA-induced phosphorylation of Akt, c-Jun N-terminal kinase (JNK) 1/2, and p38 MAPK, which are signaling molecules upstream of MMP-9 expression. In summary, we demonstrated that the anti-tumor effects of KA might occur through the inhibition of Akt/JNK1/2/p38 MAPK phosphorylation and downregulation of NF-κB activation, leading to a decrease in MMP-9 expression. Thus, KA is a useful chemotherapeutic agent that may contribute to prevent to the metastatic tumor.
Collapse
|
37
|
Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem Toxicol 2018; 121:326-335. [DOI: 10.1016/j.fct.2018.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
|
38
|
Sulaiman I, Tan K, Mohtarrudin N, Lim JCW, Stanslas J. Andrographolide prevented toluene diisocyanate-induced occupational asthma and aberrant airway E-cadherin distribution via p38 MAPK-dependent Nrf2 induction. Pulm Pharmacol Ther 2018; 53:39-51. [PMID: 30244166 DOI: 10.1016/j.pupt.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 01/25/2023]
Abstract
Toluene diisocyanate (TDI) is a major cause of chemical-induced occupational asthma, which contributes about 15% of global asthma burden. Resistance and compounded side effects associated with the use of corticosteroid in asthma necessitate the search for alternative drugs. Andrographolide (AGP), a naturally occurring diterpene lactone is known to exhibit various bioactivities. Its ability to ameliorate cardinal features of allergic asthma was previously suggested in an eosinophilic asthma endotype. However, its potential antiasthma activity and mechanism of action in a neutrophilic occupational asthma model, as well as its effect on epithelial dysfunction remain unknown. BALB/c mice were dermally sensitised with 0.3% TDI or acetone olive oil (AOO) vehicle on day 1 and 8, followed by 0.1% TDI intranasal challenge on days 15, 18 and 21. Endpoints were evaluated via bronchoalveolar lavage fluid (BALF) cell analysis, 2',7'-dichlorofluorescein diacetate (DCFDA) assays, immunoblotting, immunohistochemistry and methacholine challenge test. Decreases in total and differential leukocyte counts of BALF were recorded in AGP-treated animals. The compound dose-dependently reduced intracellular de-esterification of DCFDA, thus suggesting AGP's potential to inhibit intracellular reactive oxygen species (ROS). Mechanistically, the treatment prevented TDI-induced aberrant E-cadherin distribution and restored airway epithelial β-catenin at cell to cell contact site. Furthermore, AGP ameliorated TDI induced pulmonary collagen deposition. In addition, the treatment significantly upregulated pulmonary HO-1, Nrf2 and phospho-p38 levels. Airway hyperresponsiveness was markedly suppressed among AGP-treated animals. Collectively, these findings suggest AGP's protective function against TDI-induced airway epithelial barrier dysfunction and oxidative lung damage possibly through the upregulation of adherence junction proteins and the activation of p38/Nrf2 signalling. This study elucidates the therapeutic potential of AGP in the control and management of chemical-induced allergic asthma. To the best of our knowledge, the potential anti-asthma activity of AGP in TDI-induced occupational asthma has not been reported previously.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khaishin Tan
- Department of Pharmaceutical Chemistry, International Medical University, Kuala Lumpur, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Yoon CS, Kim MK, Kim YS, Lee SK. In vitro protein expression changes in RAW 264.7 cells and HUVECs treated with dialyzed coffee extract by immunoprecipitation high performance liquid chromatography. Sci Rep 2018; 8:13841. [PMID: 30218035 PMCID: PMC6138699 DOI: 10.1038/s41598-018-32014-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
RAW 264.7 cells and HUVECs were compared to evaluate the effects of dialyzed coffee extract (DCE) and artificial coffee (AC). Immunoprecipitation high performance liquid chromatography (IP-HPLC) showed DCE-2.5- (equivalent to 2.5 cups of coffee a day) and DCE-5-induced protein expression that was beneficial to human health, i.e., they led to significant increases in proliferation-, immunity-, cellular protection-, antioxidant signaling-, and osteogenesis-related proteins but decreases in inflammation-, NFkB signaling-, cellular apoptosis-, and oncogenic signaling-related proteins in RAW 264.7 cells, and slight decreases in angiogenesis-related proteins in HUVECs. These protein expression changes were less frequently observed for DCE-10 treatment, while AC treatment induced very different changes in protein expression. We suggest that the favorable cellular effects of DCE were derived from minor coffee elements that were absent in AC, and that the reduced effects of DCE-10 compared with those of DCE-2.5 or DCE-5 might have been caused by greater adverse reactions to caffeine and chlorogenic acid in DCE-10 than DCE-2.5 or DCE-5. IP-HPLC results suggested that minor coffee elements in DCE might play beneficial roles in the global protein expression of proliferation-, immunity-, anti-inflammation-, cell protection-, antioxidant-, anti-apoptosis-, anti-oncogenesis-, and osteogenesis-related proteins in RAW 264.7 cells and enhance anti-angiogenic signaling in HUVECs.
Collapse
Affiliation(s)
- Cheol Soo Yoon
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea
| | - Min Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea
| | - Yeon Sook Kim
- Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju, Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea.
| |
Collapse
|
40
|
Zhang H, Yuan B, Huang H, Qu S, Yang S, Zeng Z. Gastrodin induced HO-1 and Nrf2 up-regulation to alleviate H2O2-induced oxidative stress in mouse liver sinusoidal endothelial cells through p38 MAPK phosphorylation. ACTA ACUST UNITED AC 2018; 51:e7439. [PMID: 30156611 PMCID: PMC6110350 DOI: 10.1590/1414-431x20187439] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Nuclear factor erythroid-related factor 2 (Nrf2) has been implicated in several detoxifying and antioxidant defense processes. Nrf2-mediated heme oxygenase-1 (HO-1) expression was demonstrated to play a key role against oxidative stress. Gastrodin (GSTD) is a well-known active compound isolated from the roots of Rhizoma gastrodiae, a plant used in ancient Chinese traditional medicine. The aim of this work was to investigate whether GSTD could alleviate H2O2-induced oxidative stress in mouse liver sinusoidal endothelial cells (LSECs). In LSECs exposed to 1 mM H2O2, treatment with GSTD (1, 10, or 50 µM) resulted in higher cell viability than the untreated control. Treated cells maintained a higher Bcl2/Bax ratio and suppressed caspase-9 expression compared with untreated cells, reducing cell apoptosis. GSTD was protective for H2O2-induced oxidative injury by reducing the generation of intracellular reactive oxygen species and malondialdehyde. HO-1 and Nrf2 expressions were synergistically upregulated by GSTD. Inhibition of HO-1 by 10 µM zinc protoporphyrin resulted in less protective effects on cell viability and malondialdehyde reduction by GSTD treatment in H2O2-exposed LSECs. Additionally, phosphorylated p38 in LSECs exposed to H2O2 was elevated by GSTD. Inhibition of p38 phosphorylation by SB203580 did not induce Nrf2 and HO-1 expression after 1 or 10 µM GSTD treatment and the protective effect on cell viability and malondialdehyde reduction in H2O2-exposed LSECs was reduced. The data conclusively demonstrated that GSTD-induced HO-1 and Nrf2 expression is involved in protection of LSECs from H2O2-induced oxidative injury, which may be regulated by p38 phosphorylation.
Collapse
Affiliation(s)
- Hongbin Zhang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China.,Department of Oncology, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Yuan
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Hanfei Huang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Siming Qu
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Shikun Yang
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Zhong Zeng
- Centre of Organ and Tissue Transplantation, the First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
41
|
Seo HY, Kim MK, Lee SH, Hwang JS, Park KG, Jang BK. Kahweol Ameliorates the Liver Inflammation through the Inhibition of NF-κB and STAT3 Activation in Primary Kupffer Cells and Primary Hepatocytes. Nutrients 2018; 10:nu10070863. [PMID: 29973533 PMCID: PMC6073512 DOI: 10.3390/nu10070863] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Gut derived bacterial endotoxins, such as lipopolysaccharide (LPS), are involved in one of the important mechanisms that lead to inflammation associated with various liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Kahweol is a coffee-specific diterpene present in coffee bean and exhibits anti-angiogenic and anti-inflammatory activities. However, to date, the effect of kahweol on liver inflammation remains unknown. In this study, we examined whether kahweol exhibits a protective effect by inhibiting liver inflammation in primary Kupffer cells and primary hepatocytes cultures as well as their co-cultures. Kahweol decreased the LPS-induced production of interleukin 1 alpha, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha. The inhibitory effect of kahweol on the liver inflammation was associated with the down regulation of LPS-stimulated phospho-nuclear factor kappa B and -signal transducer and activator of transcription 3 expression. These results suggest that kahweol might be a novel potent agent to treat liver inflammation induced by LPS.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - So-Hee Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Jae Seok Hwang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| |
Collapse
|
42
|
Sun Y, Yang T, Leak RK, Chen J, Zhang F. Preventive and Protective Roles of Dietary Nrf2 Activators Against Central Nervous System Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:326-338. [PMID: 28042770 DOI: 10.2174/1871527316666170102120211] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/03/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
Central nervous system diseases are major health issues and are often associated with disability or death. Most central nervous system disorders are characterized by high levels of oxidative stress. Nuclear factor erythroid 2 related factor (Nrf2) is known for its ability to regulate the expression of a series of enzymes with antioxidative, prosurvival, and detoxification effects. Under basal conditions, Nrf2 forms a complex with Kelch-like ECH associated protein 1, leading to Nrf2 inactivation via ubiquitination and degradation. However, following exposure of Keap1 to oxidative stress, Nrf2 is released from Keap1, activated, and translocated into the nucleus. Upon nuclear entry, Nrf2 binds to antioxidant response elements (ARE), thereby inducing the expression of genes such as glutathione s-transferase, heme oxygenase 1, and NADPH quinine oxidoreductase 1. Many dietary phytochemicals have been reported to activate the protective Nrf2/ARE pathway. Here, we review the preventive and protective effects of dietary Nrf2 activators against CNS diseases, including stroke, traumatic brain injury, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. United States
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. United States
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282. United States
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. United States
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. United States
| |
Collapse
|
43
|
Lee JA, Son HJ, Choi JW, Kim J, Han SH, Shin N, Kim JH, Kim SJ, Heo JY, Kim DJ, Park KD, Hwang O. Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220. Neurochem Int 2017; 112:96-107. [PMID: 29158022 DOI: 10.1016/j.neuint.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The transcription factor Nrf2 is known to induce gene expression of antioxidant enzymes and proteasome subunits. Because both oxidative stress and protein aggregation have damaging effects on neurons, activation of the Nrf2 signaling should be beneficial against neurodegeneration. In this study, we report a novel synthetic morpholine-containing chalcone KMS99220 that confers neuroprotection. It showed high binding affinity to the Nrf2 inhibitory protein Keap-1 and increased nuclear translocation of Nrf2 and gene expression of the antioxidant enzymes heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1, and the catalytic and modifier subunits of glutamate-cysteine ligase in dopaminergic CATH.a cells. KMS99220 also increased expression of the proteasome subunits PSMB5, PSMB7, PSMB8 and PSMA1, and the respective chymotrypsin and trypsin-like proteasomal enzyme activities, and reduced α-synuclein aggregate in GFP-α-syn A53T-overexpressing cells. KMS99220 exhibited a favorable pharmacokinetic profile with excellent bioavailability and metabolic stability, did not interfere with activities of the cytochrome p450 isotypes, and showed no apparent in vivo toxicity when administered up to 2000 mg/kg. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 prevented degeneration of the nigral dopaminergic neurons, induced the Nrf2 target genes, and effectively prevented the associated motor deficits. These results suggest KMS99220 as a potential candidate for therapy against Parkinson's disease.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jinwoo Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Se Hee Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Nari Shin
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ji Hyun Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Dong Jin Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02792, South Korea.
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
44
|
Li X, Liu L, Pischetsrieder M. Pomegranate ( Punica granatum L.) wine polyphenols affect Nrf2 activation and antioxidant enzyme expression in human neuroblastoma cells (SH-SY5Y). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Inoue Y, Hara H, Mitsugi Y, Yamaguchi E, Kamiya T, Itoh A, Adachi T. 4-Hydroperoxy-2-decenoic acid ethyl ester protects against 6-hydroxydopamine-induced cell death via activation of Nrf2-ARE and eIF2α-ATF4 pathways. Neurochem Int 2017; 112:288-296. [PMID: 28823537 DOI: 10.1016/j.neuint.2017.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/20/2017] [Accepted: 08/13/2017] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress has been reported to be closely related to the pathogenesis and worsening of symptoms of PD. One therapeutic strategy is to alleviate neuronal injuries caused by oxidative stress. In this study, we investigated protective effects of royal jelly (RJ) fatty acids and their derivatives on oxidative stress-induced cell death using human neuroblastoma SH-SY5Y cells. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE), a synthesized RJ fatty acid derivative, markedly induced antioxidant enzymes such as heme oxygenase-1 (HO-1). Pretreatment with HPO-DAEE protected against 6-hydroxydopamine (6-OHDA)-induced cell death. NF-E2-related factor 2 (Nrf2), a master regulator of antioxidative responses, plays a key role in the acquisition of resistance to oxidative stress. HPO-DAEE elicited nuclear accumulation of Nrf2 and activated antioxidant response element (ARE), a cis-activating regulatory element, indicating that HPO-DAEE induced expression of antioxidant genes through Nrf2-ARE signaling. Recently, the activating transcription factor-4 (ATF4) has been shown to cooperate with Nrf2 and modulate antioxidant gene expression. We also found that HPO-DAEE promoted phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is an upstream effector of ATF4, and subsequent nuclear accumulation of ATF4. The eIF2α phosphatase inhibitor, salubrinal, augmented HPO-DAEE-induced HO-1 expression and protection against 6-OHDA-induced cell death. These results indicate that HPO-DAEE activates both the Nrf2-ARE and eIF2α-ATF4 pathways. Moreover, ROS generation occurred upon treatment of SH-SY5Y cells with HPO-DAEE, and the antioxidants N-acetylcysteine and glutathione suppressed HPO-DAEE-induced activation of the Nrf2-ARE and eIF2α-ATF4 pathways. Therefore, sublethal oxidative stress caused by HPO-DAEE is likely to activate both these pathways. Taken together, we conclude that HPO-DAEE elicits adaptive responses to oxidative stress through cooperative activation of the Nrf2-ARE and eIF2α-ATF4 pathways.
Collapse
Affiliation(s)
- Yuki Inoue
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Yukari Mitsugi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
46
|
Kim JS, Lee SG, Kang YJ, Kwon TK, Nam JO. Kahweol inhibits adipogenesis of 3T3-L1 adipocytes through downregulation of PPARγ. Nat Prod Res 2017; 32:1216-1219. [PMID: 28508719 DOI: 10.1080/14786419.2017.1326039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Kahweol, a compound from Coffea arabica, possesses antioxidant, anti-inflammatory, and antitumour properties. However, an anti-adipogenic effect has not yet been reported. In this study, we have shown that kahweol has an anti-adipogenic effect on 3T3-L1 adipocytes. Kahweol significantly inhibited the differentiation of intracellular lipid accumulation in 3T3-L1 adipocytes, without being cytotoxic. It also downregulated the expression of adipogenesis-related gene, including an adipocytokine, adiponectin. This anti-adipogenic effect stems from an ability to inhibit key adipogenic regulators, including PPARγ and C/EBPα. These results demonstrate that kahweol significantly inhibits the differentiation of 3T3-L1 cells, and suggest that it has potential as a novel anti-obesity treatment.
Collapse
Affiliation(s)
- Jin Soo Kim
- a Department of Food Science and Biotechnology , Kyungpook national University , Daegu , Korea
| | - Seul Gi Lee
- a Department of Food Science and Biotechnology , Kyungpook national University , Daegu , Korea
| | - Young Jin Kang
- b Department of Pharmacology , College of Medicine, Yeungnam University , Daegu , Korea
| | - Taeg Kyu Kwon
- c Department of Immunology, School of Medicine , Keimyung University , Daegu , Korea
| | - Ju-Ock Nam
- a Department of Food Science and Biotechnology , Kyungpook national University , Daegu , Korea
| |
Collapse
|
47
|
Attia H, Al-Rasheed N, Mohamad R, Al-Rasheed N, Al-Amin M. The antifibrotic and fibrolytic properties of date fruit extract via modulation of genotoxicity, tissue-inhibitor of metalloproteinases and nuclear factor- kappa B pathway in a rat model of hepatotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:414. [PMID: 27776513 PMCID: PMC5078931 DOI: 10.1186/s12906-016-1388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatic fibrosis and its end point; cirrhosis, are the major cause of liver failure and death in patients with chronic liver disease. Therefore, the need for an effective treatment is evident. This study was designed to assess the potential effects of aqueous extract of date fruits, either flesh (DFE) or pits (DPE), on oxidative DNA damage and liver inflammation induced by carbon tetrachloride (CCl4) and whether they are related to inhibition of nuclear factor-κB pathway. In addition, the fibrolytic potential was evaluated via measuring matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases -1 and -2. METHODS Rats were divided into the following groups: normal control, model control (CCl4 only), CCl4 + DFE, CCl4 + DPE and CCl4 + coffee. Coffee was used as a positive control. Fibrosis was induced by chronic administration of CCl4 (0.4 ml/kg) 3× a week for 8 weeks, and rats were treated with 6 ml/kg/day of DFE or DPE for 8 weeks. Liver homogenate was prepared for evaluation of oxidative stress, DNA damage, inflammatory and fibrolytic markers. Data are analyzed using one-way analysis of variance followed by a Tukey-Kramer post hoc test. RESULTS Both DFE and DPE significantly attenuated CCl4-induced oxidative damage as indicated by reducing lipid, protein and DNA oxidation in addition to increasing the levels of hepatic catalase activity. Both extracts blocked the accumulation of collagen I in the liver and ameliorated the increased expression of collagen III and α-smooth muscle actin suggesting suppression of profibrotic response induced by CCl4. DFE and DPE also upregulated the expression of heme oxygenase-1 and attenuated the nuclear factor-κB activation and cycloxygenase-2 expression reflecting their anti-inflammatory potential. Additionally, both flesh and pits extracts attenuated the increase in the tissue inhibitor of metalloproteinases -1 and -2 suggesting their fibrolytic activity. CONCLUSION Our data suggest that DFE or DPE can prevent liver fibrosis by suppressing genotoxicity and nuclear factor-κB inflammatory pathway and by promoting collagen degradation.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia.
- Department of Biochemistry, College of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Raeesa Mohamad
- Anatomy Department, Faculty of Medicine, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| | - Maha Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11495, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Avagliano C, Russo R, De Caro C, Cristiano C, La Rana G, Piegari G, Paciello O, Citraro R, Russo E, De Sarro G, Meli R, Mattace Raso G, Calignano A. Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: In vivo and in vitro evidence. Pharmacol Res 2016; 113:276-289. [PMID: 27616549 DOI: 10.1016/j.phrs.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023]
Abstract
Several pathogenetic factors have been involved in the onset and progression of Parkinson's disease (PD), including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, has been shown to be a neuroprotective and anti-inflammatory molecule, acting as a peroxisome proliferator activated receptor (PPAR)-α agonist. In this study we investigated the effects of PEA on behavioral alterations and the underlying pathogenic mechanisms in the 6-hydroxydopamine (6-OHDA)-induced model of PD in male mice. Additionally, we showed the involvement of PPAR-α in PEA protective effect on SH-SY5Y neuroblastoma against 6-OHDA damage. Here, we report that PEA (3-30mg/kg/days.c.) improved behavioral impairments induced by unilateral intrastriatal injection of 6-OHDA. This effect was accompanied by a significant increase in tyrosine hydroxylase expression at striatal level, indicating PEA preserving effect on dopaminergic neurons. Moreover, we found a reduction in the expression of pro-inflammatory enzymes, i.e. inducible nitric oxide synthase and cyclooxygenase-2, a modulation between pro- and anti-apoptotic markers, suggestive of PEA capability in controlling neuroinflammation and cell death. Interestingly, PEA also showed protective scavenging effect, through superoxide dismutase induction, and dampened unfolding protein response, interfering on glucose-regulated protein 78 expression and PERK-eIF2α pathway. Similar data were found in in vitro studies, where PEA treatment was found to rescue SH-SY5Y neuroblastoma cells from 6-OHDA-induced damage and death, partly by inhibiting endoplasmic reticulum stress detrimental response. Therefore, PEA, counteracting the pathogenetic aspects involved in the development of PD, showed its therapeutic potential, possibly integrating current treatments correcting dopaminergic deficits and motor dysfunction.
Collapse
Affiliation(s)
- Carmen Avagliano
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Rita Citraro
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| |
Collapse
|
49
|
Qin S, Hou DX. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 2016; 60:1731-55. [DOI: 10.1002/mnfr.201501017] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Si Qin
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
| | - De-Xing Hou
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
- The United Graduate School of Agricultural Sciences; Faculty of Agriculture; Kagoshima University; Kagoshima Japan
| |
Collapse
|
50
|
Ran HQ, Wang JZ, Sun CQ. Coffee Consumption and Pancreatic Cancer Risk: An Update Meta-analysis of Cohort Studies. Pak J Med Sci 2016; 32:253-9. [PMID: 27022386 PMCID: PMC4794517 DOI: 10.12669/pjms.321.8761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND & OBJECTIVE The results of epidemiologic studies on the relationship between the coffee consumption and pancreatic cancer risk were inconsistent. Thus, we performed an update meta-analysis of cohort studies to quantitatively summarize the association between coffee consumption and pancreatic cancer risk. METHODS We searched CBM (China Biology Medicine disc) and MEDLINE for studies of coffee consumption and pancreatic cancer risk up to June 2015. A total of 20 cohort studies were identified in this meta-analysis, and we analyzed these studies using random effects model. The dose-response analysis was conducted too. RESULTS The overall relative risk (RR) for highest coffee consumption versus lowest coffee consumption was 0.75 (95% Confidence Interval (CI), 0.63-0.86). Statistic significant heterogeneity was found among these studies (I (2) =37.8%, P for heterogeneity =0.045). The pooled RR for increment of 1 cup/day of coffee consumption was 0.99 (95%CI, 0.96-1.03) for the nine studies, without statistically significant. CONCLUSIONS High coffee consumption is associated with a reduced pancreatic cancer risk. However, the result should be accepted with caution, due to the potential confounder and bias could not be excluded. Further well designed studies are needed to confirm the finding.
Collapse
Affiliation(s)
- Heng-Quan Ran
- Dr. Heng-Quan Ran, MD, Division of Hepatobiliary Pancreatic Surgery, Panzhihua Central Hospital, Sichuan Province, China
| | - Jun-Zhou Wang
- Dr. Jun-Zhou Wang, MD, Division of Hepatobiliary Pancreatic Surgery, Panzhihua Central Hospital, Sichuan Province, China
| | - Chang-Qin Sun
- Dr. Chang-Qin Sun, MD, Division of Hepatobiliary Pancreatic Surgery, Panzhihua Central Hospital, Sichuan Province, China
| |
Collapse
|