1
|
Bester D, Blignaut M, Huisamen B. ATM facilitates autophagy and protects against oxidative stress and apoptosis in response to ER stress in vitro. Biochem Biophys Res Commun 2024; 732:150422. [PMID: 39033549 DOI: 10.1016/j.bbrc.2024.150422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The endoplasmic reticulum (ER) responds to cellular stress by initiating an unfolded protein response (UPR) that mitigates misfolded protein accumulation by promoting protein degradation pathways. Chronic ER stress leads to UPR-mediated apoptosis and is a common underlying feature of various diseases, highlighting the modulators of the UPR as attractive targets for therapeutic intervention. Ataxia-telangiectasia mutated protein kinase (ATM) is a stress-responsive kinase that initiates autophagy in response to reactive oxygen species (ROS), and ATM deficiency is associated with increased ER stress markers in vitro. However, whether ATM participates in the UPR remains unclear. In this in vitro study, a novel role for ATM in the ER stress response is described using the well-characterized HEK293 cells treated with the common ER stress-inducing agent, tunicamycin, with and without the potent ATM inhibitor, KU-60019. We show for the first time that ATM is activated in a time-dependent manner downstream of UPR initiation in response to tunicamycin treatment. Furthermore, we demonstrate that ATM is required for p62-bound protein cargo degradation through the autophagy pathway in response to ER stress. Lastly, our data suggest a protective role for ATM in ER stress-mediated oxidative stress and mitochondrial apoptosis. Taken together, we highlight ATM as a potential novel drug target in ER stress-related diseases.
Collapse
Affiliation(s)
- Danélle Bester
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| | - Marguerite Blignaut
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| |
Collapse
|
2
|
Katsuyama Y, Okano Y, Masaki H. A decrease of mitochondrial ubiquitin ligase increases the secretion of matrix metalloproteinase-1 by dermal fibroblasts through the induction of ER stress. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:582-588. [PMID: 37337400 DOI: 10.1111/phpp.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND We previously reported that the level of mitochondrial ubiquitin ligase (MITOL) protein in fibroblasts was decreased by UVA and that the knock-down (KD) of MITOL increased the secretion of matrix metalloprotease-1 (MMP-1) by fibroblasts. A recent study reported that MITOL suppresses endoplasmic reticulum (ER) stress by stabilizing the interaction between ER and mitochondria (MT) through the ubiquitination of mitofusin 2. These facts suggest that a decrease of MITOL would increase the secretion of MMP-1 through ER stress, but the detailed mechanism of that process in dermal fibroblasts remains unclear. Thus, this study was conducted to clarify the involvement of ER stress in the oversecretion of MMP-1 induced by the decreased MT quality caused by MITOL-KD. METHODS MITOL-KD normal human dermal fibroblast (NHDFs) were prepared by treating them with MITOL-small interfering RNA, after which their MMP-1 protein levels were measured. ER stress in NHDFs was evaluated by measuring the mRNA levels of spliced X-box binding protein 1 (sXBP1) and the protein levels of inositol-requiring enzyme 1α (IRE1α). RESULTS MITOL-KD NHDFs enhanced the secretion of MMP-1 via interleukin-6 (IL-6) elicited by the activation of nuclear factor-kappa B (NF-κB). The secretion of MMP-1 could be abrogated by a neutralizing IL-6 antibody and by JSH23, which is an inhibitor of NF-κB activation. Furthermore, MITOL-KD NHDFs as well as UVA-irradiated NHDFs showed increased ER stress levels. In addition, tunicamycin, which is an inducer of ER stress, also increased MMP-1 secretion. CONCLUSION These results suggested that the decrease of MITOL caused the oversecretion of MMP-1 via NF-κB-IL-6 signaling through the activation of ER stress in fibroblasts.
Collapse
Affiliation(s)
| | | | - Hitoshi Masaki
- CIEL CO., LTD, Sagamihara, Japan
- Research Institute for Human Health Science, Konan University, Kobe, Japan
| |
Collapse
|
3
|
Singaravelu I, Spitz H, Mahoney M, Dong Z, Kotagiri N. Antiandrogen Therapy Radiosensitizes Androgen Receptor-Positive Cancers to 18F-FDG. J Nucl Med 2022; 63:1177-1183. [PMID: 34772792 PMCID: PMC9364347 DOI: 10.2967/jnumed.121.262958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
A subset (35%) of triple-negative breast cancers (TNBCs) expresses androgen receptor (AR) activity. However, clinical trials with antiandrogen drugs have shown limited efficacy, with about a 19% clinical benefit rate. We investigated the therapeutic enhancement of antiandrogens as radiosensitizers in combination with 18F-FDG in TNBC. Methods: We screened 5 candidate drugs to evaluate shared toxicity when combined with either 18F-FDG, x-rays, or ultraviolet radiation, at doses below their respective half-maximal inhibitory concentrations. Cytotoxic enhancement of antiandrogen in combination with 18F-FDG was evaluated using cell proliferation and DNA damage assays. Finally, the therapeutic efficacy of the combination treatment was evaluated in mouse tumor models of TNBC and prostate cancer. Results: Bicalutamide, an antiandrogen drug, was found to share similar toxicity in combination with either 18F-FDG or x-rays, indicating its sensitivity as a radiosensitizer to 18F-FDG. Cell proliferation assays demonstrated selective toxicity of combination bicalutamide-18F-FDG in AR-positive 22RV1 and MDA-MB-231 cells in comparison to AR-negative PC3 cells. Quantitative DNA damage and cell cycle arrest assays further confirmed radiation-induced damage to cells, suggesting the role of bicalutamide as a radiosensitizer to 18F-FDG-mediated radiation damage. Animal studies in MDA-MB-231, 22RV1, and PC3 mouse tumor models demonstrated significant attenuation of tumor growth through combination of bicalutamide and 18F-FDG in the AR-positive model in comparison to the AR-negative model. Histopathologic examination corroborated the in vitro and in vivo data and confirmed the absence of off-target toxicity to vital organs. Conclusion: These data provide evidence that 18F-FDG in conjunction with antiandrogens serving as radiosensitizers has utility as a radiotherapeutic agent in the ablation of AR-positive cancers.
Collapse
Affiliation(s)
- Indulekha Singaravelu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Henry Spitz
- Department of Nuclear and Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Mary Mahoney
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Zhongyun Dong
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
When Endoplasmic Reticulum Proteostasis Meets the DNA Damage Response. Trends Cell Biol 2020; 30:881-891. [PMID: 33036871 DOI: 10.1016/j.tcb.2020.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology.
Collapse
|
5
|
Uhlemeyer C, Müller N, Grieß K, Wessel C, Schlegel C, Kuboth J, Belgardt BF. ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells. PLoS One 2020; 15:e0237669. [PMID: 32810137 PMCID: PMC7437460 DOI: 10.1371/journal.pone.0237669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta cell death is a hallmark of type 1 and 2 diabetes (T1D/T2D), but the underlying molecular mechanisms are incompletely understood. Key proteins of the DNA damage response (DDR), including tumor protein P53 (P53, also known as TP53 or TRP53 in rodents) and Ataxia Telangiectasia Mutated (ATM), a kinase known to act upstream of P53, have been associated with T2D. Here we test and compare the effect of ATM and P53 ablation on beta cell survival in the rat beta cell line Ins1E. We demonstrate that ATM and P53 differentially regulate beta cell apoptosis induced upon fundamentally different types of diabetogenic beta cell stress, including DNA damage, inflammation, lipotoxicity and endoplasmic reticulum (ER) stress. DNA damage induced apoptosis by treatment with the commonly used diabetogenic agent streptozotocin (STZ) is regulated by both ATM and P53. We show that ATM is a key STZ induced activator of P53 and that amelioration of STZ induced cell death by inhibition of ATM mainly depends on P53. While both P53 and ATM control lipotoxic beta cell apoptosis, ATM but not P53 fails to alter inflammatory beta cell death. In contrast, tunicamycin induced (ER stress associated) apoptosis is further increased by ATM knockdown or inhibition, but not by P53 knockdown. Our results reveal differential roles for P53 and ATM in beta cell survival in vitro in the context of four key pathophysiological types of diabetogenic beta cell stress, and indicate that ATM can use P53 independent signaling pathways to modify beta cell survival, dependent on the cellular insult.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Corinna Wessel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Osada H. Special issue: Nucleoside antibiotics, polyoxin and beyond. J Antibiot (Tokyo) 2019; 72:853-854. [PMID: 31772387 DOI: 10.1038/s41429-019-0238-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroyuki Osada
- Chemical Biology Research Group RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Chiu HW, Yeh YL, Ho SY, Wu YH, Wang BJ, Huang WJ, Ho YS, Wang YJ, Chen LC, Tu SH. A New Histone Deacetylase Inhibitor Enhances Radiation Sensitivity through the Induction of Misfolded Protein Aggregation and Autophagy in Triple-Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11111703. [PMID: 31683883 PMCID: PMC6896096 DOI: 10.3390/cancers11111703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Radiation therapy (RT) is one of the main treatments for triple-negative breast cancer (TNBC). However, many patients experience RT failure due to the metastatic potential of RT and the radiation resistance of several cancers. Histone deacetylase inhibitors (HDACis) can serve as radiosensitizers. In this study, we investigated whether a novel HDACi, TMU-35435, could reinforce radiosensitivity through the induction of misfolded protein aggregation and autophagy in TNBC. Significantly enhanced toxicity was found for the combination treatment compared with TMU-35435 or irradiation (IR) treatment alone in TNBC cells. The combination treatment induced misfolded protein aggregation and TMU-35435 inhibited the interaction of HDAC6 with dynein. Furthermore, the combined treatment induced endoplasmic reticulum (ER) stress but did not trigger apoptosis. In addition, the combination treatment caused autophagic cell death. Tumor growth in the mouse of model orthotopic breast cancer was suppressed by the combination treatment through the induction of ER stress and autophagy. These findings support the future evaluation of the novel HDACi TMU-35435, as a potent radiosensitizer in TNBC.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan 71004, Taiwan.
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Yuan-Hua Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Bour-Jr Wang
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
8
|
Zhao Y, Cao Q, He Y, Xue Q, Xie L, Yan Y. Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:587-594. [PMID: 28162804 DOI: 10.1016/j.envpol.2017.01.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
9
|
Papaioannou A, Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr Top Microbiol Immunol 2017; 414:159-192. [PMID: 28710693 DOI: 10.1007/82_2017_36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Avenue de la bataille Flandres Dunkerque, 35000, Rennes, France
| | - Eric Chevet
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.
| |
Collapse
|
10
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer 2016; 15:46. [PMID: 27286975 PMCID: PMC4902929 DOI: 10.1186/s12943-016-0531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive and invasive of the breast cancer subtypes. TNBC is a challenging disease that lacks targets for treatment. Histone deacetylase inhibitors (HDACi) are a group of targeted anticancer agents that enhance radiosensitivity. Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a member of the Bcl-2 subfamily. BNIP3 is not found in normal breast tissue but is up-regulated in breast cancer. In the present study, we investigated the anti-cancer effects of a newly developed HDACi, YCW1, combined with ionizing radiation (IR) in TNBC in vitro and in an orthotopic mouse model. Furthermore, we examined the relationship between autophagy and BNIP3. Methods Trypan blue exclusion was used to investigate the viability of 4 T1 (a mouse TNBC cell line) and MDA-MB-231 cells (a human TNBC cell line) following combined YCW1 and IR treatment. Flow cytometry was used to determine apoptosis and autophagy. The expression levels of BNIP3, endoplasmic reticulum (ER) stress- and autophagic-related proteins were measured using western blot analysis. An orthotopic mouse model was used to investigate the in vivo effects of YCW1 and IR alone and in combination. Tumor volumes were monitored using a bioluminescence-based IVIS Imaging System 200. Results We found that YCW1 significantly enhanced toxicity in 4 T1 cells compared with suberoylanilide hydroxamic acid (SAHA), which was the first HDACi approved by the Food and Drug Administration for clinical use in cancer patients. The combined treatment of YCW1 and IR enhanced cytotoxicity by inducing ER stress and increasing autophagy induction. Additionally, the combined treatment caused autophagic flux and autophagic cell death. Furthermore, the expression level of BNIP3 was significantly decreased in cells following combined treatment. The downregulation of BNIP3 led to a significant increase in autophagy and cytotoxicity. The combined anti-tumor effects of YCW1 and IR were also observed in an orthotopic mouse model; combination therapy resulted in a significant increase in autophagy and decreased tumor tissue expression of BNIP3 in the tumor tissue. Conclusions These data support the possibility of using a combination of HDACi and IR in the treatment of TNBC. Moreover, BNIP3 may be a potential target protein for TNBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0531-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Chang Jung Christian University, Tainan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer 2016; 2:252-262. [PMID: 28741511 DOI: 10.1016/j.trecan.2016.03.007] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
Tumor cells are often exposed to intrinsic and external factors that alter protein homeostasis, thus producing endoplasmic reticulum (ER) stress. To cope with this, cells evoke an adaptive mechanism to restore ER proteostasis known as the unfolded protein response (UPR). The three main UPR signaling branches initiated by IRE1α, PERK, and ATF6 are crucial for tumor growth and aggressiveness as well as for microenvironment remodeling or resistance to treatment. We provide a comprehensive overview of the contribution of the UPR to cancer biology and the acquisition of malignant characteristics, thus highlighting novel aspects including inflammation, invasion and metastasis, genome instability, resistance to chemo/radiotherapy, and angiogenesis. The therapeutic potential of targeting ER stress signaling in cancer is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Tony Avril
- Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labellisée (ERL) 440-Oncogenesis, Stress, and Signaling, University of Rennes 1, 35000 Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labellisée (ERL) 440-Oncogenesis, Stress, and Signaling, University of Rennes 1, 35000 Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
12
|
Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 2016; 7:e2127. [PMID: 26938301 PMCID: PMC4823927 DOI: 10.1038/cddis.2015.409] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress.
Collapse
Affiliation(s)
- E Datan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S G Roy
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Germain
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - N Zali
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - J E McLean
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Golshan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S Harbajan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - R A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - Z Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| |
Collapse
|
13
|
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife 2015; 4. [PMID: 26329458 PMCID: PMC4595745 DOI: 10.7554/elife.09800] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. Agouti related protein (AGRP)-expressing neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed Proopiomelanocortin (POMC)-expressing neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders. DOI:http://dx.doi.org/10.7554/eLife.09800.001 Humans and other animals must get adequate nutrition in order to survive. As a result, the body has several systems that work side by side to maintain a healthy body weight and ensure that enough food gets eaten to provide the energy that the body needs. Problems with these systems can contribute towards obesity and other eating disorders. Certain types of cells in the brain play important roles in controlling weight and appetite, although the genes and cellular mechanisms that underlie these abilities are not well understood. When an animal is deprived of food, so-called AGRP neurons produce molecules that increase appetite and make it easier to gain weight. These neurons also go through structural changes and increase their electrical activity during weight loss. Another group of cells, called the POMC neurons, becomes less active when an animal is deprived of energy. Using a technique called cell type-specific transcriptomics, Henry, Sugino et al. have now revealed that the expression of hundreds of genes in AGRP and POMC neurons changes depending on whether mice are well fed or food deprived. Food deprivation also affects more genes in AGRP neurons than has been seen in other types of brain cell, and the AGRP neurons are also more sensitive to a change in food intake than POMC neurons. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. Henry, Sugino et al. then mapped how these changes in gene expression trigger molecular “pathways” in the neurons that alter how the cells work. These affect many parts of the cells, including ion channels, transcription factors, receptors, and secreted proteins. In addition, food deprivation activated pathways in AGRP neurons that protect the cells from damage and death caused by elevated neuron activity and also triggered signaling pathways that increase body weight. In the future, this gene expression data and knowledge of the pathways affected by the genes could help researchers to develop new treatments for obesity and other disorders that affect appetite. DOI:http://dx.doi.org/10.7554/eLife.09800.002
Collapse
Affiliation(s)
- Fredrick E Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Adam Tozer
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tiago Branco
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
14
|
Chiu HW, Lin SW, Lin LC, Hsu YH, Lin YF, Ho SY, Wu YH, Wang YJ. Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 2015; 365:229-39. [PMID: 26052093 DOI: 10.1016/j.canlet.2015.05.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023]
Abstract
Ninety percent of human pancreatic cancer is characterized by activating K-RAS mutations. TRAF6 is an oncogene that plays a vital role in K-RAS-mediated oncogenesis. We investigated the synergistic effect of combining ionizing radiation (IR) and proteasome inhibitor (MG132). Furthermore, following combined treatment with IR and MG132, we analyzed the expression of TRAF6 and the mechanism of human pancreatic cancer cell death in vitro and in an orthotopic pancreatic cancer mouse model. The combined treatment groups displayed synergistic cell killing effects and induced endoplasmic reticulum stress in human pancreatic cancer cells. The combined treatment groups were characterized by enhanced cytotoxicity, which resulted from increased autophagy induction through the inhibition of TRAF6. Significantly reduced cytotoxicity was observed following MG132 and IR treatment of MIA PaCa-2 cells pre-treated with 3-MA (an autophagy inhibitor). Down-regulation of TRAF6 led to a significant increase in apoptosis and autophagy. In an orthotopic xenograft model of SCID mice, combination MG132 and IR therapy resulted in a significant increase in the tumor growth delay time and a decreased tumor tissue expression of TRAF6. IR combined with a proteasome inhibitor or TRAF6 inhibition could represent a new therapeutic strategy for human pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wen Lin
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chang Jung Christian University, Tainan, Taiwan
| | - Yuan-Hua Wu
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov 2015; 5:586-97. [PMID: 25977222 DOI: 10.1158/2159-8290.cd-14-1490] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/28/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Stress induced by the accumulation of unfolded proteins in the endoplasmic reticulum (ER) is observed in many human diseases, including cancers. Cellular adaptation to ER stress is mediated by the unfolded protein response (UPR), which aims at restoring ER homeostasis. The UPR has emerged as a major pathway in remodeling cancer gene expression, thereby either preventing cell transformation or providing an advantage to transformed cells. UPR sensors are highly regulated by the formation of dynamic protein scaffolds, leading to integrated reprogramming of the cells. Herein, we describe the regulatory mechanisms underlying UPR signaling upon cell intrinsic or extrinsic challenges, and how they engage cell transformation programs and/or provide advantages to cancer cells, leading to enhanced aggressiveness or chemoresistance. We discuss the emerging cross-talk between the UPR and related metabolic processes to ensure maintenance of protein homeostasis and its impact on cell transformation and tumor growth. SIGNIFICANCE ER stress signaling is dysregulated in many forms of cancer and contributes to tumor growth as a survival factor, in addition to modulating other disease-associated processes, including cell migration, cell transformation, and angiogenesis. Evidence for targeting the ER stress signaling pathway as an anticancer strategy is compelling, and novel agents that selectively inhibit the UPR have demonstrated preliminary evidence of preclinical efficacy with an acceptable safety profile.
Collapse
Affiliation(s)
- Eric Chevet
- Oncogenesis, Stress, Cancer, University of Rennes, Rennes, France. Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts.
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
16
|
Dufey E, Urra H, Hetz C. ER proteostasis addiction in cancer biology: Novel concepts. Semin Cancer Biol 2015; 33:40-7. [PMID: 25931388 DOI: 10.1016/j.semcancer.2015.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/22/2023]
Abstract
Endoplasmic reticulum (ER) stress is generated by various physiological and pathological conditions that induce an accumulation of misfolded proteins in its lumen. ER stress activates the unfolded protein response (UPR), an adaptive reaction to cope with protein misfolding to and restore proteostasis. However, chronic ER stress results in apoptosis. In solid tumors, the UPR mediates adaptation to various environmental stressors, including hypoxia, low in pH and low nutrients availability, driving positive selection. Recent findings support the concept that UPR signaling also contributes to other relevant cancer-related event that may not be related to ER stress, including angiogenesis, genomic instability, metastasis and immunomodulation. In this article, we overview novel discoveries highlighting the impact of the UPR to different aspects of cancer biology beyond its known role as a survival factor to the hypoxic environment observed in solid tumors.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wang F, Wu Y, Gu H, Reece EA, Fang S, Gabbay-Benziv R, Aberdeen G, Yang P. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome. Diabetes 2015; 64:973-88. [PMID: 25249581 PMCID: PMC4338585 DOI: 10.2337/db14-0409] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is activated by various stresses. The link between ASK1 activation and endoplasmic reticulum (ER) stress, two causal events in diabetic embryopathy, has not been determined. We sought to investigate whether ASK1 is involved in the unfolded protein response (UPR) that leads to ER stress. Deleting Ask1 abrogated diabetes-induced UPR by suppressing phosphorylation of inositol-requiring enzyme 1α (IRE1α), and double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) blocked the mitochondrial translocation of proapoptotic Bcl-2 members and ER stress. ASK1 participated in the IRE1α signalosome, and removing ASK1 abrogated the proapoptotic kinase activity of IRE1α. Ask1 deletion suppressed diabetes-induced IRE1α endoriboneclease activities, which led to X-box binding protein 1 mRNA cleavage, an ER stress marker, decreased expression of microRNAs, and increased expression of a miR-17 target, thioredoxin-interacting protein (Txnip), a thioredoxin binding protein, which enhanced ASK1 activation by disrupting the thioredoxin-ASK1 complexes. ASK1 is essential for the assembly and function of the IRE1α signalosome, which forms a positive feedback loop with ASK1 through Txnip. ASK1 knockdown in C17.2 neural stem cells diminished high glucose- or tunicamycin-induced IRE1α activation, which further supports our hypothesis that ASK1 plays a causal role in diabetes-induced ER stress and apoptosis.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Yanqing Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Hui Gu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Shengyun Fang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Graham Aberdeen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF, Sheffield VC. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest 2014; 124:1956-65. [PMID: 24691439 DOI: 10.1172/jci69774] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/22/2022] Open
Abstract
Administration of glucocorticoids induces ocular hypertension in some patients. If untreated, these patients can develop a secondary glaucoma that resembles primary open-angle glaucoma (POAG). The underlying pathology of glucocorticoid-induced glaucoma is not fully understood, due in part to lack of an appropriate animal model. Here, we developed a murine model of glucocorticoid-induced glaucoma that exhibits glaucoma features that are observed in patients. Treatment of WT mice with topical ocular 0.1% dexamethasone led to elevation of intraocular pressure (IOP), functional and structural loss of retinal ganglion cells, and axonal degeneration, resembling glucocorticoid-induced glaucoma in human patients. Furthermore, dexamethasone-induced ocular hypertension was associated with chronic ER stress of the trabecular meshwork (TM). Similar to patients, withdrawal of dexamethasone treatment reduced elevated IOP and ER stress in this animal model. Dexamethasone induced the transcriptional factor CHOP, a marker for chronic ER stress, in the anterior segment tissues, and Chop deletion reduced ER stress in these tissues and prevented dexamethasone-induced ocular hypertension. Furthermore, reduction of ER stress in the TM with sodium 4-phenylbutyrate prevented dexamethasone-induced ocular hypertension in WT mice. Our data indicate that ER stress contributes to glucocorticoid-induced ocular hypertension and suggest that reducing ER stress has potential as a therapeutic strategy for treating glucocorticoid-induced glaucoma.
Collapse
|
19
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Chen YA, Chiou YS, Ho SY, Lin P, Wang YJ. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS One 2013; 8:e76340. [PMID: 24130769 PMCID: PMC3794942 DOI: 10.1371/journal.pone.0076340] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/22/2013] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-An Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Yi-Shiou Chiou
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Pinpin Lin
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (PL); (YJW)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
- * E-mail: (PL); (YJW)
| |
Collapse
|
20
|
Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci 2013; 14:15931-58. [PMID: 23912235 PMCID: PMC3759894 DOI: 10.3390/ijms140815931] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022] Open
Abstract
Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment.
Collapse
|
21
|
Suzuki K, Gerelchuluun A, Hong Z, Sun L, Zenkoh J, Moritake T, Tsuboi K. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro Oncol 2013; 15:1186-99. [PMID: 23658321 DOI: 10.1093/neuonc/not062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. METHODS Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic and hypoxic conditions. Radiosensitizing effects were analyzed by clonogenic survival assays and cell growth assays and by assessing apoptosis and autophagy. Expression of apoptosis-, autophagy-, and endoplasmic reticulum (ER) stress-related genes was analyzed by immunoblotting. RESULTS Celecoxib significantly enhanced the radiosensitivity of GBM cells under both normoxic and hypoxic conditions. In addition, combined treatment with celecoxib and γ-irradiation induced marked autophagy, particularly in hypoxic cells. The mechanism underlying the radiosensitizing effect of celecoxib was determined to be ER stress loading on GBM cells. CONCLUSION Celecoxib enhances the radiosensitivity of GBM cells by a mechanism that is different from cyclooxygenase-2 inhibition. Our results indicate that celecoxib may be a promising radiosensitizing drug for clinical use in patients with GBM.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Thomas SE, Malzer E, Ordóñez A, Dalton LE, van T Wout EFA, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress. J Biol Chem 2013; 288:7606-7617. [PMID: 23341460 PMCID: PMC3597802 DOI: 10.1074/jbc.m112.424655] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/04/2013] [Indexed: 01/25/2023] Open
Abstract
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.
Collapse
Affiliation(s)
- Sally E Thomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elke Malzer
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - Adriana Ordóñez
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Lucy E Dalton
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Emily F A van T Wout
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Liniker
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - David A Lomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
23
|
Wang Q, Franks HA, Lax SJ, El Refaee M, Malecka A, Shah S, Spendlove I, Gough MJ, Seedhouse C, Madhusudan S, Patel PM, Jackson AM. The ataxia telangiectasia mutated kinase pathway regulates IL-23 expression by human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3246-55. [PMID: 23460736 DOI: 10.4049/jimmunol.1201484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Little is known of the regulation of IL-23 secretion in dendritic cells (DC) despite its importance for human Th17 responses. In this study, we show for first time, to our knowledge, that the ataxia telangiectasia mutated (ATM) pathway, involved in DNA damage sensing, acts as an IL-23 repressor. Inhibition of ATM with the highly selective antagonist KU55933 markedly increased IL-23 secretion in human monocyte-derived DC and freshly isolated myeloid DC. In contrast, inhibiting the closely related mammalian target of rapamycin had no effect on IL-23. Priming naive CD4(+) T cells with ATM-inhibited DC increased Th17 responses over and above those obtained with mature DC. Although ATM blockade increased the abundance of p19, p35, and p40 mRNA, IL-12p70 secretion was unaffected. To further examine a role for ATM in IL-23 regulation, we exposed DC to low doses of ionizing radiation. Exposure of DC to x-rays resulted in ATM phosphorylation and a corresponding depression of IL-23. Importantly, ATM inhibition with KU55933 prevented radiation-induced ATM phosphorylation and abrogated the capacity of x-rays to suppress IL-23. To explore how ATM repressed IL-23, we examined a role for endoplasmic reticulum stress responses by measuring generation of the spliced form of X-box protein-1, a key endoplasmic reticulum stress transcription factor. Inhibition of ATM increased the abundance of X-box protein-1 mRNA, and this was followed 3 h later by increased peak p19 transcription and IL-23 release. In summary, ATM activation or inhibition, respectively, inhibited or augmented IL-23 release. This novel role of the ATM pathway represents a new therapeutic target in autoimmunity and vaccine development.
Collapse
Affiliation(s)
- Qunwei Wang
- Host:Tumour Interactions Group, Academic Unit of Clinical Oncology, University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012; 7:e40462. [PMID: 22802963 PMCID: PMC3389026 DOI: 10.1371/journal.pone.0040462] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
Collapse
|
25
|
Panganiban RAM, Day RM. Hepatocyte growth factor in lung repair and pulmonary fibrosis. Int J Radiat Biol 2010; 89:656-67. [PMID: 21131996 DOI: 10.3109/09553002.2012.711502] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pulmonary remodeling is characterized by the permanent and progressive loss of the normal alveolar architecture, especially the loss of alveolar epithelial and endothelial cells, persistent proliferation of activated fibroblasts, or myofibroblasts, and alteration of extracellular matrix. Hepatocyte growth factor (HGF) is a pleiotropic factor, which induces cellular motility, survival, proliferation, and morphogenesis, depending upon the cell type. In the adult, HGF has been demonstrated to play a critical role in tissue repair, including in the lung. Administration of HGF protein or ectopic expression of HGF has been demonstrated in animal models of pulmonary fibrosis to induce normal tissue repair and to prevent fibrotic remodeling. HGF-induced inhibition of fibrotic remodeling may occur via multiple direct and indirect mechanisms including the induction of cell survival and proliferation of pulmonary epithelial and endothelial cells, and the reduction of myofibroblast accumulation.
Collapse
Affiliation(s)
- Ronald Allan M Panganiban
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, MD 20852, USA
| | | |
Collapse
|
26
|
Schleicher SM, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: Implications for future therapeutic approaches. Drug Resist Updat 2010; 13:79-86. [DOI: 10.1016/j.drup.2010.04.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022]
|
27
|
Passarella RJ, Spratt DE, van der Ende AE, Phillips JG, Wu H, Sathiyakumar V, Zhou L, Hallahan DE, Harth E, Diaz R. Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors. Cancer Res 2010; 70:4550-9. [PMID: 20484031 DOI: 10.1158/0008-5472.can-10-0339] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To capitalize on the response of tumor cells to XRT, we developed a controlled-release nanoparticle drug delivery system using a targeting peptide that recognizes a radiation-induced cell surface receptor. Phage display biopanning identified Gly-Ile-Arg-Leu-Arg-Gly (GIRLRG) as a peptide that selectively recognizes tumors responding to XRT. Membrane protein extracts of irradiated glioma cells identified glucose-regulated protein GRP78 as the receptor target for GIRLRG. Antibodies to GRP78 blocked the binding of GIRLRG in vitro and in vivo. Conjugation of GIRLRG to a sustained-release nanoparticle drug delivery system yielded increased paclitaxel concentration and apoptosis in irradiated breast carcinomas for up to 3 weeks. Compared with controls, a single administration of the GIRLRG-targeted nanoparticle drug delivery system to irradiated tumors delayed the in vivo tumor tripling time by 55 days (P = 0.0001) in MDA-MB-231 and 12 days in GL261 (P < 0.005). This targeting agent combines a novel recombinant peptide with a paclitaxel-encapsulating nanoparticle that specifically targets irradiated tumors, increasing apoptosis and tumor growth delay in a manner superior to known chemotherapy approaches.
Collapse
Affiliation(s)
- Ralph J Passarella
- Department of Radiation Oncology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|