1
|
Skoptsova AA, Geronikaki A, Novichikhina NP, Sulimov AV, Ilin IS, Sulimov VB, Bykov GA, Podoplelova NA, Pyankov OV, Shikhaliev KS. Design, Synthesis, and Evaluation of New Hybrid Derivatives of 5,6-Dihydro-4 H-pyrrolo[3,2,1- ij]quinolin-2(1 H)-one as Potential Dual Inhibitors of Blood Coagulation Factors Xa and XIa. Molecules 2024; 29:373. [PMID: 38257286 PMCID: PMC10818416 DOI: 10.3390/molecules29020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases caused by blood coagulation system disorders are one of the leading causes of morbidity and mortality in the world. Research shows that blood clotting factors are involved in these thrombotic processes. Among them, factor Xa occupies a key position in the blood coagulation cascade. Another coagulation factor, XIa, is also a promising target because its inhibition can suppress thrombosis with a limited contribution to normal hemostasis. In this regard, the development of dual inhibitors as new generation anticoagulants is an urgent problem. Here we report the synthesis and evaluation of novel potential dual inhibitors of coagulation factors Xa and XIa. Based on the principles of molecular design, we selected a series of compounds that combine in their structure fragments of pyrrolo[3,2,1-ij]quinolin-2-one and thiazole, connected through a hydrazine linker. The production of new hybrid molecules was carried out using a two-stage method. The reaction of 5,6-dihydropyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide gave the corresponding hydrazinocarbothioamides. The reaction of the latter with DMAD led to the target methyl 2-(4-oxo-2-(2-(2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates in high yields. In vitro testing of the synthesized molecules revealed that ten of them showed high inhibition values for both the coagulation factors Xa and XIa, and the IC50 value for some compounds was also assessed. The resulting structures were also tested for their ability to inhibit thrombin.
Collapse
Affiliation(s)
- Anna A. Skoptsova
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nadezhda P. Novichikhina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| | - Alexey V. Sulimov
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Ivan S. Ilin
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Vladimir B. Sulimov
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Georgii A. Bykov
- Department of Biophysics at the Faculty of Physics, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | | | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| |
Collapse
|
2
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
3
|
Wu F, Zhang H, Zhou J, Wu J, Tong D, Chen X, Huang Y, Shi H, Yang Y, Ma G, Yao C, Du A. The trypsin inhibitor-like domain is required for a serine protease inhibitor of Haemonchus contortus to inhibit host coagulation. Int J Parasitol 2021; 51:1015-1026. [PMID: 34126100 DOI: 10.1016/j.ijpara.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Haemonchus contortus, a blood-feeding nematode, inhibits blood coagulation at the site of infection to facilitate blood-sucking and digesting for successful parasitism. However, the mechanism underlying anti-coagulation at the host-parasite interface is largely unknown. In the current study, Hc-spi-i8, which has two greatly different transcripts named Hc-spi-i8a and Hc-spi-i8b, respectively, was described. Hc-SPI-I8A was a serine protease inhibitor containing a trypsin inhibitor-like cysteine rich (TIL) domain, while Hc-SPI-I8B was not. Hc-SPI-I8A/B were primarily expressed in the hypodermis, intestines and gonads in the parasitic stages of H. contortus. Hc-SPI-I8A interacted with Ovis aries TSP1-containing protein (OaTSP1CP), which was determined by yeast two-hybrid, co-immunoprecipitation (Co-IP), pull down and co-localization experiments. The blood clotting time contributed by the TIL domain was prolonged by Hc-SPI-I8A. Hc-SPI-I8A is most likely interfering in the extrinsic coagulation cascade by interacting with OaTSP1CP through its TIL domain and intrinsic coagulation cascade by an unknown mechanism. These findings depict a crucial point in the host-parasite interaction during H. contortus colonization, which should contribute to drug discovery and vaccine development in fighting against this important parasite worldwide.
Collapse
Affiliation(s)
- Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Huang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hengzhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, Trinidad and Tobago
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Host-Parasite Relationships in Porcine Ascariosis: Anticoagulant Potential of the Third Larval Stage of Ascaris suum as a Possible Survival Mechanism. Animals (Basel) 2021; 11:ani11030804. [PMID: 33805634 PMCID: PMC8002170 DOI: 10.3390/ani11030804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Ascaris suum parasitises pigs all over the world causing a disease responsible for producing reductions in weight gains and damages to several organs of the infected animals that incur huge economic losses for the swine industry. While adult worms of this parasite are located in the small intestine of the host, their larval stages migrate through the bloodstream as an evolutionary advantageous strategy within a hostile environment that confronts host responses such as blood clots formation. The aim of this work is to study the ability of A. suum larvae to inhibit blood coagulation as a possible mechanism to control blood clots formation and facilitate their migration. The results showed that these larvae inhibited host blood coagulation and possessed molecules similar to those responsible for inhibiting blood coagulation in pigs. The anticoagulant effect of A. suum larvae could constitute a potential survival mechanism for the parasite. Therefore, developing new control strategies directed at this and similar processes could avoid A. suum larval migration and the establishment of adult worms in their definitive location, which is necessary to confront the damages and economic losses produced by this parasitosis. Abstract In order to evade the response of their hosts, helminth parasites have evolved precise and highly regulated mechanisms, including migration strategies of the larval stages. In regard to porcine ascariosis caused by Ascaris suum, its infective third-stage larvae (AsL3) undergo a complex migratory route through the bloodstream of their host before establishing in the small intestine to reach maturation. Despite the benefits attributed to this migration, blood clots formation could compromise larvae survival. The aim of this work was to study the interaction between the cuticle and excretory/secretory antigens of AsL3 and the host coagulation cascade. Larvae were obtained after incubating and hatching A. suum eggs, after which the antigenic extracts were produced. Their ability to disrupt the coagulation cascade was studied using anticoagulation and chromogenic assays, and techniques based on electrophoresis. The obtained results showed that both antigenic extracts possessed anticoagulant potential, being able to inhibit the intrinsic, extrinsic and/or common pathways of the blood coagulation cascade as well as the activated factor X. Moreover, three A. suum serpin proteins were identified as candidates to inhibit this host coagulation factor. To the best of our knowledge, this study shows, for the first time, the anticoagulant potential of the infective larvae of A. suum, which could be used by the parasite as a mechanism to facilitate its invasion and survival in the host.
Collapse
|
5
|
Huang Y, Abuzeid AMI, Zhuang T, Zhu S, He L, Liu Y, Zhao Q, Chen X, Li G. Effect of Ancylostoma ceylanicum hookworm platelet inhibitor on platelet adhesion and peripheral blood mononuclear cell proliferation. Parasitol Res 2020; 119:1777-1784. [PMID: 32300877 DOI: 10.1007/s00436-020-06678-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 11/30/2022]
Abstract
Ancylostoma ceylanicum is a zoonotic parasitic nematode that can cause iron-deficiency anemia and malnutrition in humans. A. ceylanicum hookworm platelet inhibitor (Ace-HPI) can inhibit platelet aggregation in the host to facilitate blood sucking, but whether it possesses platelet adhesion inhibitory activity or immunomodulatory role is yet unknown. To explore the effect of Ace-HPI on platelet adhesion, we expressed the recombinant protein in two competent cells, BL21 (DE3) and Rosetta-gami2 (DE3), and incubated this protein with canine platelets in a 96-well microplate. Ace-HPI was used to stimulate peripheral blood mononuclear cells (PBMC) in vitro to investigate the effect on PBMC proliferation and cytokine expression. Results showed that Ace-HPI expressed in Rosetta-gami2 (DE3) strain was mostly soluble. The inhibitory effect of this protein on platelet adhesion was relatively weak (7-8%). This protein stimulated the proliferation of PBMC and promoted the expression of Treg and Th2 cytokines, such as IL-10 and IL-13. These results lay a foundation for exploring the role of Ace-HPI in hookworm disease pathogenesis and as a candidate molecule for hookworm vaccines.
Collapse
Affiliation(s)
- Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Tingting Zhuang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Shilan Zhu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Long He
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Yunqiu Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Qi Zhao
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Xiaoyu Chen
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China.
| |
Collapse
|
6
|
Abuzeid AMI, Zhou X, Huang Y, Li G. Twenty-five-year research progress in hookworm excretory/secretory products. Parasit Vectors 2020; 13:136. [PMID: 32171305 PMCID: PMC7071665 DOI: 10.1186/s13071-020-04010-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Hookworm infection is a major public health problem that threatens about 500 million people throughout tropical areas of the world. Adult hookworms survive for many years in the host intestine, where they suck blood, causing iron deficiency anemia and malnutrition. Numerous molecules, named excretory/secretory (ES) products, are secreted by hookworm adults and/or larvae to aid in parasite survival and pathobiology. Although the molecular cloning and characterization of hookworm ES products began 25 years ago, the biological role and molecular nature of many of them are still unclear. Hookworm ES products, with distinct structures and functions, have been linked to many essential events in the disease pathogenesis. These events include host invasion and tissue migration, parasite nourishment and reproduction, and immune modulation. Several of these products represent promising vaccine targets for controlling hookworm disease and therapeutic targets for many inflammatory diseases. This review aims to summarize our present knowledge about hookworm ES products, including their role in parasite biology, host-parasite interactions, and as vaccine and pharmaceutical targets and to identify research gaps and future research directions in this field.![]()
Collapse
Affiliation(s)
- Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Zhou
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Xu S, Fan F, Liu H, Cheng S, Tu M, Du M. Novel Anticoagulant Peptide from Lactoferrin Binding Thrombin at the Active Site and Exosite-I. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3132-3139. [PMID: 32064873 DOI: 10.1021/acs.jafc.9b08094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin is currently one of the important targets for the treatment and prevention of thrombosis. At present, there are few reports on the application of lactoferrin peptides in anticoagulation. In this study, a peptide with the amino acid sequence of LRPVAAEIY (LF-LR) derived from lactoferrin was shown to possess antithrombotic activity. LF-LR (5 mM) significantly prolonged activated partial thromboplastin time, prothrombin time, and thrombin time for 13.4, 1.7, and 5.1 s, respectively. It prolonged the coagulation time of fibrinogen from 15.3 ± 0.4 to 20.2 ± 0.5 s by affecting the conformation of thrombin. Using circular dichroism analysis, LF-LR can increase the α-helix content of thrombin from 25.6 to 56.7% and made the β-sheet disappear. In addition, LF-LR also quenched fluorescence of thrombin at about 346 nm (λEx = 280 nm). By means of molecular docking, it was found that LF-LR could bind to both the active site and the exosite-I of thrombin, and the combined LYS60F, TRP60D, ASP189, LYS36, and ARG77A are typical amino acids in the two domains, respectively.
Collapse
Affiliation(s)
- Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| |
Collapse
|
8
|
Dirofilaria immitis possesses molecules with anticoagulant properties in its excretory/secretory antigens. Parasitology 2020; 147:559-565. [DOI: 10.1017/s0031182020000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.
Collapse
|
9
|
Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. Parasitol Int 2020; 75:102051. [PMID: 31911156 DOI: 10.1016/j.parint.2020.102051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/01/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Helminth diseases are the ancient scourges of humans and their damages are 'silent and insidious'. Of the helminth infections, schistosomiasis and hookworm infection have a great impact. This review covers information regarding vaccine candidates against schistosomiasis and hookworms that reached at least up to the phase-1 trial and literatures regarding other vaccine candidates have been excluded. For clinical manifestations, all available literatures were included, and for epidemiology and global burden of the diseases (GBD), literatures only within 2000-2019 were included. Literatures were searched surfing various databases including PubMED, Google Scholar, and Science Direct and overall over 150 literatures were identified. Globally ~250 million people are suffering from schistosomiasis, resulting 1430 thousand DALY (disability adjusted life year) per year. On the other hand, about 1.3 billion people are infected with hookworm (HW), and according to WHO, ~878 million school-age children (SAC) are at risk. HW is estimated to cause 65,000 deaths annually, accounts for 845 thousand DALYs as well as to cause 6-35.3% loss in productivity. Despite tremendous efforts, very few anthelmintic vaccine candidates such as Na-GST-1, Na-APR-1 and Na-ASP-2 against HW, and Sm28GST/Sh28GST, Sm-p80, Sm14 and Sm-TSP-1/SmTSP-2 against schistosomiasis reached up to the clinical trials. More efforts are needed to achieve the WHO targets taken against the maladies.
Collapse
|
10
|
Co-immobilization of ACH 11 antithrombotic peptide and CAG cell-adhesive peptide onto vascular grafts for improved hemocompatibility and endothelialization. Acta Biomater 2019; 97:344-359. [PMID: 31377424 DOI: 10.1016/j.actbio.2019.07.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
Surface modification by conjugating biomolecules has been widely proved to enhance biocompatibility of small-caliber artificial vascular grafts. In this study, we aimed at developing a multifunctional vascular graft that provides not only good hemocompatibility but also in situ rapid endothelialization. Herein, a vascular graft (inner diameter ∼2 mm) was fabricated by electrospinning with poly(lactic acid-co-caprolactone) and gelatin, and then biofunctionalized with antithrombotic peptide with sequence LTFPRIVFVLG (ACH11) and cell adhesion peptide with sequence CAG through adhesive poly(dopamine) coating. We developed this graft with the synergistic properties of low thrombogenicity and rapid endothelialization. The successful grafting of both CAG and ACH11 peptides was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface micromorphology of the modified surfaces was observed by field emission scanning electron microscopy. Our results demonstrated that the multifunctional surface suppressed the denaturation of absorbed fibrinogen, hindered coagulation factor Xa activation, and inhibited platelet adhesion and aggregation. Importantly, this modified surface could selectively enhance endothelial cells adhesion, proliferation and release of nitric oxide. Upon in vivo implantation of 6 weeks, the multifunctional vascular graft showed improved patency and superior vascular endothelialization. Overall, the results effectively demonstrated that the co-immobilization of ACH11 and CAG provided a promising method for the improvement of hemocompatibility and endothelialization of vascular grafts. STATEMENT OF SIGNIFICANCE: Electrospun small-caliber vascular grafts are increasingly used to treat cardiovascular diseases. Despite their success related to their good biodegradation and mechanical strength, they have some drawbacks, such as low hemocompatibility and endothelialization. The single-function ligands are insufficient to modify surface with both good hemocompatibility and rapid endothelialization simultaneously. Therefore, we functionalized electrospun vascular graft by novel antithrombotic peptide and cell-adhesive peptide to construct superior anticoagulation and ECs-selective adhesion surface in present study. The multifunctional vascular grafts benefit for high long-term patency and rapid endothelialization.
Collapse
|
11
|
Chen F, Jiang H, Chen W, Huang G. Interaction of the synthetic antithrombotic peptide P10 with thrombin: a spectroscopy study. RSC Adv 2019; 9:18498-18505. [PMID: 35515240 PMCID: PMC9064813 DOI: 10.1039/c9ra02994j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/29/2019] [Indexed: 11/21/2022] Open
Abstract
Thrombin is a critical serine protease in the coagulation system and is widely used as a target protein for antithrombotics. Spectroscopic analysis is a simple and effective method that is used to study the interaction between small molecules and proteins. In this study, the interactions of a potential antithrombotic peptide AGFAGDDAPR (P10) with thrombin were investigated by fluorescence spectroscopy, UV-vis spectroscopy, circular dichroism, Fourier-transform infrared spectroscopy and Raman spectroscopy, respectively. The results showed that the peptide P10 bonded to thrombin via hydrogen bonding and van der Waals forces, resulting in fluorescence quenching. And, the secondary structure of thrombin changed, the β-sheet decreased, and the random coil increased. The peptide P10 bonded to proline and lysine, and changed the space structure of thrombin, resulting in inhibition of thrombin activity. The results contributed to exploration of the mechanism of this potential antithrombotic drug interaction with thrombin in order to provide a preliminary understanding of the pharmacodynamic properties of P10.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Han Jiang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Wenwei Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| | - Guangrong Huang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University Hangzhou China +86 571 8687 5628
| |
Collapse
|
12
|
Zhao J, Bai L, Muhammad K, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Construction of Hemocompatible and Histocompatible Surface by Grafting Antithrombotic Peptide ACH11 and Hydrophilic PEG. ACS Biomater Sci Eng 2019; 5:2846-2857. [DOI: 10.1021/acsbiomaterials.9b00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Lingchuang Bai
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, Mikeš L, Potěšil D, Zdráhal Z, Dvořák J, Gelnar M, Kašný M. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). ACTA ACUST UNITED AC 2018; 25:61. [PMID: 30516130 PMCID: PMC6280883 DOI: 10.1051/parasite/2018062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Background: Serpins are a superfamily of serine peptidase inhibitors that participate in the regulation of many physiological and cell peptidase-mediated processes in all organisms (e.g. in blood clotting, complement activation, fibrinolysis, inflammation, and programmed cell death). It was postulated that in the blood-feeding members of the monogenean family Diplozoidae, serpins could play an important role in the prevention of thrombus formation, activation of complement, inflammation in the host, and/or in the endogenous regulation of protein degradation. Results: In silico analysis showed that the DNA and primary protein structures of serpin from Eudiplozoon nipponicum (EnSerp1) are similar to other members of the serpin superfamily. The inhibitory potential of EnSerp1 on four physiologically-relevant serine peptidases (trypsin, factor Xa, kallikrein, and plasmin) was demonstrated and its presence in the worm’s excretory-secretory products (ESPs) was confirmed. Conclusion: EnSerp1 influences the activity of peptidases that play a role in blood coagulation, fibrinolysis, and complement activation. This inhibitory potential, together with the serpin’s presence in ESPs, suggests that it is likely involved in host-parasite interactions and could be one of the molecules involved in the control of feeding and prevention of inflammatory responses.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Michal Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Adam Norek
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic - National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jan Dvořák
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom - Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic - Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| |
Collapse
|
14
|
Ibrahim UA, Ahmed SG. Pathophysiology of bleeding diathesis in haemophilia-A: A sequential and critical appraisal of non-FVIII related haemostatic dysfunctions and their therapeutic implications. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Ramesh K, Lama D, Tan KW, Nguyen VS, Chew FT, Verma CS, Mok YK. Homologous Lympho-Epithelial Kazal-type Inhibitor Domains Delay Blood Coagulation by Inhibiting Factor X and XI with Differential Specificity. Structure 2018; 26:1178-1186.e3. [PMID: 30017565 DOI: 10.1016/j.str.2018.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022]
Abstract
Despite being initially identified in the blood filtrate, LEKTI is a 15-domain Kazal-type inhibitor mostly known in the regulation of skin desquamation. In the current study, screening of serine proteases in blood coagulation cascade showed that LEKTI domain 4 has inhibitory activity toward only FXIa, whereas LEKTI domain 6 inhibits both FXIa and FXaB (bovine FXa). Nuclear magnetic resonance structural and dynamic experiments plus molecular dynamics simulation revealed that LEKTI domain 4 has enhanced backbone flexibility at the reactive-site loop. A model of the LEKTI-protease complex revealed that FXaB has a narrower S4 pocket compared with FXIa and hence prefers only small side-chain residues at the P4 position, such as Ala in LEKTI domain 6. Mutational studies combined with a molecular complex model suggest that both a more flexible reactive-site loop and a bulky residue at the P4 position make LEKTI domain 4 a weaker but highly selective inhibitor of FXIa.
Collapse
Affiliation(s)
- Karthik Ramesh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Dilraj Lama
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Kang Wei Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Van Sang Nguyen
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore.
| | - Yu Keung Mok
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
16
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
17
|
Ibrahim UA, Ahmed SG. Determinants and modifiers of bleeding phenotypes in haemophilia-A: General and tropical perspectives. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Quan ML, Pinto DJP, Smallheer JM, Ewing WR, Rossi KA, Luettgen JM, Seiffert DA, Wexler RR. Factor XIa Inhibitors as New Anticoagulants. J Med Chem 2018; 61:7425-7447. [PMID: 29775297 DOI: 10.1021/acs.jmedchem.8b00173] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the introduction of thrombin and factor Xa inhibitors to the oral anticoagulant market, significant improvements in both efficacy and safety have been achieved. Early clinical and preclinical data suggest that inhibitors of factor XIa can provide a still safer alternative, with expanded efficacy for arterial indications. This Perspective provides an overview of target rationale and details of the discovery and development of inhibitors of factor XIa as next generation antithrombotic agents.
Collapse
Affiliation(s)
- Mimi L Quan
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Donald J P Pinto
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Joanne M Smallheer
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - William R Ewing
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Karen A Rossi
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Joseph M Luettgen
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Dietmar A Seiffert
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| | - Ruth R Wexler
- Research and Development , Bristol-Myers Squibb Company , P.O. Box 5400, Princeton , New Jersey 08543 , United States
| |
Collapse
|
19
|
|
20
|
Sundaraneedi M, Eichenberger RM, Al-Hallaf R, Yang D, Sotillo J, Rajan S, Wangchuk P, Giacomin PR, Keene FR, Loukas A, Collins JG, Pearson MS. Polypyridylruthenium(II) complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 8:1-7. [PMID: 29207309 PMCID: PMC5724747 DOI: 10.1016/j.ijpddr.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022]
Abstract
Over 4.5 billion people are at risk of infection with soil transmitted helminths and there are concerns about the development of resistance to the handful of frontline nematocides in endemic populations. We investigated the anti-nematode efficacy of a series of polypyridylruthenium(II) complexes and showed they were active against L3 and adult stages of Trichuris muris, the rodent homologue of the causative agent of human trichuriasis, T. trichiura. One of the compounds, Rubb12-mono, which was among the most potent in its ability to kill L3 (IC50 = 3.1 ± 0.4 μM) and adult (IC50 = 5.2 ± 0.3 μM) stage worms was assessed for efficacy in a mouse model of trichuriasis by administering 3 consecutive daily oral doses of the drug 3 weeks post infection with the murine whipworm Trichuris muris. Mice treated with Rubb12-mono showed an average 66% reduction (P = 0.015) in faecal egg count over two independent trials. The drugs partially exerted their activity through inhibition of acetylcholinesterases, as worms treated in vitro and in vivo showed significant decreases in the activity of this class of enzymes. Our data show that ruthenium complexes are effective against T. muris, a model gastro-intestinal nematode and soil-transmitted helminth. Further, knowledge of the target of ruthenium drugs can facilitate modification of current compounds to identify analogues which are even more effective and selective against Trichuris and other helminths of human and veterinary importance. The effect of ruthenium complexes on Trichuris muris parasites were investigated. The drugs killed L3 and adult worms in vitro at low micromolar concentrations. The compounds partially exerted activity through acetylcholinesterase inhibition. When given to infected mice, Rubb12-mono significantly reduced parasite burden.
Collapse
Affiliation(s)
- Madhu Sundaraneedi
- School of Physical, Environmental and Mathematical Sciences, UNSW (ADFA), Canberra, Australian Capital Territory, 2612, Australia
| | - Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Rafid Al-Hallaf
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Dai Yang
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Siji Rajan
- School of Physical, Environmental and Mathematical Sciences, UNSW (ADFA), Canberra, Australian Capital Territory, 2612, Australia
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - F Richard Keene
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia; School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - J Grant Collins
- School of Physical, Environmental and Mathematical Sciences, UNSW (ADFA), Canberra, Australian Capital Territory, 2612, Australia
| | - Mark S Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia.
| |
Collapse
|
21
|
Prieto-Pérez L, Pérez-Tanoira R, Cabello-Úbeda A, Petkova-Saiz E, Górgolas-Hernández-Mora M. Geohelmintos. Enferm Infecc Microbiol Clin 2016; 34:384-9. [DOI: 10.1016/j.eimc.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
22
|
Hookworm infestation is not an uncommon cause of obscure occult and overt gastrointestinal bleeding in an endemic area: A study using capsule endoscopy. Indian J Gastroenterol 2015; 34:463-7. [PMID: 26631236 DOI: 10.1007/s12664-015-0611-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023]
Abstract
Obscure gastrointestinal bleeding (OGIB), particularly occult, has been reported to be caused by hookworm infestation rarely from tropical countries, particularly India. Hence, we undertook a retrospective study evaluating frequency, clinical spectrum, and outcome of patients with OGIB associated with worm infestation. Data of consecutive patients with OGIB undergoing capsule endoscopy in a multilevel university hospital in northern India were retrospectively analyzed. Twenty-one out of 163 (13 %) patients with OGIB had hookworm infestation detected on capsule endoscopy. Of 21 patients (median age 65 years [range 19-82], 17 [81 %] male), 16 had overt and 5 had occult OGIB. Another lesion that could explain OGIB was present in 8/21 patients, 3/5 with OGIB occult, and 5/16 overt (p = ns). All the patients received treatment with albendazole and appropriate measures for the associated lesion, if any. Patients with hookworm infestation with another lesion experienced recurrent bleeding more often than those with worm infestation only. Hookworm infestation is an important cause of occult as well as overt OGIB and may be present even in association with another lesion. Those with additional lesion had recurrent bleeding more often than those with worm infestation alone.
Collapse
|
23
|
Chen M, Ye X, Ming X, Chen Y, Wang Y, Su X, Su W, Kong Y. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates. Sci Rep 2015; 5:10846. [PMID: 26035670 PMCID: PMC4451689 DOI: 10.1038/srep10846] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 11/15/2022] Open
Abstract
Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.
Collapse
Affiliation(s)
- Meimei Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xiaohui Ye
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yahui Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Ying Wang
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xingli Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Wen Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Yi Kong
- 1] School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China [2] State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
24
|
Kong Y, Shao Y, Chen H, Ming X, Wang JB, Li ZY, Wei JF. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom. Int J Pept Res Ther 2013; 19:303-311. [PMID: 24273471 PMCID: PMC3824214 DOI: 10.1007/s10989-013-9353-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2013] [Indexed: 11/26/2022]
Abstract
Centipedes have been used as traditional medicine for thousands of years in China. Centipede venoms consist of many biochemical peptides and proteins. Factor Xa (FXa) is a serine endopeptidase that plays the key role in blood coagulation, and has been used as a new target for anti-thrombotic drug development. A novel FXa inhibitor, a natural peptide with the sequence of Thr-Asn-Gly-Tyr-Thr (TNGYT), was isolated from the venom of Scolopendra subspinipesmutilans using a combination of size-exclusion and reverse-phase chromatography. The molecular weight of the TNGYT peptide was 554.3 Da measured by electrospray ionization mass spectrometry. The amino acid sequence of TNGYT was determined by Edman degradation. TNGYT inhibited the activity of FXa in a dose-dependent manner with an IC50 value of 41.14 mg/ml. It prolonged the partial thromboplastin time and prothrombin time in both in vitro and ex vivo assays. It also significantly prolonged whole blood clotting time and bleeding time in mice. This is the first report that an FXa inhibiting peptide was isolated from centipedes venom.
Collapse
Affiliation(s)
- Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Yu Shao
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 People’s Republic of China
| | - Hao Chen
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 People’s Republic of China
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jin-Bin Wang
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 People’s Republic of China
| | - Zhi-Yu Li
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 People’s Republic of China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
25
|
Pearson MS, Tribolet L, Cantacessi C, Periago MV, Valero MA, Valerio MA, Jariwala AR, Hotez P, Diemert D, Loukas A, Bethony J. Molecular mechanisms of hookworm disease: stealth, virulence, and vaccines. J Allergy Clin Immunol 2012; 130:13-21. [PMID: 22742835 DOI: 10.1016/j.jaci.2012.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
Hookworms produce a vast repertoire of structurally and functionally diverse molecules that mediate their long-term survival and pathogenesis within a human host. Many of these molecules are secreted by the parasite, after which they interact with critical components of host biology, including processes that are key to host survival. The most important of these interactions is the hookworm's interruption of nutrient acquisition by the host through its ingestion and digestion of host blood. This results in iron deficiency and eventually the microcytic hypochromic anemia or iron deficiency anemia that is the clinical hallmark of hookworm infection. Other molecular mechanisms of hookworm infection cause a systematic suppression of the host immune response to both the parasite and to bystander antigens (eg, vaccines or allergens). This is achieved by a series of molecules that assist the parasite in the stealthy evasion of the host immune response. This review will summarize the current knowledge of the molecular mechanisms used by hookworms to survive for extended periods in the human host (up to 7 years or longer) and examine the pivotal contributions of these molecular mechanisms to chronic hookworm parasitism and host clinical outcomes.
Collapse
Affiliation(s)
- Mark S Pearson
- Center for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Cairns, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Twenty-first century progress toward the global control of human hookworm infection. Curr Infect Dis Rep 2011; 13:210-7. [PMID: 21462001 DOI: 10.1007/s11908-011-0182-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hookworms are bloodsucking nematodes that afflict up to 740 million persons in tropical and subtropical regions, with Asia and sub-Saharan Africa exhibiting particularly high infection rates. Prevalence, intensity, and pathology often vary considerably at both the regional and local level, and may be influenced by coinfection with other parasitic infections such as malaria. Immunoepidemiological studies suggest that hookworms manipulate the host immune response and may provide some protection from allergy and asthma. There has been substantial progress in elucidating the molecular pathogenesis of hookworm disease, with anticoagulants, protease inhibitors, digestive proteases, and novel excretory/secretory proteins being of particular interest. Mass chemotherapy remains a mainstay of hookworm control strategies, although continued use of drugs may lead to reduced efficacy and treatment failures have been observed. Consequently, a need exists for innovative approaches, such as vaccination; recent studies have identified and/or evaluated candidate vaccine antigens in human and animal models.
Collapse
|
27
|
Jiang D, Zhan B, Mayor RS, Gillespie P, Keegan B, Bottazzi ME, Hotez P. Ac-AP-12, a novel factor Xa anticoagulant peptide from the esophageal glands of adult Ancylostoma caninum. Mol Biochem Parasitol 2011; 177:42-8. [PMID: 21251931 DOI: 10.1016/j.molbiopara.2011.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Immunoscreening an Ancylostoma caninum cDNA library with canine hookworm-infected dog serum resulted in the isolation of a 461 bp cDNA encoding Ac-AP-12, a new 9.1 kDa anticoagulant peptide (100 amino acids) with 43-69% amino acid homology to other nematode anticoagulant peptides (NAPs) from Ancylostoma hookworms. Messenger RNA transcription and expression of Ac-AP-12 was unique to the adult stage of A. caninum. The yeast expressed recombinant Ac-AP-12 demonstrated potent anticoagulant activity on human blood plasma in a concentration dependent manner, and was shown to specifically inhibit human factor Xa activity. Immunolocalization with specific rabbit antiserum showed that Ac-AP-12 was exclusively located in the esophageal glands of adult hookworm. Ac-AP-12 is hypothesized to facilitate both parasite blood feeding and digestion.
Collapse
Affiliation(s)
- Desheng Jiang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University and the Sabin Vaccine Institute, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Identification and characterization of a serine protease inhibitor with two trypsin inhibitor-like domains from the human hookworm Ancylostoma duodenale. Parasitol Res 2010; 108:287-95. [PMID: 20852886 DOI: 10.1007/s00436-010-2055-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/06/2010] [Indexed: 01/16/2023]
Abstract
Protease inhibitors play important roles in the parasitic nematodes' survival within their host, in the development and reproduction of the parasites. The present study described the isolation, identification, and characterization of a novel member of the Ascaris family of serine protease inhibitors, designated AduTIL-1, from the human hookworm Ancylostoma duodenale. AduTIL-1 is composed of a signal sequence and two trypsin inhibitor-like (TIL) domains, which showed the highest similarity with OdmCRP, a putative serine protease inhibitor with two TIL domains in Oesophagostomum dentatum. Each TIL domain of the AduTIL-1 was expressed in Escherichia coli, and their inhibitory activities against serine proteases from animals and human were characterized, respectively. Both of the two TIL domains inhibited human neutrophil elastase and pancreatic trypsin, but different in effectiveness. Although the first TIL domain of AduTIL-1 inhibited bovine pancreatic chymotrypsin (Ki=18.0 nM), both of the two domains showed no inhibitory activity against the human pancreatic chymotrypsin. Immunohistochemical studies demonstrated that AduTIL-1 was localized in esophagus, intestine, and cuticular surface of the adult worms. These results suggested that AduTIL-1 may be involved in the survival of A. duodenale in host by targeting related digestive enzymes and neutrophil elastase.
Collapse
|
29
|
Li D, He Q, Kang T, Yin H, Jin X, Li H, Gan W, Yang C, Hu J, Wu Y, Peng L. Identification of an anticoagulant peptide that inhibits both fXIa and fVIIa/tissue factor from the blood-feeding nematode Ancylostoma caninum. Biochem Biophys Res Commun 2010; 392:155-9. [PMID: 20059979 DOI: 10.1016/j.bbrc.2009.12.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
Abstract
Factor VIIa-tissue factor complex (fVIIa/TF) and factor XIa (fXIa) play important roles in the initiation and amplification of coagulation, respectively. They may be good targets for the development of novel anticoagulants to treat and prevent thromboembolic disease. In this study, we cloned, expressed and identified a novel anticoagulant peptide, AcaNAP10, from the blood-feeding nematode Ancylostoma caninum. AcaNAP10 showed potent anticoagulant activity and doubled the activated partial thromboplastin and prothrombin times at estimated concentrations of 92.9 nM and 28.8 nM, respectively. AcaNAP10 demonstrated distinct mechanisms of action compared with known anticoagulants. It inhibited fXIa and fVIIa/TF with IC(50) values of 25.76+/-1.06 nM and 123.9+/-1.71 nM, respectively. This is the first report on an anticoagulant that can inhibit both fXIa and fVIIa/TF. This anticoagulant peptide may be an alternative molecule for the development of novel anticoagulants.
Collapse
Affiliation(s)
- Deng Li
- Department of Parasitology, Guangdong Medical College, Zhanjiang 524023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|