1
|
Prest RJ, Korotkov KV, Champion PA. The regulatory functions of ESX-1 substrates, EspE and EspF, are separable from secretion. J Bacteriol 2024; 206:e0027124. [PMID: 39136451 PMCID: PMC11411940 DOI: 10.1128/jb.00271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Pathogenic mycobacteria are a significant global health burden. The ESX-1 secretion system is essential for mycobacterial pathogenesis. The secretion of ESX-1 substrates is required for phagosomal lysis, which allows the bacteria to enter the macrophage cytoplasm, induce a Type I IFN response, and spread to new host cells. EspE and EspF are dual-functioning ESX-1 substrates. Inside the mycobacterial cell, they regulate transcription of ESX-1-associated genes. Following secretion, EspE and EspF are essential for lytic activity. The link between EspE/F secretion and regulatory function has not been investigated. We investigated the relationship between EspE and EspF using molecular genetics in Mycobacterium marinum, a non-tuberculous mycobacterial species that serves as an established model for ESX-1 secretion and function in Mycobacterium tuberculosis. Our data support that EspE and EspF, which require each other for secretion, directly interact. The disruption of the predicted protein-protein interaction abrogates hemolytic activity and secretion but does not impact their gene regulatory activities in the mycobacterial cell. In addition, we predict a direct protein-protein interaction between the EsxA/EsxB heterodimer and EspF. Our data support that the EspF/EsxA interaction is also required for hemolytic activity and EspE secretion. Our study sheds light on the intricate molecular mechanisms governing the interactions between ESX-1 substrates, regulatory function, and ESX-1 secretion, moving the field forward.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis, is a historical and pervasive disease responsible for millions of deaths annually. The rise of antibiotic and treatment-resistant TB, as well as the rise of infection by non-tuberculous mycobacterial species, calls for a better understanding of pathogenic mycobacteria. The ESX-1 secreted substrates, EspE and EspF, are required for mycobacterial virulence and may be responsible for phagosomal lysis. This study focuses on the mechanism of EspE and EspF secretion from the mycobacterial cell.
Collapse
Affiliation(s)
- Rebecca J Prest
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia A Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Karpov M, Strizhov N, Novikova L, Lobastova T, Khomutov S, Shutov A, Kazantsev A, Donova M. Pregnenolone and progesterone production from natural sterols using recombinant strain of Mycolicibacterium smegmatis mc 2 155 expressing mammalian steroidogenesis system. Microb Cell Fact 2024; 23:105. [PMID: 38594656 PMCID: PMC11005228 DOI: 10.1186/s12934-024-02385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.
Collapse
Affiliation(s)
- Mikhail Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| | - Nicolai Strizhov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Ludmila Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119234, Russia
| | - Tatyana Lobastova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Sergey Khomutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Alexey Kazantsev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| |
Collapse
|
3
|
Poshekhontseva VY, Strizhov NI, Karpov MV, Nikolaeva VM, Kazantsev AV, Sazonova OI, Shutov AA, Donova MV. Expression of Synthetic cyp102A1-LG23 Gene and Functional Analysis of Recombinant Cytochrome P450 BM3-LG23 in the Actinobacterium Mycolicibacterium smegmatis. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1347-1355. [PMID: 37770401 DOI: 10.1134/s0006297923090146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/30/2023]
Abstract
Cytochrome CYP102A1 (P450 BM3) of Priestia megaterium (bas. Bacillus megaterium) has several unique functional features and thus provides an ideal object for directed evolution and other synthetic applications. Previously, the CYP102A1-LG23 mutant with 14 mutations in the heme part was obtained that hydroxylates several androstanes at C7β with the formation of products with the anti-inflammatory and neuroprotective activities. In this study, synthetic cyp102A1-LG23 gene encoding the P450 BM3 mutant was expressed as a component of either monocistronic operon or bicistronic operon containing the gdh (glucose dehydrogenase, GDH) or zwf2 (glucose 6-phosphate dehydrogenase, G6PD) gene in Mycolicibacterium smegmatis BD cells. The recombinant bacteria were able hydroxylate androst-4-ene-3,17-dione (AD) into 7β-OH-AD. Their biocatalytic activity was increased twice by increasing the solubility of CYP102A1-LG23 protein in the cells and supplementing the cells with the additional cofactor regeneration system by introducing GDH and G6PD. The maximum 7β-OH-AD yield (37.68 mol%) was achieved by co-expression of cyp102A1-LG23 and gdh genes in M. smegmatis. These results demonstrate the possibility of using synthetic genes to obtain recombinant enzymes and expand our understanding of the processes involved in steroid hydroxylation by bacterial cytochromes. The data obtained can be used to develop new approaches for microbiological production of 7β-hydroxylated steroids in genetically modified Mycolicibacterium species.
Collapse
Affiliation(s)
- Veronika Y Poshekhontseva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Nikolai I Strizhov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Mikhail V Karpov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Vera M Nikolaeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alexey V Kazantsev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Olesya I Sazonova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Andrey A Shutov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Marina V Donova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Karpov MV, Nikolaeva VM, Fokina VV, Shutov AA, Kazantsev AV, Strizhov NI, Donova MV. Creation and Functional Analysis of Mycolicibacterium smegmatis Recombinant Strains Carrying the Bacillary Cytochromes CYP106A1 and CYP106A2 Genes. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021; 10:cells10071645. [PMID: 34209120 PMCID: PMC8305481 DOI: 10.3390/cells10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
As a major effector of the ESX-1 secretion system, EsxA is essential for the virulence of pathogenic mycobacteria, such as Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). EsxA possesses an acidic pH-dependent membrane permeabilizing activity and plays an essential role by mediating mycobacterial escape from the phagosome and translocation to the cytosol for intracellular replication. Moreover, EsxA regulates host immune responses as a potent T-cell antigen and a strong immunoregulator. EsxA interacts with multiple cellular proteins and stimulates several signal pathways, such as necrosis, apoptosis, autophagy, and antigen presentation. Interestingly, there is a co-dependency in the expression and secretion of EsxA and other mycobacterial factors, which greatly increases the complexity of dissecting the precise roles of EsxA and other factors in mycobacterium-host interaction. In this review, we summarize the current understandings of the roles and functions of EsxA in mycobacterial infection and discuss the challenges and future directions.
Collapse
|
6
|
Beckham KSH, Staack S, Wilmanns M, Parret AHA. The pMy vector series: A versatile cloning platform for the recombinant production of mycobacterial proteins in Mycobacterium smegmatis. Protein Sci 2020; 29:2528-2537. [PMID: 33006405 PMCID: PMC7679961 DOI: 10.1002/pro.3962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Structural and biophysical characterization of molecular mechanisms of disease‐causing pathogens, such as Mycobacterium tuberculosis, often requires recombinant expression of large amounts highly pure protein. For the production of mycobacterial proteins, overexpression in the fast‐growing and non‐pathogenic species Mycobacterium smegmatis has several benefits over the standard Escherichia coli expression strains. However, unlike for E. coli, the range of expression vectors currently available is limited. Here we describe the development of the pMy vector series, a set of expression plasmids for recombinant production of single proteins and protein complexes in M. smegmatis. By incorporating an alternative selection marker, we show that these plasmids can also be used for co‐expression studies. All vectors in the pMy vector series are available in the Addgene repository (www.addgene.com).
Collapse
Affiliation(s)
| | - Sonja Staack
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany.,University Hamburg Clinical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
7
|
The ESX-1 Virulence Factors Downregulate miR-147-3p in Mycobacterium marinum-Infected Macrophages. Infect Immun 2020; 88:IAI.00088-20. [PMID: 32253249 DOI: 10.1128/iai.00088-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
As important virulence factors of Mycobacterium tuberculosis, EsxA and EsxB not only play a role in phagosome rupture and M. tuberculosis cytosolic translocation but also function as modulators of host immune responses by modulating numerous microRNAs (miRNAs). Recently, we have found that mycobacterial infection downregulated miR-148a-3p (now termed miR-148) in macrophages in an ESX-1-dependent manner. The upregulation of miR-148 reduced mycobacterial intracellular survival. Here, we investigated miR-147-3p (now termed miR-147), a negative regulator of inflammatory cytokines (e.g., interleukin-6 [IL-6] and IL-10), in mycobacterial infection. We infected murine RAW264.7 macrophages with Mycobacterium marinum, a surrogate model organism for M. tuberculosis, and found that the esxBA-knockout strain (M. marinum ΔesxBA) upregulated miR-147 to a level that was significantly higher than that induced by the M. marinum wild-type (WT) strain or by the M. marinum ΔesxBA complemented strain, M. marinum ΔesxBA/pesxBA, suggesting that the ESX-1 system (potentially EsxBA and/or other codependently secreted factors) is the negative regulator of miR-147. miR-147 was also downregulated by directly incubating the macrophages with the purified recombinant EsxA or EsxB protein or the EsxBA heterodimer, which further confirms the role of the EsxBA proteins in the downregulation of miR-147. The upregulation of miR-147 inhibited the production of IL-6 and IL-10 and significantly reduced M. marinum intracellular survival. Interestingly, inhibitors of either miR-147 or miR-148 reciprocally compromised the effects of the mimics of their counterparts on M. marinum intracellular survival. This suggests that miR-147 and miR-148 share converged downstream pathways in response to mycobacterial infection, which was supported by data indicating that miR-147 upregulation inhibits the Toll-like receptor 4/NF-κB pathway.
Collapse
|
8
|
Aguilera J, Karki CB, Li L, Vazquez Reyes S, Estevao I, Grajeda BI, Zhang Q, Arico CD, Ouellet H, Sun J. Nα-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence. J Biol Chem 2020; 295:5785-5794. [PMID: 32169899 PMCID: PMC7186180 DOI: 10.1074/jbc.ra119.012497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS-based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent "bind-and-release" contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.
Collapse
Affiliation(s)
- Javier Aguilera
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chitra B Karki
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Brian I Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Qi Zhang
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968.
| |
Collapse
|
9
|
Ray S, Vazquez Reyes S, Xiao C, Sun J. Effects of membrane lipid composition on Mycobacterium tuberculosis EsxA membrane insertion: A dual play of fluidity and charge. Tuberculosis (Edinb) 2019; 118:101854. [PMID: 31430698 PMCID: PMC6817408 DOI: 10.1016/j.tube.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
As a key virulence factor of Mycobacterium tuberculosis, EsxA or 6-kDa early secreted antigenic target (ESAT-6) has been implicated in phagosome rupture and mycobacterial translocation from the phagosome to the cytosol within macrophages. Our previous studies have shown that EsxA permeabilizes liposomal membrane at acidic pH and a membrane-permeabilization defective mutant Q5K attenuates mycobacterial cytosolic translocation and virulence in macrophages. To further probe the mechanism of EsxA membrane permeabilization, here we characterized the effects of various lipid compositions, including biologically relevant phagosome-mimicking lipids and lipid rafts, on the structural stability and membrane insertion of EsxA WT and Q5K. We have found a complex dual play of membrane fluidity and charge in regulating EsxA membrane insertion. Moreover, Q5K affects the membrane insertion through a structure- and lipid composition-independent mechanism. The results of this study provide a novel insights into the mechanism of EsxA membrane interaction.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA.
| |
Collapse
|
10
|
Araujo LDCT, Rodriguez-Fernández DE, Wibrantz M, Karp SG, Junior GD, Souza EMD, Soccol CR, Thomaz-Soccol V. Recovery of recombinant proteins CFP10 and ESAT6 from Escherichia coli inclusion bodies for tuberculosis diagnosis: a statistical optimization approach. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Wu H, Bao Y, Wang L, Li X, Sun J. Mycobacterium marinum down-regulates miR-148a in macrophages in an EsxA-dependent manner. Int Immunopharmacol 2019; 73:41-48. [PMID: 31078924 DOI: 10.1016/j.intimp.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
As a key virulence factor of Mycobacterium tuberculosis, EsxA is not only involved in phagosome rupture, but also functions in stimulation of immune responses in macrophages. Here, we report thatmiR-148a is down-regulated in the macrophages infected with Mycobacterium marinum (Mm). Using the knockout strain Mm∆EsxA/B, recombinant EsxA, EsxB and EsxA/B heterodimer proteins, we provide evidence that down-regulation of miR-148ais dependent on EsxA, and up-regulation of miR-148a reduces Mm intracellular survival. Moreover, up-regulation of miR-148a down-regulates the pro-inflammatory cytokines (e.g. TNF-α and IL-1β) and the TLR4-mediated NF-κB activation. Together, miR-148a may function as an anti-inflammation modulator in responses to mycobacterial infection. Regulation of miR-148a may provide a novel venue in development of therapies in tuberculosis.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; Current address: Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanqing Bao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Lin Wang
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Xiujun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
12
|
Radhakrishnan A, Furze CM, Ahangar MS, Fullam E. A GFP-strategy for efficient recombinant protein overexpression and purification in Mycobacterium smegmatis. RSC Adv 2018; 8:33087-33095. [PMID: 30319771 PMCID: PMC6180428 DOI: 10.1039/c8ra06237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
One of the major obstacles to obtaining a complete structural and functional understanding of proteins encoded by the Mycobacterium tuberculosis (Mtb) pathogen is due to significant difficulties in producing recombinant mycobacterial proteins. Recent advances that have utilised the closely related Mycobacterium smegmatis species as a native host have been effective. Here we have developed a method for the rapid screening of both protein production and purification strategies of mycobacterial proteins in whole M. smegmatis cells following green fluorescent protein (GFP) fluorescence as an indicator. We have adapted the inducible T7-promoter based pYUB1062 shuttle vector by the addition of a tobacco etch virus (TEV) cleavable C-terminal GFP enabling the target protein to be produced as a GFP-fusion with a poly-histidine tag for affinity purification. We illustrate the advantages of a fluorescent monitoring approach with the production and purification of the mycobacterial N-acetylglucosamine-6-phosphate deacetylase (NagA)-GFP fusion protein. The GFP system described here will accelerate the production of mycobacterial proteins that can be used to understand the molecular mechanisms of Mtb proteins and facilitate drug discovery efforts. A GFP-strategy to monitor protein expression and purification in Mycobacterium smegmatis to overcome the obstacle of producing recombinant mycobacterial proteins.![]()
Collapse
Affiliation(s)
- Anjana Radhakrishnan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Christopher M Furze
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Mohd Syed Ahangar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| |
Collapse
|
13
|
Abstract
Experimental methods for the characterization of protein complexes have been instrumental in achieving our current understanding of the protein universe and continue to progress with each year that passes. In this chapter, we review some of the most important tools and techniques in the field, covering the important points in X-ray crystallography, cryo-electron microscopy, NMR spectroscopy, and mass spectrometry. Novel developments are making it possible to study large protein complexes at near-atomic resolutions, and we also now have the ability to study the dynamics and assembly pathways of protein complexes across a range of sizes.
Collapse
Affiliation(s)
- Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Magaña Vergara C, Kallenberg CJL, Rogasch M, Hübner CG, Song Y. A versatile vector for mycobacterial protein production with a functional minimized acetamidase regulon. Protein Sci 2017; 26:2302-2311. [PMID: 28857325 PMCID: PMC5654848 DOI: 10.1002/pro.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022]
Abstract
Recombinant protein expression is a prerequisite for diverse investigations of proteins at the molecular level. For targets from Mycobacterium tuberculosis it is favorable to use M. smegmatis as an expression host, a species from the same genus. In the respective shuttle vectors, target gene expression is controlled by the complex tetra-cistronic acetamidase regulon. As a result, the size of those vectors is large, rendering them of limited use, especially when the target proteins are expressed from multi-cistronic operons. Therefore, in the current work we present a versatile new expression vector in which the acetamidase regulon has been minimized by deleting the two genes amiD and amiS. We assessed the functional properties of the resulting vector pMyCA and compared it with those of the existing vector pMyNT that contains the full-length acetamidase regulon. We analyzed the growth features and protein expression patterns of M. smegmatis cultures transformed with both vectors. In addition, we created mCherry expression constructs to spectroscopically monitor the expression properties of both vectors. Our experiments showed that the minimized vector exhibited several advantages over the pMyNT vector. First, the overall yield of expressed protein is higher due to the higher yield of bacterial mass. Second, the heterologous expression was regulated more tightly, offering an expression tool for diverse target proteins. Third, it is suitable for large multi-protein complexes that are expressed from multi-cistronic operons. Additionally, our results propose a new understanding of the regulation mechanism of the acetamidase regulon with the potential to construct more optimized vectors in the future.
Collapse
Affiliation(s)
| | | | - Miriam Rogasch
- Institute of Physics, University of Luebeck, Ratzeburger Allee 160Luebeck23562Germany
| | | | - Young‐Hwa Song
- Institute of Physics, University of Luebeck, Ratzeburger Allee 160Luebeck23562Germany
| |
Collapse
|
15
|
Regulation, evolution and consequences of cotranslational protein complex assembly. Curr Opin Struct Biol 2016; 42:90-97. [PMID: 27969102 DOI: 10.1016/j.sbi.2016.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Most proteins assemble into complexes, which are involved in almost all cellular processes. Thus it is crucial for cell viability that mechanisms for correct assembly exist. The timing of assembly plays a key role in determining the fate of the protein: if the protein is allowed to diffuse into the crowded cellular milieu, it runs the risk of forming non-specific interactions, potentially leading to aggregation or other deleterious outcomes. It is therefore expected that strong regulatory mechanisms should exist to ensure efficient assembly. In this review we discuss the cotranslational assembly of protein complexes and discuss how it occurs, ways in which it is regulated, potential disadvantages of cotranslational interactions between proteins and the implications for the inheritance of dominant-negative genetic disorders.
Collapse
|
16
|
Milewski MC, Broger T, Kirkpatrick J, Filomena A, Komadina D, Schneiderhan-Marra N, Wilmanns M, Parret AHA. A standardized production pipeline for high profile targets from Mycobacterium tuberculosis. Proteomics Clin Appl 2016; 10:1049-1057. [PMID: 27400835 PMCID: PMC5095800 DOI: 10.1002/prca.201600033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
Abstract
Purpose Tuberculosis is still a major threat to global health. New tools and strategies to produce disease‐related proteins are quintessential for the development of novel vaccines and diagnostic markers. Experimental design To obtain recombinant proteins from Mycobacterium tuberculosis (Mtb) for use in clinical applications, a standardized procedure was developed that includes subcloning, protein expression in Mycobacterium smegmatis and protein purification using chromatography. The potential for the different protein targets to serve as diagnostic markers for tuberculosis was established using multiplex immunoassays. Results Twelve soluble proteins from Mtb, including one protein complex, were purified to near‐homogeneity following recombinant expression in M. smegmatis. Protein purity was assessed both by size exclusion chromatography and MS. Multiplex serological testing of the final protein preparations showed that all but one protein displayed a clear antibody response in serum samples from 278 tuberculosis patients. Conclusion and clinical relevance The established workflow comprises a simple, cost‐effective, and scalable pipeline for production of soluble proteins from Mtb and can be used to prioritize immunogenic proteins suitable for use as diagnostic markers.
Collapse
Affiliation(s)
- Morlin C Milewski
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Tobias Broger
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Joanna Kirkpatrick
- European Molecular Biology Laboratory (EMBL), Proteomics Core Facility, Heidelberg, Germany
| | - Angela Filomena
- Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Dana Komadina
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,University of Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.
| |
Collapse
|
17
|
Cao J, Dang G, Li H, Li T, Yue Z, Li N, Liu Y, Liu S, Chen L. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis. PLoS One 2015; 10:e0138151. [PMID: 26398213 PMCID: PMC4580317 DOI: 10.1371/journal.pone.0138151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses.
Collapse
Affiliation(s)
- Jun Cao
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guanghui Dang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Huafang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Tiantian Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhiguo Yue
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Na Li
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Yajun Liu
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
- * E-mail: (SL); (LC)
| | - Liping Chen
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
- * E-mail: (SL); (LC)
| |
Collapse
|
18
|
Ehebauer MT, Zimmermann M, Jakobi AJ, Noens EE, Laubitz D, Cichocki B, Marrakchi H, Lanéelle MA, Daffé M, Sachse C, Dziembowski A, Sauer U, Wilmanns M. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism. PLoS Pathog 2015; 11:e1004623. [PMID: 25695631 PMCID: PMC4347857 DOI: 10.1371/journal.ppat.1004623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023] Open
Abstract
Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key
step in lipid biosynthesis that is carried out by multienzyme complexes to extend
fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high
redundancy of carboxyltransferase genes and biotin carboxylase genes, creating
multiple combinations of protein/protein complexes of unknown overall composition and
functional readout. By combining pull-down assays with mass spectrometry, we
identified nine binary protein/protein interactions and four validated holo
acyl-coenzyme A carboxylase complexes. We investigated one of these - the AccD1-AccA1
complex from Mycobacterium tuberculosis with hitherto unknown
physiological function. Using genetics, metabolomics and biochemistry we found that
this complex is involved in branched amino-acid catabolism with methylcrotonyl
coenzyme A as the substrate. We then determined its overall architecture by electron
microscopy and found it to be a four-layered dodecameric arrangement that matches the
overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our
data argue in favor of distinct structural requirements for biotin-mediated
γ-carboxylation of α−β unsaturated acid esters and will
advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about
the underlying structural/functional relationships will be crucial to make the target
category amenable for future biomedical applications. Tuberculosis is deadly human disease caused by infection with the bacterium
Mycobacterium tuberculosis. This pathogen has a complex
metabolism with many genes required for the synthesis of components of its unique
cell envelope. We have investigated a family of closely related genes coding for
different acyl CoA carboxylase enzyme complexes with previously unexplained genetic
redundancy that have been thought to have an involvement in the synthesis of these
cell envelope components. We identified five functional multienzyme complexes. Of the
two complexes with hitherto unknown function we chose to investigate, one
specifically and to our surprise it is required for the degradation of the amino acid
leucine. To our knowledge this is the first demonstration that mycobacteria have a
specific pathway for leucine degradation and thus broaden the functional diversity
associated with acyl CoA carboxylase coding genes.
Collapse
Affiliation(s)
| | | | - Arjen J. Jakobi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
- European Molecular Biology Laboratory, Structural Biology and Computational
Biology Programme, Heidelberg, Germany
| | - Elke E. Noens
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
| | - Daniel Laubitz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Bogdan Cichocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Hedia Marrakchi
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Marie-Antoinette Lanéelle
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Mamadou Daffé
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de
Biologie Structurale, Tuberculosis & Infection Biology Department, Toulouse,
France; Université Paul Sabatier, Toulouse, France
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural Biology and Computational
Biology Programme, Heidelberg, Germany
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
- Department of Genetics & Biotechnology, Warsaw University, Warsaw,
Poland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich,
Switzerland
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg,
Germany
- Center for Structural Systems Biology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Svetlíková Z, Baráth P, Jackson M, Korduláková J, Mikušová K. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid--monoacylated phosphatidylinositol dimannoside. Protein Expr Purif 2014; 100:33-9. [PMID: 24810911 DOI: 10.1016/j.pep.2014.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.
Collapse
Affiliation(s)
- Zuzana Svetlíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jana Korduláková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia.
| |
Collapse
|
20
|
WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLoS One 2014; 9:e89313. [PMID: 24586681 PMCID: PMC3935865 DOI: 10.1371/journal.pone.0089313] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Members of the WXG100 protein superfamily form homo- or heterodimeric complexes. The most studied proteins among them are the secreted T-cell antigens CFP-10 (10 kDa culture filtrate protein, EsxB) and ESAT-6 (6 kDa early secreted antigen target, EsxA) from Mycobacterium tuberculosis. They are encoded on an operon within a gene cluster, named as ESX-1, that encodes for the Type VII secretion system (T7SS). WXG100 proteins are secreted in a full-length form and it is known that they adopt a four-helix bundle structure. In the current work we discuss the evolutionary relationship between the homo- and heterodimeric WXG100 proteins, the basis of the oligomeric state and the key structural features of the conserved sequence pattern of WXG100 proteins. We performed an iterative bioinformatics analysis of the WXG100 protein superfamily and correlated this with the atomic structures of the representative WXG100 proteins. We find, firstly, that the WXG100 protein superfamily consists of three subfamilies: CFP-10-, ESAT-6- and sagEsxA-like proteins (EsxA proteins similar to that of Streptococcus agalactiae). Secondly, that the heterodimeric complexes probably evolved from a homodimeric precursor. Thirdly, that the genes of hetero-dimeric WXG100 proteins are always encoded in bi-cistronic operons and finally, by combining the sequence alignments with the X-ray data we identify a conserved C-terminal sequence pattern. The side chains of these conserved residues decorate the same side of the C-terminal α-helix and therefore form a distinct surface. Our results lead to a putatively extended T7SS secretion signal which combines two reported T7SS recognition characteristics: Firstly that the T7SS secretion signal is localized at the C-terminus of T7SS substrates and secondly that the conserved residues YxxxD/E are essential for T7SS activity. Furthermore, we propose that the specific α-helical surface formed by the conserved sequence pattern including YxxxD/E motif is a key component of T7SS-substrate recognition.
Collapse
|
21
|
Arbing MA, Chan S, Harris L, Kuo E, Zhou TT, Ahn CJ, Nguyen L, He Q, Lu J, Menchavez PT, Shin A, Holton T, Sawaya MR, Cascio D, Eisenberg D. Heterologous expression of mycobacterial Esx complexes in Escherichia coli for structural studies is facilitated by the use of maltose binding protein fusions. PLoS One 2013; 8:e81753. [PMID: 24312350 PMCID: PMC3843698 DOI: 10.1371/journal.pone.0081753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.
Collapse
Affiliation(s)
- Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sum Chan
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Liam Harris
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emmeline Kuo
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tina T. Zhou
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christine J. Ahn
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lin Nguyen
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Qixin He
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jamie Lu
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Phuong T. Menchavez
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Annie Shin
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cloning, expression, purification, and biochemical characterisation of the FIC motif containing protein of Mycobacterium tuberculosis. Protein Expr Purif 2012; 86:58-67. [PMID: 22982230 DOI: 10.1016/j.pep.2012.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/01/2023]
Abstract
The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coli, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP, GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation.
Collapse
|
23
|
A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Fact 2012; 11:85. [PMID: 22709508 PMCID: PMC3521207 DOI: 10.1186/1475-2859-11-85] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Background The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a β-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. Results Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a β-helical core structure (β-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated β-stem appeared unstable after translocation, demonstrating the importance of an intact β-stem. By interrupting the cleavage site between passenger and β-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. Conclusions We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.
Collapse
|
24
|
Ehebauer MT, Wilmanns M. The progress made in determining the Mycobacterium tuberculosis structural proteome. Proteomics 2011; 11:3128-33. [PMID: 21674801 PMCID: PMC3345573 DOI: 10.1002/pmic.201000787] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/16/2011] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis is a highly infectious pathogen that is still responsible for millions of deaths annually. Effectively treating this disease typically requires a course of antibiotics, most of which were developed decades ago. These drugs are, however, not effective against persistent tubercle bacilli and the emergence of drug-resistant stains threatens to make many of them obsolete. The identification of new drug targets, allowing the development of new potential drugs, is therefore imperative. Both proteomics and structural biology have important roles to play in this process, the former as a means of identifying promising drug targets and the latter allowing understanding of protein function and protein–drug interactions at atomic resolution. The determination of M. tuberculosis protein structures has been a goal of the scientific community for the last decade, who have aimed to supply a large amount of structural data that can be used in structure-based approaches for drug discovery and design. Only since the genome sequence of M. tuberculosis has been available has the determination of large numbers of tuberculosis protein structures been possible. Currently, the molecular structures of 8.5% of all the pathogen's protein-encoding ORFs have been determined. In this review, we look at the progress made in determining the M. tuberculosis structural proteome and the impact this has had on the development of potential new drugs, as well as the discovery of the function of crucial mycobaterial proteins.
Collapse
Affiliation(s)
- Matthias T Ehebauer
- European Molecular Biology Laboratory - Hamburg, c/o DESY, Hamburg, Germany.
| | | |
Collapse
|
25
|
Noens EE, Williams C, Anandhakrishnan M, Poulsen C, Ehebauer MT, Wilmanns M. Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1ΔC expression strain. BMC Biotechnol 2011; 11:27. [PMID: 21439037 PMCID: PMC3076238 DOI: 10.1186/1472-6750-11-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/25/2011] [Indexed: 11/26/2022] Open
Abstract
Background The non-pathogenic bacterium Mycobacterium smegmatis is widely used as a near-native expression host for the purification of Mycobacterium tuberculosis proteins. Unfortunately, the Hsp60 chaperone GroEL1, which is relatively highly expressed, is often co-purified with polyhistidine-tagged recombinant proteins as a major contaminant when using this expression system. This is likely due to a histidine-rich C-terminus in GroEL1. Results In order to improve purification efficiency and yield of polyhistidine-tagged mycobacterial target proteins, we created a mutant version of GroEL1 by removing the coding sequence for the histidine-rich C-terminus, termed GroEL1ΔC. GroEL1ΔC, which is a functional protein, is no longer able to bind nickel affinity beads. Using a selection of challenging test proteins, we show that GroEL1ΔC is no longer present in protein samples purified from the groEL1ΔC expression strain and demonstrate the feasibility and advantages of purifying and characterising proteins produced using this strain. Conclusions This novel Mycobacterium smegmatis expression strain allows efficient expression and purification of mycobacterial proteins while concomitantly removing the troublesome contaminant GroEL1 and consequently increasing the speed and efficiency of protein purification.
Collapse
Affiliation(s)
- Elke E Noens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Shukla A, Pallen M, Anthony M, White SA. The homodimeric GBS1074 from Streptococcus agalactiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1421-5. [PMID: 21045286 PMCID: PMC3001639 DOI: 10.1107/s1744309110036286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/09/2010] [Indexed: 11/10/2022]
Abstract
ESAT-6 is a well characterized secreted protein from Mycobacterium tuberculosis and represents the archetype of the WXG100 family of proteins. Genes encoding ESAT-6 homologues have been identified in the genome of the human pathogen Streptococcus agalactiae; one of these genes, esxA, has been cloned and the recombinant protein has been crystallized. In contrast to M. tuberculosis ESAT-6, the crystal structure of GBS1074 reveals a homodimeric structure similar to homologous structures from Staphylococcus aureus and Helicobacter pylori. Intriguingly, GBS1074 forms elongated fibre-like assemblies in the crystal structure.
Collapse
Affiliation(s)
- Anshuman Shukla
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | - Mark Pallen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | - Mark Anthony
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
- Birmingham Women’s NHS Foundation Trust, Edgbaston, Birmingham B15 2TG, England
| | - Scott A. White
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| |
Collapse
|