1
|
Peng G, Deosthale P, Pianeta R, Messersmith HM, Plotkin LI. Sex dimorphic response to osteocyte miR21 deletion in murine calvaria bone as determined by RNAseq analysis. JBMR Plus 2024; 8:ziae054. [PMID: 38784723 PMCID: PMC11114469 DOI: 10.1093/jbmrpl/ziae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Low levels of microRNA (miR) 21 may explain the higher osteocyte apoptosis with Cx43-deficient and aged female mice. However, miR21 exerts a sex-divergent role in osteocytes, regulating bone mass and architecture through non-cell autonomous effects on osteoblasts and osteoclasts, via sex-specific regulation of osteocyte cytokine production. miR21 deficiency improves bone strength in females, and, to a higher extent, in male miR21-deficient mice. To understand the molecular basis for the effects of miR21 deletion, mRNA was isolated from miR21fl/fl (controls) or miR21-deficient (by deletion in cells expressing Cre recombinase under the control of the 8 kb fragment of the DMP1 promoter: miR21ΔOt mice). miR21 was 50% lower in miR21ΔOt whole calvaria bone compared to control mice of the corresponding sex. RNAseq was performed in 4 samples/sex and genotype. There were 152 genes with <.05 P-value and >1 absolute log2 fold change in the male data analysis, and expression of most genes was higher in the miR21fl/fl group. Two of the genes, Actn3 and Myh4, had a false discovery rate < 0.1. Gene enrichment analysis of significant genes on both KEGG pathways and gene ontology (GO) gene sets shows that the significant genes were enriched in muscle contraction. Some muscle-related genes like Actn3 were included in multiple significant pathways. For females, only 65 genes had P-value <.05 and >1 absolute log2 fold change. Yet, no significant KEGG or GO pathways, including ≥5 significant genes, were seen, and no overlap of significant genes was found between male and female samples. Therefore, deletion of miR21 has a stronger effect on male transcriptome in calvaria, compared to females. Further, no enrichment of any pathway was detected in female samples. Thus, either there are no differences between 2 groups in female or the effect size is small, and a larger sample size is needed to uncover miR21-dependent differences.
Collapse
Affiliation(s)
- Gang Peng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Roquelina Pianeta
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Hannah M Messersmith
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Yang S, Lin W, Jia M, Chen H. Association between ACTN3 R577x and the physical performance of Chinese 13 to 15-year-old elite and sub-elite football players at different positions. Front Genet 2023; 14:1038075. [PMID: 36968581 PMCID: PMC10036392 DOI: 10.3389/fgene.2023.1038075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 03/12/2023] Open
Abstract
The purpose of this study was to investigate the prevalence of ACTN3 polymorphisms in Chinese elite and sub-elite football players aged 13–15 years at different positions. Specifically we explored whether ACTN3 genotypes were linked with athletic performance of elite and sub-elite players at different positions. The RR genotype frequency of elite defenders (p = 0.018) and midfielders (p = 0.008) was significantly higher than that of sub-elite XX genotype in elite players. Furthermore, the R allele frequency of elite defenders (p = 0.003) and midfielders (p = 0.008) was significantly higher than that of sub-elite players. In all subjects, RR players performed faster and exhibited more explosive power than RX or XX players. RR, RX and XX elite players’ 20 m/30 m sprint, 5 × 25-m repeated sprint ability (5 × 25 m RSA), and standing long jump were stronger than sub-elite players, but there was no significant different in aerobic endurance between elite and sub-elite players at different positions. In conclusion, there were significant differences in ACTN3 genotypes and alleles between elite and sub-elite players at different positions, and the RR genotype was significantly associated with power-related athletic performance in Chinese youth football players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Najing, Jiangsu, China
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, Guangdong, China
- *Correspondence: Wentao Lin,
| | - Mengmeng Jia
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes (Basel) 2021; 12:genes12050769. [PMID: 34069995 PMCID: PMC8157848 DOI: 10.3390/genes12050769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
There are recent data suggesting an association between the R577X polymorphism (rs1815739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non-contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) players from a top-level professional soccer team were assessed during five consecutive seasons: the genotype distribution was: RR, 41.3%; RX, 47.8%; and XX, 10.9%. There was a trend towards a higher risk of muscle injury associated with the XX genotype (p = 0.092, with no injury-free XX player during the 5-year study period) and a significant genotype effect for the time needed to return to play (p = 0.044, with the highest value shown for the XX genotype, i.e., 36 ± 26 days, vs. 20 ± 10 and 17 ± 12 days for RR and RX, respectively). In conclusion, the XX genotype might be associated not only with a higher risk of non-contact muscle injuries, but also of recovery time from these conditions. However, more research in larger cohorts is needed to confirm this preliminary hypothesis.
Collapse
|
4
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
5
|
Coelho DB, Pimenta EM, Rosse IC, Veneroso C, Pussieldi GDA, Becker LK, Oliveira EC, Carvalho MRS, Silami-Garcia E. Alpha-Actinin-3 R577X Polymorphism Influences Muscle Damage and Hormonal Responses After a Soccer Game. J Strength Cond Res 2020; 33:2655-2664. [PMID: 29781940 DOI: 10.1519/jsc.0000000000002575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coelho, DB, Pimenta, EM, Rosse, IC, Veneroso, C, Pussieldi, GDA, Becker, LK, De Oliveira, EC, Carvalho, MRS, and Silami-Garcia, E. Alpha-actinin-3 R577X polymorphism influences muscle damage and hormonal responses after a soccer game. J Strength Cond Res 33(10): 2655-2664, 2019-The purpose of this study was to evaluate indicators of muscle damage and hormonal responses after soccer matches and its relation to alpha-actinin-3 (ACTN3) gene expression (XX vs. RR/RX), considering that the R allele produces alpha-actinin-3 and provides greater muscle strength and power. Thirty players (10 XX and 20 RR/RX) younger than 16 years were evaluated in this study. Blood samples were collected immediately before, after, 2, and 4 hours after the games to assess muscle damage (creatine kinase [CK] and alpha-actin) and hormonal responses (interleukin-6 [IL-6], cortisol, and testosterone). Postgame CK was higher as compared to the pregame values in both groups and it was also higher in the RR/RX (p < 0.05) than in the XX. The concentrations of alpha-actin and IL-6 were similar for both groups and did not change over time. Testosterone was increased after the game only in the RR/RX group (p < 0.05). Cortisol concentrations in group RR/RX were higher immediately after the game than before the game, and 2 and 4 hours after the game the concentration decreased (p < 0.05). The RR and RX individuals presented higher markers of muscle microtrauma and hormonal stress, probably because they performed more speed and power actions during the game, which is a self-regulated activity. From the different responses presented by RR/RX and XX genotypes, we conclude that the genotypic profile should be taken into account when planning training workloads and recovery of athletes.
Collapse
Affiliation(s)
- Daniel B Coelho
- Sport Center of Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Eduardo M Pimenta
- School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izinara C Rosse
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Lenice K Becker
- Sport Center of Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Emerson C Oliveira
- Sport Center of Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria R S Carvalho
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Papadimitriou ID, Eynon N, Yan X, Munson F, Jacques M, Kuang J, Voisin S, North KN, Bishop DJ. A "human knockout" model to investigate the influence of the α-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci Rep 2019; 9:12688. [PMID: 31481717 PMCID: PMC6722100 DOI: 10.1038/s41598-019-49042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Research in α-actinin-3 knockout mice suggests a novel role for α-actinin-3 as a mediator of cell signalling. We took advantage of naturally-occurring human “knockouts” (lacking α-actinin-3 protein) to investigate the consequences of α-actinin-3 deficiency on exercise-induced changes in mitochondrial-related genes and proteins, as well as endurance training adaptations. At baseline, we observed a compensatory increase of α-actinin-2 protein in ACTN3 XX (α-actinin-3 deficient; n = 18) vs ACTN3 RR (expressing α-actinin-3; n = 19) participants but no differences between genotypes for markers of aerobic fitness or mitochondrial content and function. There was a main effect of genotype, without an interaction, for RCAN1-4 protein content (a marker of calcineurin activity). However, there was no effect of genotype on exercise-induced expression of genes associated with mitochondrial biogenesis, nor post-training physiological changes. In contrast to results in mice, loss of α-actinin-3 is not associated with higher baseline endurance-related phenotypes, or greater adaptations to endurance exercise training in humans.
Collapse
Affiliation(s)
- I D Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Mahidol University, Bangkok, Thailand
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - X Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - F Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - M Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - J Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - K N North
- Murdoch Children's Research Institute, Melbourne, Australia
| | - D J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia. .,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
7
|
The Interaction of UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) and Alpha-Actinin 2 Is Altered in GNE Myopathy M743T Mutant. Mol Neurobiol 2016; 54:2928-2938. [PMID: 27023225 DOI: 10.1007/s12035-016-9862-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the gene mutated in GNE myopathy. In an attempt to elucidate GNE functions that could account for the muscle pathophysiology of this disorder, the interaction of GNE with α-actinins has been investigated. Surface plasmon resonance and microscale thermophoresis analysis revealed, that in vitro, GNE interacts with α-actinin 2, and that this interaction has a 10-fold higher affinity compared to the GNE-α-actinin 1 interaction. Further, GNE carrying the M743T mutation, the most frequent mutation in GNE myopathy, has a 10-fold lower binding affinity to α-actinin 2 than intact GNE. It is possible that this decrease eventually affects the interaction, thus causing functional imbalance of this complex in skeletal muscle that could contribute to the myopathy phenotype. In vivo, using bi-molecular fluorescent complementation, we show the specific binding of the two proteins inside the intact cell, in a unique interaction pattern between the two partners. This interaction is disrupted in the absence of the C-terminal calmodulin-like domain of α-actinin 2, which is altered in α-actinin 1. Moreover, the binding of GNE to α-actinin 2 prevents additional binding of α-actinin 1 but not vice versa. These results suggest that the interaction between GNE and α-actinin 1 and α-actinin 2 occur at different sites in the α-actinin molecules and that for α-actinin 2 the interaction site is located at the C-terminus of the protein.
Collapse
|
8
|
Hogarth MW, Garton FC, Houweling PJ, Tukiainen T, Lek M, Macarthur DG, Seto JT, Quinlan KGR, Yang N, Head SI, North KN. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Hum Mol Genet 2016; 25:866-77. [PMID: 26681802 PMCID: PMC4754040 DOI: 10.1093/hmg/ddv613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia
| | - Fleur C Garton
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Peter J Houweling
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Daniel G Macarthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA, Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA and
| | - Jane T Seto
- Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| | - Kate G R Quinlan
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia
| | - Nan Yang
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital Westmead, Sydney, NSW 2145, Australia, Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, NSW 2006, Australia, Murdoch Children's Research Institute, Melbourne, Vic 3052, Australia, Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia,
| |
Collapse
|
9
|
Wu Y, van der Schaft DWJ, Baaijens FP, Oomens CWJ. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism. J Biomech 2016; 49:1071-1077. [PMID: 26961799 DOI: 10.1016/j.jbiomech.2016.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Abstract
Deep tissue injury (DTI), a type of pressure ulcer, arises in the muscle layers adjacent to bony prominences due to sustained mechanical loading. DTI presents a serious problem in the clinic, as it is often not visible until reaching an advanced stage. One of the causes can be direct mechanical deformation of the muscle tissue and cell. The mechanism of cell death induced by mechanical compression was studied using bio-artificial skeletal muscle tissues. Compression was applied by placing weights on top of the constructs. The morphological changes of the cytoskeleton and the phosphorylation of mitogen-activated protein kinases (MAPK) under compression were investigated. Moreover, inhibitors for each of the three major MAPK groups, p38, ERK, and JNK, were applied separately to look at their roles in the compression caused apoptosis and necrosis. The present study for the first time showed that direct mechanical compression activates MAPK phosphorylation. Compression also leads to a gradual destruction of the cytoskeleton. The percentage apoptosis is strongly reduced by p38 and JNK inhibitors down to the level of the unloaded group. This phenomenon could be observed up to 24h after initiation of compression. Therefore, cell death in bio-artificial muscle tissue caused by mechanical compression is primarily caused by a physiological mechanism, rather than through a physical mechanism which kills the cell directly. These findings reveal insight of muscle cell death under mechanical compression. Moreover, the result indicates a potential clinical solution to prevent DTI by pre-treating with p38 or/and JNK inhibitors.
Collapse
Affiliation(s)
- Yabin Wu
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Institute for Biomechanics, Swiss Federal Institute of Technology Zürich, Switzerland.
| | | | - Frank P Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Cees W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
10
|
Lee FXZ, Houweling PJ, North KN, Quinlan KGR. How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene for speed'. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:686-93. [PMID: 26802899 DOI: 10.1016/j.bbamcr.2016.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
An estimated 1.5 billion people worldwide are deficient in the skeletal muscle protein α-actinin-3 due to homozygosity for the common ACTN3 R577X polymorphism. α-Actinin-3 deficiency influences muscle performance in elite athletes and the general population. The sarcomeric α-actinins were originally characterised as scaffold proteins at the muscle Z-line. Through studying the Actn3 knockout mouse and α-actinin-3 deficient humans, significant progress has been made in understanding how ACTN3 genotype alters muscle function, leading to an appreciation of the diverse roles that α-actinins play in muscle. The α-actinins interact with a number of partner proteins, which broadly fall into three biological pathways-structural, metabolic and signalling. Differences in functioning of these pathways have been identified in α-actinin-3 deficient muscle that together contributes to altered muscle performance in mice and humans. Here we discuss new insights that have been made in understanding the molecular mechanisms that underlie the consequences of α-actinin-3 deficiency.
Collapse
Affiliation(s)
- Fiona X Z Lee
- The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, NSW 2006, Australia
| | - Peter J Houweling
- Murdoch Childrens Research Institute, the Royal Children's Hospital, VIC 3052, Australia
| | - Kathryn N North
- The Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, NSW 2145, Australia; Murdoch Childrens Research Institute, the Royal Children's Hospital, VIC 3052, Australia
| | - Kate G R Quinlan
- Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, NSW 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
11
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
12
|
Altered Ca2+ kinetics associated with α-actinin-3 deficiency may explain positive selection for ACTN3 null allele in human evolution. PLoS Genet 2015; 11:e1004862. [PMID: 25590636 PMCID: PMC4295894 DOI: 10.1371/journal.pgen.1004862] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022] Open
Abstract
Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more “energy efficient” in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR) are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i) an increased rate of decay of the twitch transient; (ii) a fourfold increase in the rate of SR Ca2+ leak; (iii) a threefold increase in the rate of SR Ca2+ pumping; and (iv) enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments during recent evolution. α-Actinin-3 is a protein found inside the muscles of most people around the world. It is encoded by a gene called ACTN3, popularly known as “the gene for speed.” In 1.5 billion people, a certain variation in the genetic sequence of their ACTN3 gene causes their muscles to produce no α-actinin-3 protein at all. These people have no muscle disease; however, in elite athletes, a lack of α-actinin-3 seems to be beneficial for endurance activities and detrimental to sprinting activities. Intriguingly, α-actinin-3 deficiency varies in frequency across the globe, being most common in European and Asian populations and least common in African populations. During recent human evolution, there appears to have been strong positive selection for α-actinin-3 deficiency in places where food resources are relatively scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 knockout (KO) mouse causes a shift towards more “energy efficient” forms of muscle metabolism which would enhance survival in times of famine, and benefit endurance performance. Our present study, using single muscle fibres from Actn3 KO mice, demonstrates changes in calcium handling that would adapt muscles to cold environments and provide a survival advantage in cold climates.
Collapse
|
13
|
Can T, Faas L, Ashford DA, Dowle A, Thomas J, O'Toole P, Blanco G. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci 2014; 12:25. [PMID: 25071420 PMCID: PMC4113200 DOI: 10.1186/1477-5956-12-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.
Collapse
Affiliation(s)
- Tugba Can
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Laura Faas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - David A Ashford
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jerry Thomas
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Peter O'Toole
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
14
|
Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet 2013; 23:1879-93. [DOI: 10.1093/hmg/ddt580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Seto JT, Quinlan KGR, Lek M, Zheng XF, Garton F, MacArthur DG, Hogarth MW, Houweling PJ, Gregorevic P, Turner N, Cooney GJ, Yang N, North KN. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest 2013; 123:4255-63. [PMID: 24091322 DOI: 10.1172/jci67691] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 07/19/2013] [Indexed: 02/02/2023] Open
Abstract
α-Actinin-3 deficiency occurs in approximately 16% of the global population due to homozygosity for a common nonsense polymorphism in the ACTN3 gene. Loss of α-actinin-3 is associated with reduced power and enhanced endurance capacity in elite athletes and nonathletes due to "slowing" of the metabolic and physiological properties of fast fibers. Here, we have shown that α-actinin-3 deficiency results in increased calcineurin activity in mouse and human skeletal muscle and enhanced adaptive response to endurance training. α-Actinin-2, which is differentially expressed in α-actinin-3-deficient muscle, has higher binding affinity for calsarcin-2, a key inhibitor of calcineurin activation. We have further demonstrated that α-actinin-2 competes with calcineurin for binding to calsarcin-2, resulting in enhanced calcineurin signaling and reprogramming of the metabolic phenotype of fast muscle fibers. Our data provide a mechanistic explanation for the effects of the ACTN3 genotype on skeletal muscle performance in elite athletes and on adaptation to changing physical demands in the general population. In addition, we have demonstrated that the sarcomeric α-actinins play a role in the regulation of calcineurin signaling.
Collapse
|
16
|
Wallace MA, Russell AP. Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. Am J Physiol Cell Physiol 2013; 305:C414-26. [PMID: 23720020 DOI: 10.1152/ajpcell.00421.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle mass is regulated by sensing and transmitting extracellular mechanical stress signals to intracellular signaling pathways controlling protein synthesis and degradation. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein that is sensitive to extracellular stress signals. STARS stimulates actin polymerization and influences serum response factor (SRF) and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α transcription of genes involved in muscle growth, structure, and contraction. The role of STARS in skeletal muscle cells is not well understood. This study investigated whether STARS influenced C2C12 myotube growth by regulating protein synthesis and degradation. The influence of STARS on Pgc-1α, Srf, and Errα mRNA levels, as well as several of their downstream targets involved in muscle cell growth, contraction, and metabolism, was also investigated. STARS overexpression increased actin polymerization, with no effect on protein synthesis, protein degradation, or Akt phosphorylation. STARS overexpression increased Pgc-1α, Srf, Ckmt2, Cpt-1β, and Mhc1 mRNA. STARS knockdown reduced actin polymerization and increased cell death and dead cell protease activity. It also increased markers of inflammation (Casp1, Il-1β, and Mcp-1), regeneration (Socs3 and Myh8), and fast myosin isoforms (Mhc2a and Mhc2x). We show for the first time in muscle cells that STARS overexpression increases actin polymerization and shifts the muscle cell to a more oxidative phenotype. The suppression of STARS causes cell death and increases markers of necrosis, inflammation, and regeneration. As STARS levels are suppressed in clinical models associated with increased necrosis and inflammation, such as aging and limb immobilization, rescuing STARS maybe a future therapeutic strategy to maintain skeletal muscle function and attenuate contraction-induced muscle damage.
Collapse
Affiliation(s)
- Marita A Wallace
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | |
Collapse
|
17
|
Feng Y, Ngu H, Alford SK, Ward M, Yin F, Longmore GD. α-actinin1 and 4 tyrosine phosphorylation is critical for stress fiber establishment, maintenance and focal adhesion maturation. Exp Cell Res 2013; 319:1124-35. [PMID: 23454549 DOI: 10.1016/j.yexcr.2013.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/15/2022]
Abstract
In polarized, migrating cells, stress fibers are a highly dynamic network of contractile acto-myosin structures composed of bundles of actin filaments held together by actin cross-linking proteins such as α-actinins. As such, α-actinins influence actin cytoskeleton organization and dynamics and focal adhesion maturation. In response to environmental signals, α-actinins are tyrosine phosphorylated and this affects their binding to actin stress fibers; however, the cellular role of α-actinin tyrosine phosphorylation remains largely unknown. We found that non-muscle α-actinin1/4 are critical for the establishment of dorsal stress fibers and maintenance of transverse arc stress fibers. Analysis of cells genetically depleted of α-actinin1 and 4 reveals two distinct modes for focal adhesion maturation. An α-actinin1 or 4 dependent mode that uses dorsal stress fiber precursors as a template for establishing focal adhesions and their maturation, and an α-actinin-independent manner that uses transverse arc precursors to establish focal adhesions at both ends. Focal adhesions formed in the absence of α-actinins are delayed in their maturation, exhibit altered morphology, have decreased amounts of Zyxin and VASP, and reduced adhesiveness to extracellular matrix. Further rescue experiments demonstrate that the tyrosine phosphorylation of α-actinin1 at Y12 and α-actinin4 at Y265 is critical for dorsal stress fiber establishment, transverse arc maintenance and focal adhesion maturation.
Collapse
Affiliation(s)
- Yunfeng Feng
- Departments of Medicine, Washington University, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, de Azambuja Pussieldi G, Carvalho MRS, Silami-Garcia E, De Paz Fernández JA. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol 2011; 112:1495-503. [PMID: 21842214 DOI: 10.1007/s00421-011-2109-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/29/2011] [Indexed: 01/23/2023]
Abstract
Genetic factors can interfere with sporting performance. The identification of genetic predisposition of soccer players brings important information to trainers and coaches for individual training loads adjustment. Different responses to eccentric training could be observed by the genotype referred to as α-actinin-3 (ACTN3) in biomarkers of muscle damage, hormones and inflammatory responses. The aim of this study was to compare acute inflammatory responses, muscle damage and hormonal variations according to the eccentric training in soccer professional athletes with different genetic profiles of ACTN3 (XX, RX and RR). 37 soccer professional athletes (9 XX, 13 RX, 15 RR) were randomly divided into five stations associated to eccentric muscle contraction and plyometrics. Blood samples were taken from athletes pre-eccentric training, immediately after (post), 2- and 4-h post-eccentric training to determine hormone responses (cortisol and testosterone), muscle damage (CK and α-actin), and inflammatory responses (IL-6). After eccentric training, athletes XX presented higher levels for CK (4-h post), α-actin (post and 2-h post) and cortisol (post) compared to RR and RX athletes. However, RR and RX athletes presented higher levels of testosterone (post) and IL-6 (2 h post and 4 h post) compared to athletes XX. The main conclusion of this study is that professional soccer athletes homozygous to ACTN3XX gene are more susceptible to eccentric damage and present a higher catabolic state, demonstrated by metabolic, hormonal and immune responses post an eccentric training, in comparison to ACTN3RR and ACTN3RX groups.
Collapse
|
19
|
Characterization of Neurospora crassa α-Actinin. Curr Microbiol 2011; 63:100-5. [DOI: 10.1007/s00284-011-9954-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
20
|
Seto JT, Lek M, Quinlan KGR, Houweling PJ, Zheng XF, Garton F, MacArthur DG, Raftery JM, Garvey SM, Hauser MA, Yang N, Head SI, North KN. Deficiency of α-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet 2011; 20:2914-27. [PMID: 21536590 DOI: 10.1093/hmg/ddr196] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcomeric α-actinins (α-actinin-2 and -3) are a major component of the Z-disk in skeletal muscle, where they crosslink actin and other structural proteins to maintain an ordered myofibrillar array. Homozygosity for the common null polymorphism (R577X) in ACTN3 results in the absence of fast fiber-specific α-actinin-3 in ∼20% of the general population. α-Actinin-3 deficiency is associated with decreased force generation and is detrimental to sprint and power performance in elite athletes, suggesting that α-actinin-3 is necessary for optimal forceful repetitive muscle contractions. Since Z-disks are the structures most vulnerable to eccentric damage, we sought to examine the effects of α-actinin-3 deficiency on sarcomeric integrity. Actn3 knockout mouse muscle showed significantly increased force deficits following eccentric contraction at 30% stretch, suggesting that α-actinin-3 deficiency results in an increased susceptibility to muscle damage at the extremes of muscle performance. Microarray analyses demonstrated an increase in muscle remodeling genes, which we confirmed at the protein level. The loss of α-actinin-3 and up-regulation of α-actinin-2 resulted in no significant changes to the total pool of sarcomeric α-actinins, suggesting that alterations in fast fiber Z-disk properties may be related to differences in functional protein interactions between α-actinin-2 and α-actinin-3. In support of this, we demonstrated that the Z-disk proteins, ZASP, titin and vinculin preferentially bind to α-actinin-2. Thus, the loss of α-actinin-3 changes the overall protein composition of fast fiber Z-disks and alters their elastic properties, providing a mechanistic explanation for the loss of force generation and increased susceptibility to eccentric damage in α-actinin-3-deficient individuals.
Collapse
Affiliation(s)
- Jane T Seto
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|