1
|
Mateus M, Hammill ML, Simmons DBD, Desaulniers JP. Injection of Ortho-Functionalized Tetrafluorinated Azobenzene-Containing siRNAs into Japanese Medaka Embryos for Photocontrolled Gene Silencing. Curr Protoc 2024; 4:e70051. [PMID: 39546401 DOI: 10.1002/cpz1.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This article describes the detailed methodology of how to inject photoswitchable ortho-functionalized tetrafluorinated short interfering RNAs (F-siRNAs) into a single cell of stage-two Japanese medaka (Oryzias latipes) embryos and how to control gene silencing with different wavelengths of light. Many of the prior papers describing Japanese medaka embryo injections omit key information. As such, this article aims to give an in-depth explanation as to how the NanoJect III microinjector can be used for this purpose. To obtain the embryos for microinjection, adult medaka are housed under a 14-hr light, 10-hr dark cycle to mimic their natural breeding period. This induces mating at approximately the same time each day, when the lights turn on, so recently fertilized eggs can be obtained. Synthetic F-siRNAs are injected into transgenic stage-two single-cell Japanese medaka embryos expressing enhanced green fluorescent protein (eGFP). Our data demonstrate that our F-siRNAs can silence gene activity in Japanese medaka embryos expressing eGFP. Moreover, gene expression can be activated by exposing F-siRNA-injected embryos to blue light and deactivated a few days after exposure to green light. To the best of our knowledge, this marks the first reversible control of a gene-silencing oligonucleotide within an in vivo system. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Medaka maintenance and embryo collection Basic Protocol 2: Injection of stage-two one-cell medaka embryos Basic Protocol 3: Evaluation of the F-siRNA gene-silencing ability through light activation and inactivation using blue and green light by measuring enhanced green fluorescent protein fluorescence.
Collapse
Affiliation(s)
- Makenzie Mateus
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Matthew L Hammill
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | | | | |
Collapse
|
2
|
Watanabe Y, Katsumura E, Domon T, Ishikawa Y, Oguri R, Takashima M, Meng Q, Kinoshita M, Hashimoto H, Hitomi K. Establishment of transgenic epithelium-specific Cre-recombinase driving medaka (Oryzias latipes) by homology repair mediated knock-in. Biosci Biotechnol Biochem 2023; 87:1285-1294. [PMID: 37607777 DOI: 10.1093/bbb/zbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Deletion of gene expression in the target tissues and cells is an effective strategy for elucidating the physiological functions of the protein of interest. For tissue-specific and/or inducible gene deletion, the Cre-loxP system has been widely used in various model organisms including medaka (Oryzias latipes). The epithelium is the key tissue, locating at the outermost area and playing a role in barrier to external stimuli. Despite a large genetic toolbox developed in medaka, there is no available Cre-driver line that works in an epithelium-specific manner. Here, we established epithelium-specific Cre-driver lines in medaka using a homology-directed repair mediated knock-in approach with CRISPR/Cas9, targeting each of periplakin and keratin genes. We show that Cre-recombinase is expressed exclusively in the epithelium in the knock-in lines and that it efficiently and specifically induces recombination in the tissues. These Cre-driver lines are useful for studying the functions of proteins expressed in the epithelium.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Eri Katsumura
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tatsuki Domon
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuta Ishikawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Rina Oguri
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Minami Takashima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
4
|
Hosoya O, Chung M, Ansai S, Takeuchi H, Miyaji M. A modified Tet-ON system minimizing leaky expression for cell-type specific gene induction in medaka fish. Dev Growth Differ 2021; 63:397-405. [PMID: 34375435 DOI: 10.1111/dgd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 μg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Collapse
Affiliation(s)
- Osamu Hosoya
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Myung Chung
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Kishimoto K, Nakayama M, Kinoshita M. In vivorecombination efficiency of two site-specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). Dev Growth Differ 2016; 58:516-21. [DOI: 10.1111/dgd.12289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Kenta Kishimoto
- Division of Applied Bioscience; Graduate School of Agriculture; Kyoto university; Sakyo-ku 606-8502
| | - Manabu Nakayama
- Chromosome Engineering Team; Department of Technology Development; Kazusa DNA Research Institute; Kisarazu 292-0818 Japan
| | - Masato Kinoshita
- Division of Applied Bioscience; Graduate School of Agriculture; Kyoto university; Sakyo-ku 606-8502
| |
Collapse
|
6
|
Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y, Ansai S, Kinoshita M, Young LJ, Takemori N, Kubo T, Takeuchi H. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLoS Genet 2015; 11:e1005009. [PMID: 25719383 PMCID: PMC4342251 DOI: 10.1371/journal.pgen.1005009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context.
Collapse
Affiliation(s)
- Saori Yokoi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- The Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Larry J. Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nobuaki Takemori
- Proteo-Science Center, Division of Proteomics Research, Ehime University, Toon City, Ehime, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, Kinoshita M, Kamei Y, Tamura K, Takeda H. Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 2013; 4:1639. [PMID: 23535660 PMCID: PMC3615485 DOI: 10.1038/ncomms2643] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
The vertebrate mineralized skeleton is known to have first emerged as an exoskeleton that extensively covered the fossil jawless fish. The evolutionary origin of this exoskeleton has long been attributed to the emergence of the neural crest, but experimental evaluation for this is still poor. Here we determine the embryonic origin of scales and fin rays of medaka (teleost trunk exoskeletons) by applying long-term cell labelling methods, and demonstrate that both tissues are mesodermal in origin. Neural crest cells, however, fail to contribute to these tissues. This result suggests that the trunk neural crest has no skeletogenic capability in fish, instead highlighting the dominant role of the mesoderm in the evolution of the trunk skeleton. This further implies that the role of the neural crest in skeletogenesis has been predominant in the cephalic region from the early stage of vertebrate evolution. Trunk exoskeleton elements of non-tetrapods such as scales and fin rays are believed to derive from the neural crest. Shimada and colleagues use long-term cell labelling methods to show that these elements are actually derived from the mesoderm.
Collapse
Affiliation(s)
- Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Okuyama T, Isoe Y, Hoki M, Suehiro Y, Yamagishi G, Naruse K, Kinoshita M, Kamei Y, Shimizu A, Kubo T, Takeuchi H. Controlled Cre/loxP site-specific recombination in the developing brain in medaka fish, Oryzias latipes. PLoS One 2013; 8:e66597. [PMID: 23825546 PMCID: PMC3692484 DOI: 10.1371/journal.pone.0066597] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.
Collapse
Affiliation(s)
- Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yasuko Isoe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahito Hoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Genki Yamagishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Atushi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Ansai S, Ochiai H, Kanie Y, Kamei Y, Gou Y, Kitano T, Yamamoto T, Kinoshita M. Targeted disruption of exogenous EGFP gene in medaka using zinc-finger nucleases. Dev Growth Differ 2012; 54:546-56. [PMID: 22642582 DOI: 10.1111/j.1440-169x.2012.01357.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 01/15/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.
Collapse
Affiliation(s)
- Satoshi Ansai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|