1
|
Xu F, Deng S, Gavriouchkina D, Zhang G. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:467-477. [PMID: 38045547 PMCID: PMC10689616 DOI: 10.1007/s42995-023-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix-loop-helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00204-y.
Collapse
Affiliation(s)
- Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| | - Shaoxi Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 China
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan
- UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| |
Collapse
|
2
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
3
|
Xiong X, Cao Y, Li Z, Huang R, Du X, Zheng Z. Ecdysone signal pathway participates in shell formation in pearl oysters Pinctada fucata martensii. J Steroid Biochem Mol Biol 2022; 217:106045. [PMID: 34915168 DOI: 10.1016/j.jsbmb.2021.106045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
Ecdysone exists in arthropods, Mollusca and other invertebrates and plays vital roles in exoskeleton formation of Ecdysozoa. However, little is known about its functions in bivalve species. Herein, we identified ecdysone from the serum of pearl oyster Pinctada fucata martensii and obtained the coding sequence of ecdysone receptor (PmEcR) and homologue of its heterodimer protein retinoid X receptor (PmRXR). The deduced amino acid sequences of PmEcR and PmRXR contained a DNA-binding and ligand-binding domain and were very similar to the orthologs of other species. Moreover, PmEcR and PmRXR were located in the nuclei and cytoplasm of HEK-293T cells. PmEcR and PmRXR were highly expressed in early embryos and biomineralized mantle tissue. Moreover, the serum concentration of ecdysone significantly increased at 2, 4, 6, and 8 h post-shell notching. The expression of PmEcR in the mantle tissue was significantly induced at the corresponding time points, while that of PmRXR was significantly induced at 6 h. Ecdysone stimulation remarkably induced the expression of growth factors (BMP2 and BMP7), transcription factors (PmRunt and AP-1), and shell matrix protein genes (chitinase, lysine-rich matrix protein (KRMP), TYR2, and PmCOLVI), which indicated that ecdysone signaling plays important roles in shell repair. However, yeast two-hybrid assay and bimolecular fluorescence complementation showed that PmEcR and PmRXR did not form dimers, suggesting the different molecular interactions of EcR in bivalves. These findings provide insights into the function of ecdysone and its regulation pathway in bivalve species.
Collapse
Affiliation(s)
- Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhixin Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| |
Collapse
|
4
|
From Extrapolation to Precision Chemical Hazard Assessment: The Ecdysone Receptor Case Study. TOXICS 2021; 10:toxics10010006. [PMID: 35051048 PMCID: PMC8778615 DOI: 10.3390/toxics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 10/29/2022]
Abstract
Hazard assessment strategies are often supported by extrapolation of damage probabilities, regarding chemical action and species susceptibilities. Yet, growing evidence suggests that an adequate sampling of physiological responses across a representative taxonomic scope is of paramount importance. This is particularly relevant for Nuclear Receptors (NR), a family of transcription factors, often triggered by ligands and thus, commonly exploited by environmental chemicals. Within NRs, the ligand-induced Ecdysone Receptor (EcR) provides a remarkable example. Long regarded as arthropod specific, this receptor has been extensively targeted by pesticides, seemingly innocuous to non-target organisms. Yet, current evidence clearly suggests a wider presence of EcR orthologues across metazoan lineages, with unknown physiological consequences. Here, we address the state-of-the-art regarding the phylogenetic distribution and functional characterization of metazoan EcRs and provide a critical analysis of the potential disruption of such EcRs by environmental chemical exposure. Using EcR as a case study, hazard assessment strategies are also discussed in view of the development of a novel "precision hazard assessment paradigm.
Collapse
|
5
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
7
|
Capitão A, Lyssimachou A, Castro LFC, Santos MM. Obesogens in the aquatic environment: an evolutionary and toxicological perspective. ENVIRONMENT INTERNATIONAL 2017; 106:153-169. [PMID: 28662399 DOI: 10.1016/j.envint.2017.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 05/24/2023]
Abstract
The rise of obesity in humans is a major health concern of our times, affecting an increasing proportion of the population worldwide. It is now evident that this phenomenon is not only associated with the lack of exercise and a balanced diet, but also due to environmental factors, such as exposure to environmental chemicals that interfere with lipid homeostasis. These chemicals, also known as obesogens, are present in a wide range of products of our daily life, such as cosmetics, paints, plastics, food cans and pesticide-treated food, among others. A growing body of evidences indicates that their action is not limited to mammals. Obesogens also end up in the aquatic environment, potentially affecting its ecosystems. In fact, reports show that some environmental chemicals are able to alter lipid homeostasis, impacting weight, lipid profile, signaling pathways and/or protein activity, of several taxa of aquatic animals. Such perturbations may give rise to physiological disorders and disease. Although largely unexplored from a comparative perspective, the key molecular components implicated in lipid homeostasis have likely appeared early in animal evolution. Therefore, it is not surprising that the obesogen effects are found in other animal groups beyond mammals. Collectively, data indicates that suspected obesogens impact lipid metabolism across phyla that have diverged over 600 million years ago. Thus, a consistent link between environmental chemical exposure and the obesity epidemic has emerged. This review aims to summarize the available information on the effects of putative obesogens in aquatic organisms, considering the similarities and differences of lipid homeostasis pathways among metazoans, thus contributing to a better understanding of the etiology of obesity in human populations. Finally, we identify the knowledge gaps in this field and we set future research priorities.
Collapse
Affiliation(s)
- Ana Capitão
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| | - Angeliki Lyssimachou
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| | - Miguel M Santos
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| |
Collapse
|
8
|
Vogeler S, Bean TP, Lyons BP, Galloway TS. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:33. [PMID: 27680968 PMCID: PMC5041327 DOI: 10.1186/s12861-016-0129-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. CONCLUSION Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
9
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
11
|
Gust M, Gagné F, Berlioz-Barbier A, Besse JP, Buronfosse T, Tournier M, Tutundjian R, Garric J, Cren-Olivé C. Caged mudsnail Potamopyrgus antipodarum (Gray) as an integrated field biomonitoring tool: exposure assessment and reprotoxic effects of water column contamination. WATER RESEARCH 2014; 54:222-236. [PMID: 24576698 DOI: 10.1016/j.watres.2014.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
This study highlights the usefulness of gastropods for water quality monitoring. Gastropods were caged upstream and downstream of an effluent discharge. Exposure was assessed by measurement of organic contaminants in water. Contamination of the Potamopyrgus antipodarum mudsnail was also measured using innovative techniques at the end of the 42 days of exposure. Biological effects were measured at the individual level (growth, reproduction) and subindividual level (energy reserves, vitellin-like proteins, steroid levels, expression of genes involved in estrogen signaling pathways), thus providing a better understanding of reprotoxic effects. The effluent was mainly contaminated by pharmaceutical compounds, as was the mudsnail. The highest concentrations were measured for oxazepam and were higher than 2 mg/kg downstream of the effluent discharge. Alkylphenols, bisphenol A, and vertebrate-like sex-steroid hormones were also bioaccumulated by the mudsnail downstream of the effluent. The combined use of water and snail contamination provided a complete exposure assessment. Exposure was further linked to biological effects. The mudsnail was shown to be a better adapted species for in situ exposures than Valvata piscinalis. Reproduction was sharply decreased after 6 weeks of exposure in the mudsnail. Feeding issues were excluded, confirming the toxic origin. These effects were related to estrogen signaling pathways using genomic analysis. Genes coding for proteins involved in nongenomic signaling pathways were inhibited, and those of genomic pathway repressors were induced. These results suggest that the chemical contamination due to the effluent discharge altered steroid control of reproduction and blocked the transition between oocyte and unshelled embryo, resulting in a drastic decrease of embryo production, while survival was not affected.
Collapse
Affiliation(s)
- M Gust
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France.
| | - F Gagné
- Emerging Methods Section, Aquatic Contaminants Research Division, Science and Technology, Environment Canada, 105 McGill St., Montreal, Quebec, Canada H2Y2E7
| | - A Berlioz-Barbier
- Service Central d'Analyse du CNRS, USR59, 5 rue de la Doua, Villeurbanne, France
| | - J P Besse
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France
| | - T Buronfosse
- VetAgro-Sup, Campus vétérinaire, Endocrinology Laboratory, 69280 Marcy l'Etoile, France
| | - M Tournier
- Service Central d'Analyse du CNRS, USR59, 5 rue de la Doua, Villeurbanne, France
| | - R Tutundjian
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France
| | - J Garric
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France
| | - C Cren-Olivé
- Service Central d'Analyse du CNRS, USR59, 5 rue de la Doua, Villeurbanne, France
| |
Collapse
|
12
|
Lecomte V, Noury P, Tutundjian R, Buronfosse T, Garric J, Gust M. Organic solvents impair life-traits and biomarkers in the New Zealand mudsnail Potamopyrgus antipodarum (Gray) at concentrations below OECD recommendations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:196-203. [PMID: 23811024 DOI: 10.1016/j.aquatox.2013.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Potamopyrgus antipodarum is a gastropod mollusk proposed for use in the development of reproduction tests within the Organization for Economic Cooperation and Development (OECD). Numerous chemicals, including endocrine disrupters, are relatively water-insoluble, and water-miscible solvents are currently used for testing them. OECD recommends a maximum concentration of 100 μll(-1). As several studies highlighted effects of lower concentrations of solvents, this study assessed the effects of 20 μll(-1) acetone, ethanol, methanol and dimethylsulfoxide (DMSO) on juvenile and adult snails during 42 days. Ethanol decreased juvenile growth, while acetone increased the rate of embryonic development. All solvents increased estradiol-like levels in adult snails. DMSO only increased mRNA expression of vitellogenin-like gene, while acetone, ethanol and methanol decreased mRNA expression of three nuclear receptor (estrogen receptor-like, ecdysone-induced protein and chicken ovalbumin upstream promoter transcription factor) genes as well as of genes encoding proteins involved in genomic (prohibitin-2) and non-genomic (striatin) pathways of estrogens activity in vertebrates. This study highlights the confounding effects of low concentrations of solvents and recommends avoiding their use. Where solvent use is inevitable, their concentrations and type should be investigated for suitability for the measured endpoints prior to use in chemical testing strategies.
Collapse
Affiliation(s)
- V Lecomte
- Irstea, UR MAEP, Laboratoire d'écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Raingeard D, Bilbao E, Cancio I, Cajaraville MP. Retinoid X receptor (RXR), estrogen receptor (ER) and other nuclear receptors in tissues of the mussel Mytilus galloprovincialis: Cloning and transcription pattern. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:178-90. [DOI: 10.1016/j.cbpa.2013.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 01/11/2023]
|