1
|
Morimoto Y, Uesaka K, Fujita Y, Yamamoto H. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. mSphere 2024; 9:e0049824. [PMID: 39191391 PMCID: PMC11423573 DOI: 10.1128/msphere.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Prokaryotes contribute to the global sulfur cycle by using diverse sulfur compounds as sulfur sources or electron acceptors. In this study, we report that a nitrogenase-like enzyme (NFL) and a radical SAM enzyme (RSE) are involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. The nflHDK genes for NFL are localized at a locus containing genes for known sulfonate metabolism in the genome. A gene nflB encoding an RSE is present just upstream of nflH, forming a small gene cluster nflBHDK. Mutants lacking any nflBHDK genes are incapable of growing with isethionate as the sole sulfur source under anaerobic photosynthetic conditions, indicating that all four NflBHDK proteins are essential for the isethionate assimilation pathway. Heterologous expression of the islAB genes encoding a known isethionate lyase that degrades isethionate to sulfite and acetaldehyde restored the isethionate-dependent growth of a mutant lacking nflDK, indicating that the enzyme encoding nflBHDK is involved in an isethionate assimilation reaction to release sulfite. Furthermore, the heterologous expression of nflBHDK and ssuCAB encoding an isethionate transporter in the closely related species R. sphaeroides, which does not have nflBHDK and cannot grow with isethionate as the sole sulfur source, conferred isethionate-dependent growth ability to this species. We propose to rename nflBHDK as isrBHDK (isethionate reductase). The isrBHDK genes are widely distributed among various prokaryote phyla. Discovery of the isethionate assimilation pathway by IsrBHDK provides a missing piece for the anaerobic sulfur cycle and for understanding the evolution of ancient sulfur metabolism.IMPORTANCENitrogenase is an important enzyme found in prokaryotes that reduces atmospheric nitrogen to ammonia and plays a fundamental role in the global nitrogen cycle. It has been noted that nitrogenase-like enzymes (NFLs), which share an evolutionary origin with nitrogenase, have evolved to catalyze diverse reactions such as chlorophyll biosynthesis (photosynthesis), coenzyme F430 biosynthesis (methanogenesis), and methionine biosynthesis. In this study, we discovered that an NFL with unknown function in the photosynthetic bacterium Rhodobacter capsulatus is a novel isethionate reductase (Isr), which catalyzes the assimilatory degradation of isethionate, a sulfonate, releasing sulfite used as the sulfur source under anaerobic conditions. Isr is widely distributed among various bacterial phyla, including intestinal bacteria, and is presumed to play an important role in sulfur metabolism in anaerobic environments such as animal guts and microbial mats. This finding provides a clue for understanding ancient metabolism that evolved under anaerobic environments at the dawn of life.
Collapse
Affiliation(s)
- Yoshiki Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Bedendi G, Kulkarni A, Maroni P, Milton RD. Alternative Electron Donors for the Nitrogenase‐like Dark‐Operative Protochlorophyllide Oxidoreductase (DPOR). ChemElectroChem 2022. [DOI: 10.1002/celc.202200774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giada Bedendi
- University of Geneva Faculty of Science: Universite de Geneve Faculte des Sciences Inorganic and Analytical Chemistry SWITZERLAND
| | - Amogh Kulkarni
- University of Geneva Faculty of Science: Universite de Geneve Faculte des Sciences Inorganic and Analytical Chemistry SWITZERLAND
| | - Plinio Maroni
- University of Geneva Faculty of Science: Universite de Geneve Faculte des Sciences Inorganic and Analytical Chemistry SWITZERLAND
| | - Ross D Milton
- Universite de Geneve Faculte de Medecine Department of Inorganic and Analytical Chemistry Sciences IIQuai Ernest-Ansermet 30 1211 Geneva 4 SWITZERLAND
| |
Collapse
|
3
|
Zhou J, Lénon M, Ravanat JL, Touati N, Velours C, Podskoczyj K, Leszczynska G, Fontecave M, Barras F, Golinelli-Pimpaneau B. Iron-sulfur biology invades tRNA modification: the case of U34 sulfuration. Nucleic Acids Res 2021; 49:3997-4007. [PMID: 33744947 PMCID: PMC8053098 DOI: 10.1093/nar/gkab138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfuration of uridine 34 in the anticodon of tRNAs is conserved in the three domains of life, guaranteeing fidelity of protein translation. In eubacteria, it is catalyzed by MnmA-type enzymes, which were previously concluded not to depend on an iron-sulfur [Fe-S] cluster. However, we report here spectroscopic and iron/sulfur analysis, as well as in vitro catalytic assays and site-directed mutagenesis studies unambiguously showing that MnmA from Escherichia coli can bind a [4Fe-4S] cluster, which is essential for sulfuration of U34-tRNA. We propose that the cluster serves to bind and activate hydrosulfide for nucleophilic attack on the adenylated nucleoside. Intriguingly, we found that E. coli cells retain s2U34 biosynthesis in the ΔiscUA ΔsufABCDSE strain, lacking functional ISC and SUF [Fe-S] cluster assembly machineries, thus suggesting an original and yet undescribed way of maturation of MnmA. Moreover, we report genetic analysis showing the importance of MnmA for sustaining oxidative stress.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Marine Lénon
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, F-38000 Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Universités, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| |
Collapse
|
4
|
Corless EI, Bennett B, Antony E. Substrate recognition induces sequential electron transfer across subunits in the nitrogenase-like DPOR complex. J Biol Chem 2020; 295:13630-13639. [PMID: 32737200 DOI: 10.1074/jbc.ra120.015151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), catalyzed by dark-operative protochlorophyllide oxidoreductase (DPOR). DPOR is made of electron donor (BchL) and acceptor (BchNB) component proteins. BchNB is further composed of two subunits each of BchN and BchB arranged as an α2β2 heterotetramer with two active sites for substrate reduction. Such oligomeric architectures are found in several other electron transfer (ET) complexes, but how this architecture influences activity is unclear. Here, we describe allosteric communication between the two identical active sites in Rhodobacter sphaeroides BchNB that drives sequential and asymmetric ET. Pchlide binding to one BchNB active site initiates ET from the pre-reduced [4Fe-4S] cluster of BchNB, a process similar to the deficit spending mechanism observed in the structurally related nitrogenase complex. Pchlide binding in one active site is recognized in trans by an Asp-274 from the opposing half, which is positioned to serve as the initial proton donor. A D274A variant DPOR binds to two Pchlide molecules in the BchNB complex, but only one is bound productively, stalling Pchlide reduction in both active sites. A half-active complex combining one WT and one D274A monomer also stalled after one electron was transferred in the WT half. We propose that such sequential electron transfer in oligomeric enzymes serves as a regulatory mechanism to ensure binding and recognition of the correct substrate. The findings shed light on the functional advantages imparted by the oligomeric architecture found in many electron transfer enzymes.
Collapse
Affiliation(s)
- Elliot I Corless
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, Wisconsin
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
5
|
Ghebreamlak SM, Mansoorabadi SO. Divergent Members of the Nitrogenase Superfamily: Tetrapyrrole Biosynthesis and Beyond. Chembiochem 2020; 21:1723-1728. [PMID: 32180329 DOI: 10.1002/cbic.201900782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Indexed: 11/06/2022]
Abstract
The nitrogenase superfamily constitutes a large and diverse ensemble of two-component metalloenzymes. These systems couple the hydrolysis of ATP to the reduction of disparate substrates from diatomic gases (Mo and alternative nitrogenases) to photosynthetic pigments (protochlorophyllide and chlorophyllide oxidoreductases). Only very recently have the activities of the highly divergent and paraphyletic Group IV nitrogenases begun to be uncovered. This review highlights the first characterized member of this group, which was found to catalyze an unprecedented reaction in the coenzyme F430 biosynthetic pathway, and the catalytic potential of a superfamily that has yet to be fully explored.
Collapse
Affiliation(s)
- Selamawit M Ghebreamlak
- Department of Chemistry and Biochemistry, Auburn University 179 Chemistry Building, Auburn, AL, 36849, USA
| | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University 179 Chemistry Building, Auburn, AL, 36849, USA
| |
Collapse
|
6
|
Saichana N, Tanizawa K, Ueno H, Pechoušek J, Novák P, Frébortová J. Characterization of auxiliary iron-sulfur clusters in a radical S-adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1. FEBS Open Bio 2017; 7:1864-1879. [PMID: 29226074 PMCID: PMC5715301 DOI: 10.1002/2211-5463.12314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/10/2022] Open
Abstract
PqqE is a radical S‐adenosyl‐l‐methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe–S clusters. To characterize the Fe–S clusters in PqqE from Methylobacterium extorquens AM1, Cys residues conserved in the N‐terminal signature motif (CX3CX2C) and the C‐terminal seven‐cysteine motif (CX9–15GX4CXnCX2CX5CX3CXnC; n = an unspecified number) were individually or simultaneously mutated into Ser. Biochemical and Mössbauer spectral analyses of as‐purified and reconstituted mutant enzymes confirmed the presence of three Fe–S clusters in PqqE: one [4Fe–4S]2+ cluster at the N‐terminal region that is essential for the reductive homolytic cleavage of SAM into methionine and 5′‐deoxyadenosyl radical, and one each [4Fe–4S]2+ and [2Fe–2S]2+ auxiliary clusters in the C‐terminal SPASM domain, which are assumed to serve for electron transfer between the buried active site and the protein surface. The presence of [2Fe–2S]2+ cluster is a novel finding for radical SAM enzyme belonging to the SPASM subfamily. Moreover, we found uncommon ligation of the auxiliary [4Fe–4S]2+ cluster with sulfur atoms of three Cys residues and a carboxyl oxygen atom of a conserved Asp residue.
Collapse
Affiliation(s)
- Natsaran Saichana
- Centre of the Region Haná for Biotechnological and Agricultural Research Faculty of Science Palacký University Olomouc Czech Republic.,Present address: School of Science Mae Fah Luang University Chiang Rai Thailand
| | - Katsuyuki Tanizawa
- Centre of the Region Haná for Biotechnological and Agricultural Research Faculty of Science Palacký University Olomouc Czech Republic.,Comprehensive Research Institute for Food and Agriculture Faculty of Agriculture Ryukoku University Otsu Japan
| | - Hiroshi Ueno
- Comprehensive Research Institute for Food and Agriculture Faculty of Agriculture Ryukoku University Otsu Japan
| | - Jiří Pechoušek
- Regional Centre of Advanced Technologies and Materials Department of Experimental Physics Faculty of Science Palacký University Olomouc Czech Republic
| | - Petr Novák
- Regional Centre of Advanced Technologies and Materials Department of Experimental Physics Faculty of Science Palacký University Olomouc Czech Republic
| | - Jitka Frébortová
- Centre of the Region Haná for Biotechnological and Agricultural Research Faculty of Science Palacký University Olomouc Czech Republic
| |
Collapse
|
7
|
Layer G, Krausze J, Moser J. Reduction of Chemically Stable Multibonds: Nitrogenase-Like Biosynthesis of Tetrapyrroles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:147-161. [DOI: 10.1007/5584_2016_175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Kiesel S, Wätzlich D, Lange C, Reijerse E, Bröcker MJ, Rüdiger W, Lubitz W, Scheer H, Moser J, Jahn D. Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans. J Biol Chem 2015; 290:1141-54. [PMID: 25422320 PMCID: PMC4294481 DOI: 10.1074/jbc.m114.617761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/18/2014] [Indexed: 11/06/2022] Open
Abstract
Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4(-). Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.
Collapse
Affiliation(s)
- Svenja Kiesel
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Denise Wätzlich
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Christiane Lange
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Edward Reijerse
- Max-Planck-Institute for Chemical Energy Conversion, D-45470 Mülheim, Germany
| | - Markus J Bröcker
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, Connecticut 06520, and
| | - Wolfhart Rüdiger
- Department Biology I, Botany, Ludwig-Maximilians-Universität München, D-80638 München, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, D-45470 Mülheim, Germany
| | - Hugo Scheer
- Department Biology I, Botany, Ludwig-Maximilians-Universität München, D-80638 München, Germany
| | - Jürgen Moser
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany,
| | - Dieter Jahn
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| |
Collapse
|
9
|
Silva PJ. With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase. PeerJ 2014; 2:e551. [PMID: 25237602 PMCID: PMC4157233 DOI: 10.7717/peerj.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/09/2014] [Indexed: 11/20/2022] Open
Abstract
The addition of two electrons and two protons to the C17=C18 bond in protochlorophyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a (Cys)3Asp-ligated [4Fe–4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17=C18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the (Cys)3Asp-ligated [4Fe–4S], yielding a negatively-charged intermediate. Depending on the rate of Fe–S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe–S cluster re-reduction should be the rate-limiting stage of the process. Poisson–Boltzmann computations on the full enzyme–substrate complex, followed by Monte Carlo simulations of redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the reaction potential of the Fe–S cluster. Furthermore, the computed distributions of protonation states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM computations to obtain, for the first time, the influence of all protonation states of an enzyme on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, these computations confirmed the broad features of the reaction mechanism obtained with the medium-sized models, and afforded valuable insights on the influence of the titratable amino acids on each reaction step. Additional comparisons of the energetic features of the reaction intermediates with those of common biochemical redox intermediates suggest a surprisingly simple explanation for the mechanistic differences between the dark-catalyzed and light-dependent enzyme reaction mechanisms.
Collapse
Affiliation(s)
- Pedro J Silva
- REQUIMTE, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Rua Carlos da Maia, Porto , Portugal
| |
Collapse
|
10
|
Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis. Sci Rep 2014; 4:5455. [PMID: 24965831 PMCID: PMC4071322 DOI: 10.1038/srep05455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
Abstract
Photosynthesis converts solar energy to chemical energy using chlorophylls (Chls). In a late stage of biosynthesis of Chls, dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR), a nitrogenase-like enzyme, reduces the C17 = C18 double bond of Pchlide and drastically changes the spectral properties suitable for photosynthesis forming the parental chlorin ring for Chl a. We previously proposed that the spatial arrangement of the proton donors determines the stereospecificity of the Pchlide reduction based on the recently resolved structure of the DPOR catalytic component, NB-protein. However, it was not clear how the two-electron and two-proton transfer events are coordinated in the reaction. In this study, we demonstrate that DPOR initiates a single electron transfer reaction from a [4Fe-4S]-cluster (NB-cluster) to Pchlide, generating Pchlide anion radicals followed by a single proton transfer, and then, further electron/proton transfer steps transform the anion radicals into chlorophyllide (Chlide). Thus, DPOR is a unique iron-sulphur enzyme to form substrate radicals followed by sequential proton- and electron-transfer steps with the protein folding very similar to that of nitrogenase. This novel radical-mediated reaction supports the biosynthesis of Chl in a wide variety of photosynthetic organisms.
Collapse
|
11
|
Yamamoto H, Kato M, Yamanashi K, Fujita Y. Reconstitution of a sequential reaction of two nitrogenase-like enzymes in the bacteriochlorophyll biosynthetic pathway of Rhodobacter capsulatus. Biochem Biophys Res Commun 2014; 448:200-5. [PMID: 24769479 DOI: 10.1016/j.bbrc.2014.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The parental structure of bacteriochlorophyll a, bacteriochlorin, is formed by a sequential operation of two nitrogenase-like enzymes, dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide a oxidoreductase (COR). Both DPOR and COR consist of two components, Fe protein and MoFe protein cognates. Here we determined kinetic parameters of COR and established the reconstitution system for the formation of bacteriochlorin (3-vinyl bacteriochlorophyllide a) from porphyrin (protochlorophyllide) with purified components of DPOR and COR from Rhodobacter capsulatus. This reconstitution system confirmed the recent finding that COR catalyzes 8-vinyl reduction of 8-vinyl chlorophyllide a in addition to the known activity of C7C8 double bond reduction, and provides a promising model to investigate how two nitrogenase-like enzymes are coordinated in bacteriochlorophyll biosynthesis.
Collapse
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mina Kato
- School of Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kaori Yamanashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
12
|
Bak DW, Elliott SJ. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr Opin Chem Biol 2014; 19:50-8. [DOI: 10.1016/j.cbpa.2013.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
|
13
|
Nomata J, Kondo T, Itoh S, Fujita Y. Nicotinamide is a specific inhibitor of dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, from Rhodobacter capsulatus. FEBS Lett 2013; 587:3142-7. [PMID: 23954297 DOI: 10.1016/j.febslet.2013.07.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022]
Abstract
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110-114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.
Collapse
Affiliation(s)
- Jiro Nomata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
14
|
Bruska MK, Stiebritz MT, Reiher M. Analysis of differences in oxygen sensitivity of Fe-S clusters. Dalton Trans 2013; 42:8729-35. [PMID: 23632881 DOI: 10.1039/c3dt50763g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many but not all iron-sulphur clusters in metalloproteins are known to be sensitive to molecular oxygen with dramatic consequences for their biological function. We performed a systematic quantum chemical investigation that sheds light on the differences in oxygen sensitivity depending on charge and spin states of these clusters as well as on their spatial fixation by the enzyme's scaffold. We find that significant structural distortions are required to bind O2 exothermically to [Fe2S2] and [Fe3S4] clusters, while only small conformational changes allow for the thermodynamically favorable coordination of molecular oxygen to [Fe4S4] cubanes and [Fe4S3] clusters.
Collapse
Affiliation(s)
- Marta K Bruska
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Yamamoto H, Kurumiya S, Ohashi R, Fujita Y. Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. PLANT & CELL PHYSIOLOGY 2011; 52:1983-1993. [PMID: 21949030 DOI: 10.1093/pcp/pcr132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of the two components, L-protein (a ChlL dimer) and NB-protein (a ChlN-ChlB heterotetramer), to catalyze Pchlide reduction in Chl biosynthesis. While nitrogenase is distributed only among certain prokaryotes, the probable structural genes for DPOR are encoded by chloroplast DNA in lower plants. Here we show functional evaluation of DPOR encoded by chloroplast DNA in a moss Physcomitrella patens by the complementation analysis of the cyanobacterium Leptolyngbya boryana and the heterologous reconstitution of the moss L-protein and the cyanobacterial NB-protein. Two shuttle vectors to overexpress chlL and chlN-chlB from P. patens were introduced into the cyanobacterial chlL- and chlB-lacking mutants, respectively. Both transformants restored the ability to perform Chl biosynthesis in the dark, indicating that the chloroplast-encoded DPOR components form an active complex with the cyanobacterial components. The L-protein of P. patens was purified from the cyanobacterial transformant, and DPOR activity was reconstituted in a heterologous combination with the cyanobacterial NB-protein. The specific activity of the L-protein from P. patens was determined to be 118 nmol min(-1) mg (-1), which is even higher than that of the cyanobacterial L-protein (76 nmol min(-1) mg (-1)). Upon exposure to air, the activity of the L-protein from P. patens decayed with a half-life of 30 s, which was eight times faster than that of the cyanobacterial L-protein (240 s). These results suggested that the chloroplast-encoded L-protein functions as efficiently as the cyanobacterial L-protein but is more oxygen labile than the cyanobacterial L-protein.
Collapse
Affiliation(s)
- Haruki Yamamoto
- School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|