1
|
Recabarren R, Llanos AG, Vöhringer-Martinez E. Computational methods for the study of carboxylases: The case of crotonyl-CoA carboxylase/reductase. Methods Enzymol 2024; 708:353-387. [PMID: 39572147 DOI: 10.1016/bs.mie.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The rising levels of atmospheric CO2 and its impact on climate change call for new methods to transform this greenhouse gas into beneficial compounds. Carboxylases have a significant role in the carbon cycle, converting gigatons of CO2 into biomass annually. One of the most effective and fastest carboxylases is crotonyl-CoA carboxylase/reductase (Ccr). To understand its underlying mechanism, we have developed computational methods and protocols based on all-atom molecular dynamics simulations. These methods provide the CO2 binding locations and free energy inside the active site, dependent on different conformations adopted by Ccr and the presence of the crotonyl-CoA substrate. Furthermore, the adaptive string method and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations outline the CO2 fixation reaction via two different mechanisms. The direct mechanism involves a hydride transfer creating a reactive enolate, which then binds the electrophilic CO2 molecule, resulting in the carboxylated product. Alternatively, another mechanism involves the formation of a covalent adduct. Our simulations suggest that this adduct serves to store the enolate in a much more stable intermediate avoiding its reduction side reaction, explaining the enzyme's efficiency. Overall, this work presents computational methods for studying carboxylation reactions using Ccr as a model, providing general principles that can be applied to modeling other carboxylases.
Collapse
Affiliation(s)
- Rodrigo Recabarren
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Aharon Gómez Llanos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastian, Lientur, Concepción, Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Mattice JR, Shisler KA, DuBois JL, Peters JW, Bothner B. A catalytic dyad modulates conformational change in the CO 2-fixing flavoenzyme 2-ketopropyl coenzyme M oxidoreductase/carboxylase. J Biol Chem 2022; 298:101884. [PMID: 35367206 PMCID: PMC9062435 DOI: 10.1016/j.jbc.2022.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
2-Ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a member of the flavin and cysteine disulfide containing oxidoreductase family (DSOR) that catalyzes the unique reaction between atmospheric CO2 and a ketone/enolate nucleophile to generate acetoacetate. However, the mechanism of this reaction is not well understood. Here, we present evidence that 2-KPCC, in contrast to the well-characterized DSOR enzyme glutathione reductase, undergoes conformational changes during catalysis. Using a suite of biophysical techniques including limited proteolysis, differential scanning fluorimetry, and native mass spectrometry in the presence of substrates and inhibitors, we observed conformational differences between different ligand-bound 2-KPCC species within the catalytic cycle. Analysis of site-specific amino acid variants indicated that 2-KPCC-defining residues, Phe501-His506, within the active site are important for transducing these ligand induced conformational changes. We propose that these conformational changes promote substrate discrimination between H+ and CO2 to favor the metabolically preferred carboxylation product, acetoacetate.
Collapse
Affiliation(s)
- Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Krista A Shisler
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
3
|
The LarB carboxylase/hydrolase forms a transient cysteinyl-pyridine intermediate during nickel-pincer nucleotide cofactor biosynthesis. Proc Natl Acad Sci U S A 2021; 118:2106202118. [PMID: 34548397 DOI: 10.1073/pnas.2106202118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.
Collapse
|
4
|
Prussia GA, Shisler KA, Zadvornyy OA, Streit BR, DuBois JL, Peters JW. The unique Phe-His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S-C bond cleavage. J Biol Chem 2021; 297:100961. [PMID: 34265301 PMCID: PMC8358701 DOI: 10.1016/j.jbc.2021.100961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
The 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) enzyme is the only member of the disulfide oxidoreductase (DSOR) family of enzymes, which are important for reductively cleaving S-S bonds, to have carboxylation activity. 2-KPCC catalyzes the conversion of 2-ketopropyl-coenzyme M to acetoacetate, which is used as a carbon source, in a controlled reaction to exclude protons. A conserved His-Glu motif present in DSORs is key in the protonation step; however, in 2-KPCC, the dyad is substituted by Phe-His. Here, we propose that this difference is important for coupling carboxylation with C-S bond cleavage. We substituted the Phe-His dyad in 2-KPCC to be more DSOR like, replacing the phenylalanine with histidine (F501H) and the histidine with glutamate (H506E), and solved crystal structures of F501H and the double variant F501H_H506E. We found that F501 protects the enolacetone intermediate from protons and that the F501H variant strongly promotes protonation. We also provided evidence for the involvement of the H506 residue in stabilizing the developing charge during the formation of acetoacetate, which acts as a product inhibitor in the WT but not the H506E variant enzymes. Finally, we determined that the F501H substitution promotes a DSOR-like charge transfer interaction with flavin adenine dinucleotide, eliminating the need for cysteine as an internal base. Taken together, these results indicate that the 2-KPCC dyad is responsible for selectively promoting carboxylation and inhibiting protonation in the formation of acetoacetate.
Collapse
Affiliation(s)
- Gregory A Prussia
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Krista A Shisler
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Bennett R Streit
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
5
|
Bernhardsgrütter I, Stoffel GM, Miller TE, Erb TJ. CO 2-converting enzymes for sustainable biotechnology: from mechanisms to application. Curr Opin Biotechnol 2021; 67:80-87. [PMID: 33508634 DOI: 10.1016/j.copbio.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 01/28/2023]
Abstract
To realize a circular, carbon-neutral economy, it will become important to utilize the greenhouse gas CO2 as a sustainable carbon source. Carboxylases, the enzymes that capture and convert gaseous CO2 are the prime candidates to pave the way towards realizing this vision of a CO2-based bio-economy. In the last couple of years, the interest in using and engineering carboxylases has been steadily growing. Here, we discuss how basic research on the mechanism of CO2 binding and activation by carboxylases opened the way to develop new-to-nature CO2-fixing enzymes that found application in the development of synthetic CO2-fixation pathways and their further realization in vitro and in vivo. These pioneering efforts in the field pave the way to realize a diverse CO2-fixation biochemistry that can find application in biocatalysis, biotechnology, and artificial photosynthesis.
Collapse
Affiliation(s)
- Iria Bernhardsgrütter
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Gabriele Mm Stoffel
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tarryn E Miller
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany; Center for Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
| |
Collapse
|
6
|
Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Biochem J 2020; 477:2027-2038. [PMID: 32497192 DOI: 10.1042/bcj20200174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.
Collapse
|
7
|
Four amino acids define the CO 2 binding pocket of enoyl-CoA carboxylases/reductases. Proc Natl Acad Sci U S A 2019; 116:13964-13969. [PMID: 31243147 PMCID: PMC6628652 DOI: 10.1073/pnas.1901471116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carboxylases capture and convert CO2, which makes them key enzymes in photosynthesis and the global carbon cycle. However, the question how enzymes bind atmospheric CO2 is still unsolved. We studied enoyl-CoA carboxylases/reductases (Ecrs), the fastest CO2-fixing enzymes in nature, using structural biology, biochemistry, and advanced computational methods. Ecrs create a highly specific CO2-binding pocket with 4 amino acids at the active site. The pocket controls the fate of the gaseous molecule during catalysis and shields the catalytic center from oxygen and water. This exquisite control makes Ecrs highly efficient carboxylases outcompeting RuBisCO, the key enzyme of photosynthesis, by an order of magnitude. Our findings define the atomic framework for the future development of CO2-converting catalysts in biology and chemistry. Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO2 molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO2 within the active site of Ecr from Kitasatospora setae. Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO2-fixing enzyme. Together, these 4 residues anchor and position the CO2 molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO2 fixation. Altogether, our study reveals unprecedented molecular details of selective CO2 binding and C–C-bond formation during the catalytic cycle of nature’s most efficient CO2-fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO2 in biology and chemistry.
Collapse
|
8
|
Bernhardsgrütter I, Schell K, Peter DM, Borjian F, Saez DA, Vöhringer-Martinez E, Erb TJ. Awakening the Sleeping Carboxylase Function of Enzymes: Engineering the Natural CO 2-Binding Potential of Reductases. J Am Chem Soc 2019; 141:9778-9782. [PMID: 31188584 PMCID: PMC6650136 DOI: 10.1021/jacs.9b03431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Developing new carbon
dioxide (CO2) fixing enzymes is
a prerequisite to create new biocatalysts for diverse applications
in chemistry, biotechnology and synthetic biology. Here we used bioinformatics
to identify a “sleeping carboxylase function” in the
superfamily of medium-chain dehydrogenases/reductases (MDR), i.e.
enzymes that possess a low carboxylation side activity next to their
original enzyme reaction. We show that propionyl-CoA synthase from Erythrobacter sp. NAP1, as well as an acrylyl-CoA
reductase from Nitrosopumilus maritimus possess carboxylation yields of 3 ± 1 and 4.5 ± 0.9%.
We use rational design to engineer these enzymes further into carboxylases
by increasing interactions of the proteins with CO2 and
suppressing diffusion of water to the active site. The engineered
carboxylases show improved CO2-binding and kinetic parameters
comparable to naturally existing CO2-fixing enzymes. Our
results provide a strategy to develop novel CO2-fixing
enzymes and shed light on the emergence of natural carboxylases during
evolution.
Collapse
Affiliation(s)
- Iria Bernhardsgrütter
- Department of Biochemistry and Synthetic Metabolism , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Straße 10 , D-35043 Marburg , Germany
| | - Kristina Schell
- Department of Biochemistry and Synthetic Metabolism , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Straße 10 , D-35043 Marburg , Germany
| | - Dominik M Peter
- Department of Biochemistry and Synthetic Metabolism , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Straße 10 , D-35043 Marburg , Germany
| | - Farshad Borjian
- Institute for Molecular Microbiology and Biotechnology, University of Münster , Corrensstr. 3 , D-48149 Münster , Germany
| | - David Adrian Saez
- Departamento de Físico Química, Facultad de Ciencias Químicas , Universidad de Concepción , 1290 Concepción , Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico Química, Facultad de Ciencias Químicas , Universidad de Concepción , 1290 Concepción , Chile
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Straße 10 , D-35043 Marburg , Germany.,LOEWE Center for Synthetic Microbiology (Synmikro) , Karl-von-Frisch-Straße 16 , D-35043 Marburg , Germany
| |
Collapse
|
9
|
Pires DAT, Arake LMR, Silva LP, Lopez-Castillo A, Prates MV, Nascimento CJ, Bloch C. A previously undescribed hexapeptide His-Arg-Phe-Leu-Arg-His-NH 2 from amphibian skin secretion shows CO 2 and metal biding affinities. Peptides 2018; 106:37-44. [PMID: 29933027 DOI: 10.1016/j.peptides.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
A previously undescribed six residues long peptide His-Arg-Phe-Leu-Arg-His was identified and purified from the skin secretion of the amphibian Phyllomedusa centralis. A synthetic analogue carboxyamidated HRFLRH-NH2 showed structural changes induced by CO2 and metal ions in aqueous solution when analyzed by NMR. The present work reports NMR structures for the carboxyamidated hexapeptide in the presence CO2, Zn2+ and Cd2+, suggesting possible affinity regions on the polypeptide chain for each ligand. The NMR structures were optimized by DFT to identify probable biding sites of these species in the polypeptide structure. To our best knowledge, this is the first time that a putative CO2 binding site is described on a peptide structure obtained in aqueous conditions, at room temperature.
Collapse
Affiliation(s)
- Diego A T Pires
- Instituto de Química, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil; Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia e Goiás (IFG), Luziânia, Goiás, Brazil
| | - Luisa M R Arake
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
| | - Luciano P Silva
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
| | - Alejandro Lopez-Castillo
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Maura V Prates
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
| | - Claudia J Nascimento
- Instituto de Química, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil; Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
10
|
Partovi SE, Mus F, Gutknecht AE, Martinez HA, Tripet BP, Lange BM, DuBois JL, Peters JW. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. J Biol Chem 2018; 293:5236-5246. [PMID: 29414784 DOI: 10.1074/jbc.ra117.001234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Xanthobacter autotrophicus Py2, we identified four putative CoM biosynthetic enzymes encoded by the xcbB1, C1, D1, and E1 genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze β-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes β-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing β-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate β-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.
Collapse
Affiliation(s)
- Sarah E Partovi
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | | - Andrew E Gutknecht
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Hunter A Martinez
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Brian P Tripet
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Bernd Markus Lange
- the Institute of Biological Chemistry and.,M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | |
Collapse
|
11
|
Bera AK, Aukema KG, Elias M, Wackett LP. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel. Sci Rep 2017; 7:45277. [PMID: 28345631 PMCID: PMC5366886 DOI: 10.1038/srep45277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.
Collapse
Affiliation(s)
- Asim K Bera
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Kelly G Aukema
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Mikael Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
12
|
|
13
|
Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. J Bacteriol 2011; 193:4904-13. [PMID: 21764916 DOI: 10.1128/jb.05231-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the aforementioned site-directed mutants. We interpreted and rationalized these results in terms of a mechanism of catalysis for 2-KPCC employing a unique hydrophobic active-site architecture promoting thioether bond cleavage and enolacetone formation not seen for other DSOR enzymes.
Collapse
|